1
|
Guan W, Ni MX, Gu HJ, Yang Y. CREB: A Promising Therapeutic Target for Treating Psychiatric Disorders. Curr Neuropharmacol 2024; 22:2384-2401. [PMID: 38372284 PMCID: PMC11451321 DOI: 10.2174/1570159x22666240206111838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 02/20/2024] Open
Abstract
Psychiatric disorders are complex, multifactorial illnesses. It is challenging for us to understand the underlying mechanism of psychiatric disorders. In recent years, the morbidity of psychiatric disorders has increased yearly, causing huge economic losses to the society. Although some progress, such as psychotherapy drugs and electroconvulsive therapy, has been made in the treatment of psychiatric disorders, including depression, anxiety, bipolar disorder, obsessive-compulsive and autism spectrum disorders, antidepressants and psychotropic drugs have the characteristics of negative effects and high rate of relapse. Therefore, researchers continue to seek suitable interventions. cAMP response element binding protein (CREB) belongs to a protein family and is widely distributed in the majority of brain cells that function as a transcription factor. It has been demonstrated that CREB plays an important role in neurogenesis, synaptic plasticity, and neuronal growth. This review provides a 10-year update of the 2013 systematic review on the multidimensional roles of CREB-mediated transcriptional signaling in psychiatric disorders. We also summarize the classification of psychiatric disorders and elucidate the involvement of CREB and related downstream signalling pathways in psychiatric disorders. Importantly, we analyse the CREB-related signal pathways involving antidepressants and antipsychotics to relieve the pathological process of psychiatric disorders. This review emphasizes that CREB signalling may have a vast potential to treat psychiatric disorders like depression. Furthermore, it would be helpful for the development of potential medicine to make up for the imperfection of current antidepressants and antipsychotics.
Collapse
Affiliation(s)
- Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong 226001, Jiangsu, China
| | - Mei-Xin Ni
- Department of Pharmacy, Affiliated Tumor Hospital of Nantong University/Nantong Tumor Hospital, Nantong, Jiangsu 226361, China
| | - Hai-Juan Gu
- Department of Pharmacy, Affiliated Tumor Hospital of Nantong University/Nantong Tumor Hospital, Nantong, Jiangsu 226361, China
| | - Yang Yang
- Department of Pharmacy, Affiliated Tumor Hospital of Nantong University/Nantong Tumor Hospital, Nantong, Jiangsu 226361, China
| |
Collapse
|
2
|
de Dios SMR, Hass JL, Graham DL, Kumar N, Antony AE, Morton MD, Berkowitz DB. Information-Rich, Dual-Function 13C/ 2H-Isotopic Crosstalk NMR Assay for Human Serine Racemase (hSR) Provides a PLP-Enzyme "Partitioning Fingerprint" and Reveals Disparate Chemotypes for hSR Inhibition. J Am Chem Soc 2023; 145:3158-3174. [PMID: 36696670 PMCID: PMC11103274 DOI: 10.1021/jacs.2c12774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The first dual-function assay for human serine racemase (hSR), the only bona fide racemase in human biology, is reported. The hSR racemization function is essential for neuronal signaling, as the product, d-serine (d-Ser), is a potent N-methyl d-aspartate (NMDA) coagonist, important for learning and memory, with dysfunctional d-Ser-signaling being observed in some neuronal disorders. The second hSR function is β-elimination and gives pyruvate; this activity is elevated in colorectal cancer. This new NMR-based assay allows one to monitor both α-proton-exchange chemistry and β-elimination using only the native l-Ser substrate and hSR and is the most sensitive such assay. The assay judiciously employs segregated dual 13C-labeling and 13C/2H crosstalk, exploiting both the splitting and shielding effects of deuterium. The assay is deployed to screen a 1020-compound library and identifies an indolo-chroman-2,4-dione inhibitor family that displays allosteric site binding behavior (noncompetitive inhibition vs l-Ser substrate; competitive inhibition vs adenosine 5'-triphosphate (ATP)). This assay also reveals important mechanistic information for hSR; namely, that H/D exchange is ∼13-fold faster than racemization, implying that K56 protonates the carbanionic intermediate on the si-face much faster than does S84 on the re-face. Moreover, the 13C NMR peak pattern seen is suggestive of internal return, pointing to K56 as the likely enamine-protonating residue for β-elimination. The 13C/2H-isotopic crosstalk assay has also been applied to the enzyme tryptophan synthase and reveals a dramatically different partition ratio in this active site (β-replacement: si-face protonation ∼6:1 vs β-elimination: si-face protonation ∼1:3.6 for hSR), highlighting the value of this approach for fingerprinting the pyridoxal phosphate (PLP) enzyme mechanism.
Collapse
Affiliation(s)
| | | | | | - Nivesh Kumar
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588 USA
| | - Aina E. Antony
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588 USA
| | - Martha D. Morton
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588 USA
| | | |
Collapse
|
3
|
MacKay MAB, Kravtsenyuk M, Thomas R, Mitchell ND, Dursun SM, Baker GB. D-Serine: Potential Therapeutic Agent and/or Biomarker in Schizophrenia and Depression? Front Psychiatry 2019; 10:25. [PMID: 30787885 PMCID: PMC6372501 DOI: 10.3389/fpsyt.2019.00025] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 01/15/2019] [Indexed: 11/17/2022] Open
Abstract
D-Serine is a potent co-agonist at the NMDA glutamate receptor and has been the object of many preclinical studies to ascertain the nature of its metabolism, its regional and cellular distribution in the brain, its physiological functions and its possible clinical relevance. The enzymes involved in its formation and catabolism are serine racemase (SR) and D-amino acid oxidase (DAAO), respectively, and manipulations of the activity of those enzymes have been useful in developing animal models of schizophrenia and in providing clues to the development of potential new antipsychotic strategies. Clinical studies have been conducted in schizophrenia patients to evaluate body fluid levels of D-serine and/or to use D-serine alone or in combination with antipsychotics to determine its effectiveness as a therapeutic agent. D-serine has also been used in combination with DAAO inhibitors in preclinical investigations, and interesting results have been obtained. Genetic studies and postmortem brain studies have also been conducted on D-serine and the enzymes involved in its metabolism. It is also of considerable interest that in recent years clinical and preclinical investigations have suggested that D-serine may also have antidepressant properties. Clinical studies have also shown that D-serine may be a biomarker for antidepressant response to ketamine. Relevant to both schizophrenia and depression, preclinical and clinical studies with D-serine indicate that it may be effective in reducing cognitive dysfunction.
Collapse
Affiliation(s)
- Mary-Anne B MacKay
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Maryana Kravtsenyuk
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Rejish Thomas
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Nicholas D Mitchell
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Serdar M Dursun
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Glen B Baker
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|