1
|
Biswas S, Chowdhury T, Banerjee S, Dutta K, Das AK, Das D. Improving the Efficiency of Luminescent Zn(II)-Modified N-Doped GOQD Nanomaterials in Parkinson's Disease Treatment: A Theoretical Mechanistic Framework Exploring Doping Effect. Chem Asian J 2024; 19:e202400629. [PMID: 39041342 DOI: 10.1002/asia.202400629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Levodopa, a widely prescribed drug in Parkinson's disease treatment, stands as the foremost prodrug of dopamine. An affordable self-testing kit is utilized to monitor levodopa content in anti-parkinson drugs in human serum. A photoluminescent trinuclear Zn(II) complex [Zn3(L)2(κ1-OAc)2(κ2-OAc)2] has been synthesized, which cleaves into mononuclear ZC in aqueous solution. ZC was found to detect L-Dopa in Tris-HCl buffer, exhibiting a moderate decrease in PL-emission. The real-life utility of the ZC probe is limited, for its lower sensitivity (LOD 35.3 μM) and separation challenges. Therefore, an interface between homogeneous and heterogeneous supports has been explored, leading to the strategic development of NGOZC, where ZC was grafted onto NGOQD (Graphene oxide quantum dots). This material enables naked- eye detection under both ambient and UV light with color change from bright cyan to green, followed by dark. The nitrogen doping effect was investigated by several comparative investigations involving the synthesis of ZC-grafted GOQD, leading to enhanced quenching performance. Steady-state and time-resolved fluorescence titration study, morphological analysis, and computational calculations have been performed to get insights into the sensing mechanism. To the best of our knowledge, this as-synthesized NGOZC (LOD 1.78 nM) represents a promising strategy and platform for applications in biosensors, especially for Parkinson's and Alzheimer's diseases.
Collapse
Affiliation(s)
- Sneha Biswas
- Department of Chemistry, University College of Science, University of Calcutta, 92A. P. C. Road, Kolkata, 700009, India
| | - Tania Chowdhury
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2 A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Soumadip Banerjee
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, 2 A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Koushik Dutta
- Department of Polymer Science & Technology, University of Calcutta, 92, A.P.C. Road, Kolkata, West Bengal, 700009, India
| | - Abhijit K Das
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, 2 A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Debasis Das
- Department of Chemistry, University College of Science, University of Calcutta, 92A. P. C. Road, Kolkata, 700009, India
| |
Collapse
|
2
|
Xu SF, Cui JH, Liu X, Pang ZQ, Bai CY, Jiang C, Luan C, Li YP, Zhao Y, You YM, Guo C. Astrocytic lactoferrin deficiency augments MPTP-induced dopaminergic neuron loss by disturbing glutamate/calcium and ER-mitochondria signaling. Free Radic Biol Med 2024; 225:374-387. [PMID: 39406276 DOI: 10.1016/j.freeradbiomed.2024.10.284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/05/2024] [Accepted: 10/12/2024] [Indexed: 10/20/2024]
Abstract
Increased levels of lactoferrin (Lf) are present in the aged brain and in the lesions of various neurodegenerative diseases, including Parkinson's disease (PD), and may contribute to the cascade of events involved in neurodevelopment and neuroprotection. However, whether Lf originates from astrocytes and functions within either the normal or pathological brain are unknown. Here, we employed mice with specific knockout of the astrocyte lactoferrin gene (named Lf-cKO) to explore its specific roles in the pathological process of PD. We observed a decrease in tyrosine hydroxylase-positive cells, mitochondrial dysfunction of residual dopaminergic neurons, and motor deficits in Lf-cKO mice, which were significantly aggravated after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment. To further explore how astrocytic lactoferrin deficiency exacerbated PD-like manifestation in MPTP-treated mice, the critical molecules involved in endoplasmic reticulum (ER)-mitochondria contacts and signaling pathways were investigated. In vitro and in vivo models, we found an aberrant level of effects implicated in glutamate and calcium homeostasis, mitochondrial morphology and functions, mitochondrial dynamics, and mitochondria-associated ER membranes, accompanied by signs of oxidative stress and ER stress, which increase the fragility of dopaminergic neurons. These findings confirm the existence of astrocytic Lf and its influence on the fate of dopaminergic neurons by regulating glutamate/calcium metabolism and ER-mitochondria signaling. Our findings may be a promising target for the treatment of PD.
Collapse
Affiliation(s)
- Shuang-Feng Xu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Jun-He Cui
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Xin Liu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Zhong-Qiu Pang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Chen-Yang Bai
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Chao Jiang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Chuang Luan
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Yun-Peng Li
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Yan Zhao
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Yi-Ming You
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Chuang Guo
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China.
| |
Collapse
|
3
|
Rusiecka I, Gągało I, Kocić I. Neuroprotective Activity of a Non-Covalent Imatinib+TP10 Conjugate in HT-22 Neuronal Cells In Vitro. Pharmaceutics 2024; 16:778. [PMID: 38931899 PMCID: PMC11207969 DOI: 10.3390/pharmaceutics16060778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
This study evaluated the probable relevance of a non-covalent conjugate of imatinib with TP10 in the context of a neuroprotective effect in Parkinson's disease. Through the inhibition of c-Abl, which is a non-receptor tyrosine kinase and an indicator of oxidative stress, imatinib has shown promise in preclinical animal models of this disease. The poor distribution of imatinib within the brain tissue triggered experiments in which a conjugate was obtained by mixing the drug with TP10, which is known for exhibiting high translocation activity across the cell membrane. The conjugate was tested on the HT-22 cell line with respect to its impact on MPP+-induced oxidative stress, apoptosis, necrosis, cytotoxicity, and mortality. Additionally, it was checked whether the conjugate activated the ABCB1 protein. The experiments indicated that imatinib+PEG4+TP10 reduced the post-MPP+ oxidative stress, apoptosis, and mortality, and these effects were more prominent than those obtained after the exposition of the HT-22 cells to imatinib alone. Its cytotoxicity was similar to that of imatinib itself. In contrast to imatinib, the conjugate did not activate the ABCB1 protein. These favorable qualities of imatinib+PEG4+TP10 make it a potential candidate for further in vivo research, which would confirm its neuroprotective action in PD-affected brains.
Collapse
Affiliation(s)
- Izabela Rusiecka
- Department of Pharmacology, Medical University of Gdańsk, Dębowa 23, 80-204 Gdańsk, Poland
| | | | | |
Collapse
|
4
|
Cai M, Bai XL, Zang HJ, Tang XH, Yan Y, Wan JJ, Peng MY, Liang H, Liu L, Guo F, Zhao PJ, Liao X, Di YT, Hao XJ. Quassinoids from Twigs of Harrisonia perforata (Blanco) Merr and Their Anti-Parkinson's Disease Effect. Int J Mol Sci 2023; 24:16196. [PMID: 38003386 PMCID: PMC10671724 DOI: 10.3390/ijms242216196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 11/26/2023] Open
Abstract
Six new C-20 and one new C-19 quassinoids, named perforalactones F-L (1-7), were isolated from twigs of Harrisonia perforata. Spectroscopic and X-ray crystallographic experiments were conducted to identify their structures. Through oxidative degradation of perforalactone B to perforaqussin A, the biogenetic process from C-25 quassinoid to C-20 via Baeyer-Villiger oxidation was proposed. Furthermore, the study evaluated the anti-Parkinson's disease potential of these C-20 quassinoids for the first time on 6-OHDA-induced PC12 cells and a Drosophila Parkinson's disease model of PINK1B9. Perforalactones G and I (2 and 4) showed a 10-15% increase in cell viability of the model cells at 50 μM, while compounds 2 and 4 (100 μM) significantly improved the climbing ability of PINK1B9 flies and increased the dopamine level in the brains and ATP content in the thoraces of the flies.
Collapse
Affiliation(s)
- Min Cai
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (M.C.); (H.-J.Z.); (X.-H.T.); (Y.Y.); (J.-J.W.); (M.-Y.P.); (H.L.); (L.L.); (F.G.); (X.-J.H.)
- School of Life Sciences, Yunnan University, Kunming 650091, China;
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Xiao-Lin Bai
- University of Chinese Academy of Sciences, Beijing 100049, China;
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Hao-Jing Zang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (M.C.); (H.-J.Z.); (X.-H.T.); (Y.Y.); (J.-J.W.); (M.-Y.P.); (H.L.); (L.L.); (F.G.); (X.-J.H.)
- School of Life Sciences, Yunnan University, Kunming 650091, China;
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Xiao-Han Tang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (M.C.); (H.-J.Z.); (X.-H.T.); (Y.Y.); (J.-J.W.); (M.-Y.P.); (H.L.); (L.L.); (F.G.); (X.-J.H.)
- School of Life Sciences, Yunnan University, Kunming 650091, China;
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Ying Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (M.C.); (H.-J.Z.); (X.-H.T.); (Y.Y.); (J.-J.W.); (M.-Y.P.); (H.L.); (L.L.); (F.G.); (X.-J.H.)
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550014, China
| | - Jia-Jia Wan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (M.C.); (H.-J.Z.); (X.-H.T.); (Y.Y.); (J.-J.W.); (M.-Y.P.); (H.L.); (L.L.); (F.G.); (X.-J.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Min-You Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (M.C.); (H.-J.Z.); (X.-H.T.); (Y.Y.); (J.-J.W.); (M.-Y.P.); (H.L.); (L.L.); (F.G.); (X.-J.H.)
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550014, China
| | - Hong Liang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (M.C.); (H.-J.Z.); (X.-H.T.); (Y.Y.); (J.-J.W.); (M.-Y.P.); (H.L.); (L.L.); (F.G.); (X.-J.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Lin Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (M.C.); (H.-J.Z.); (X.-H.T.); (Y.Y.); (J.-J.W.); (M.-Y.P.); (H.L.); (L.L.); (F.G.); (X.-J.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Feng Guo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (M.C.); (H.-J.Z.); (X.-H.T.); (Y.Y.); (J.-J.W.); (M.-Y.P.); (H.L.); (L.L.); (F.G.); (X.-J.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Pei-Ji Zhao
- School of Life Sciences, Yunnan University, Kunming 650091, China;
| | - Xun Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Ying-Tong Di
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (M.C.); (H.-J.Z.); (X.-H.T.); (Y.Y.); (J.-J.W.); (M.-Y.P.); (H.L.); (L.L.); (F.G.); (X.-J.H.)
| | - Xiao-Jiang Hao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (M.C.); (H.-J.Z.); (X.-H.T.); (Y.Y.); (J.-J.W.); (M.-Y.P.); (H.L.); (L.L.); (F.G.); (X.-J.H.)
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550014, China
| |
Collapse
|
5
|
Wang W, Qu L, Cui Z, Lu F, Li L, Liu F. Citrus Flavonoid Hesperetin Inhibits α-Synuclein Fibrillogenesis, Disrupts Mature Fibrils, and Reduces Their Cytotoxicity: In Vitro and In Vivo Studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16174-16183. [PMID: 37870747 DOI: 10.1021/acs.jafc.3c06816] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Misfolding and subsequent fibrillogenesis of α-synuclein (αSN) significantly influence the development of Parkinson's disease (PD). This study reports the inhibitory effect of citrus flavonoid hesperetin (Hst) on αSN fibrillation. Based on thioflavin T fluorometry and atomic force microscopy studies, Hst inhibited αSN fibrillation by interfering with initial nucleation and slowing the elongation rate. Furthermore, the inhibitory effect was concentration-dependent with a half-maximal inhibitory concentration of 24.4 μM. Cytotoxicity experiments showed that 100 μM Hst significantly reduced the cytotoxicity of αSN aggregates and maintained 98.4% cell activity. In addition, Hst disassembled the preprepared αSN fibrils into smaller and less-toxic aggregates. Excitingly, supplementation with 100 μM Hst inhibited the accumulation of 36.3% αSN in NL5901 and restored the amyloid-induced reduction in NL5901 lipid abundance, extending the mean lifespan of NL5901 to 23 d. These findings could support the use of Hst as a dietary supplement to regulate αSN fibrillation and prevent the development of PD.
Collapse
Affiliation(s)
- Wenqian Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Lili Qu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Zhan Cui
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Li Li
- College of Science, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
6
|
Hu YK, Bai XL, Shi GY, Zhang YM, Liao X. Polyphenolic glycosides with unusual four-membered ring possessing anti-Parkinson's disease potential from black wolfberry. PHYTOCHEMISTRY 2023:113775. [PMID: 37392937 DOI: 10.1016/j.phytochem.2023.113775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
This work reports the isolation of seven undescribed polyphenolic glycosides (1-7) together with fourteen known compounds (8-21) from the fruit of Lycium ruthenicum Murray. The structures of the undescribed compounds were identified based on comprehensive spectroscopic methods including IR, HRESIMS, NMR and ECD, and chemical hydrolysis. Compounds 1-3 possess an unusual four-membered ring, while 11-15 were firstly isolated from this fruit. Interestingly, compounds 1-3 inhibited monoamine oxidase B with IC50 of 25.36 ± 0.44, 35.36 ± 0.54, and 25.12 ± 1.59 μM, respectively, and showed significant neuroprotective effect on PC12 cells injured by 6-OHDA. Moreover, compound 1 improved the lifespan, dopamine level, climbing behaviour, and olfactory ability of the PINK1B9 flies, a Drosophila model of Parkinson's disease. This work presents the first in vivo neuroprotective evidence of the small molecular compounds in L. ruthenicum Murray fruit, indicating its good potential as neuroprotectant.
Collapse
Affiliation(s)
- Yi-Kao Hu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiao-Lin Bai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Guang-Yu Shi
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yong-Mei Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Xun Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
7
|
García-Beltrán O, Urrutia PJ, Núñez MT. On the Chemical and Biological Characteristics of Multifunctional Compounds for the Treatment of Parkinson's Disease. Antioxidants (Basel) 2023; 12:214. [PMID: 36829773 PMCID: PMC9952574 DOI: 10.3390/antiox12020214] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Protein aggregation, mitochondrial dysfunction, iron dyshomeostasis, increased oxidative damage and inflammation are pathognomonic features of Parkinson's disease (PD) and other neurodegenerative disorders characterized by abnormal iron accumulation. Moreover, the existence of positive feed-back loops between these pathological components, which accelerate, and sometimes make irreversible, the neurodegenerative process, is apparent. At present, the available treatments for PD aim to relieve the symptoms, thus improving quality of life, but no treatments to stop the progression of the disease are available. Recently, the use of multifunctional compounds with the capacity to attack several of the key components of neurodegenerative processes has been proposed as a strategy to slow down the progression of neurodegenerative processes. For the treatment of PD specifically, the necessary properties of new-generation drugs should include mitochondrial destination, the center of iron-reactive oxygen species interaction, iron chelation capacity to decrease iron-mediated oxidative damage, the capacity to quench free radicals to decrease the risk of ferroptotic neuronal death, the capacity to disrupt α-synuclein aggregates and the capacity to decrease inflammatory conditions. Desirable additional characteristics are dopaminergic neurons to lessen unwanted secondary effects during long-term treatment, and the inhibition of the MAO-B and COMPT activities to increase intraneuronal dopamine content. On the basis of the published evidence, in this work, we review the molecular basis underlying the pathological events associated with PD and the clinical trials that have used single-target drugs to stop the progress of the disease. We also review the current information on multifunctional compounds that may be used for the treatment of PD and discuss the chemical characteristics that underlie their functionality. As a projection, some of these compounds or modifications could be used to treat diseases that share common pathology features with PD, such as Friedreich's ataxia, Multiple sclerosis, Huntington disease and Alzheimer's disease.
Collapse
Affiliation(s)
- Olimpo García-Beltrán
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22 Calle 67, Ibagué 730002, Colombia
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, General Gana 1702, Santiago 8370854, Chile
| | - Pamela J. Urrutia
- Faculty of Medicine and Science, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile
| | - Marco T. Núñez
- Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, Santiago 7800024, Chile
| |
Collapse
|
8
|
Khairnar RC, Parihar N, Prabhavalkar KS, Bhatt LK. Emerging targets signaling for inflammation in Parkinson's disease drug discovery. Metab Brain Dis 2022; 37:2143-2161. [PMID: 35536461 DOI: 10.1007/s11011-022-00999-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/29/2022] [Indexed: 10/18/2022]
Abstract
Parkinson's disease (PD) patients not only show motor features such as bradykinesia, tremor, and rigidity but also non-motor features such as anxiety, depression, psychosis, memory loss, attention deficits, fatigue, sexual dysfunction, gastrointestinal issues, and pain. Many pharmacological treatments are available for PD patients; however, these treatments are partially or transiently effective since they only decrease the symptoms. As these therapies are unable to restore dopaminergic neurons and stop the development of Parkinson's disease, therefore, the need for an effective therapeutic approach is required. The current review summarizes novel targets for PD, that can be utilized to identify disease-modifying treatments.
Collapse
Affiliation(s)
- Rhema Chandan Khairnar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India
| | - Niraj Parihar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India
| | - Kedar S Prabhavalkar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India.
| |
Collapse
|
9
|
Królicka E, Kieć-Kononowicz K, Łażewska D. Chalcones as Potential Ligands for the Treatment of Parkinson's Disease. Pharmaceuticals (Basel) 2022; 15:ph15070847. [PMID: 35890146 PMCID: PMC9317344 DOI: 10.3390/ph15070847] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 12/16/2022] Open
Abstract
Along with the increase in life expectancy, a significant increase of people suffering from neurodegenerative diseases (ND) has been noticed. The second most common ND, after Alzheimer’s disease, is Parkinson’s disease (PD), which manifests itself with a number of motor and non-motor symptoms that hinder the patient’s life. Current therapies can only alleviate those symptoms and slow down the progression of the disease, but not effectively cure it. So now, in addition to understanding the mechanism and causes of PD, it is also important to find a powerful way of treatment. It has been proved that in the etiology and course of PD, the essential roles are played by dopamine (DA) (an important neurotransmitter), enzymes regulating its level (e.g., COMT, MAO), and oxidative stress leading to neuroinflammation. Chalcones, due to their “simple” structure and valuable biological properties are considered as promising candidates for treatment of ND, also including PD. Here, we provide a comprehensive review of chalcones and related structures as potential new therapeutics for cure and prevention of PD. For this purpose, three databases (Pubmed, Scopus and Web of Science) were searched to collect articles published during the last 5 years (January 2018–February 2022). Chalcones have been described as promising enzyme inhibitors (MAO B, COMT, AChE), α-synuclein imaging probes, showing anti-neuroinflammatory activity (inhibition of iNOS or activation of Nrf2 signaling), as well as antagonists of adenosine A1 and/or A2A receptors. This review focused on the structure–activity relationships of these compounds to determine how a particular substituent or its position in the chalcone ring(s) (ring A and/or B) affects biological activity.
Collapse
|
10
|
Hu YK, Bai XL, Yuan H, Zhang Y, Ayeni EA, Liao X. Polyphenolic Glycosides from the Fruits Extract of Lycium ruthenicum Murr and Their Monoamine Oxidase B Inhibitory and Neuroprotective Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7968-7980. [PMID: 35729693 DOI: 10.1021/acs.jafc.2c02375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The fruits ofLycium ruthenicum Murr have long been consumed as health food and used in folk medicine in China. Apart from the well-known polysaccharides, the active small molecular constituents in this fruit have not been fully studied. In this work, a systematic phytochemical study was carried out to investigate the small molecules and their potential health benefits. Nine new polyphenolic glycosides, lyciumserin A-I (1-9), together with 16 known compounds (10-25), were isolated and elucidated by high-resolution electrospray ionization mass spectrometry and comprehensive NMR analyses in combination with chemical hydrolysis. Compounds 1, 2, and 16 exhibited moderate inhibitory activity of monoamine oxidase B (MAO-B), while compounds 1 (50 μM) and 2 (100 μM) displayed significant neuroprotective effects (69.22 and 72.38% of cell viability, respectively) in the 6-hydroxydopamine-induced injury of the PC12 cell model (54.41%), comparable to the positive drug rasagiline (70.45%). The neuroprotective effect of 1 and 2 was further evidenced by the observation of the morphological change and fluorescein diacetate/propidium iodide staining. In addition, the levels of the major active compounds (1, 3, 5/6, and 16-18) vary from 21.5 to 892.3 μg/g. This is the first report on phenolic glycosides from the fruits ofL. ruthenicum Murr that possess both significant MAO-B inhibitory and neuroprotective effects, indicating the promising potential of the fruits for the development of health care products and even therapeutic agents for the treatment of Parkinson's disease and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Yi-Kao Hu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Lin Bai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Yuan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Emmanuel Ayodeji Ayeni
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xun Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
11
|
Chetia Phukan B, Dutta A, Deb S, Saikia R, Mazumder MK, Paul R, Bhattacharya P, Sandhir R, Borah A. Garcinol blocks motor behavioural deficits by providing dopaminergic neuroprotection in MPTP mouse model of Parkinson's disease: involvement of anti-inflammatory response. Exp Brain Res 2021; 240:113-122. [PMID: 34633467 DOI: 10.1007/s00221-021-06237-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 09/26/2021] [Indexed: 12/21/2022]
Abstract
Although the etiology of Parkinson's disease (PD) is poorly understood, studies in animal models revealed loss of dopamine and the dopaminergic neurons harbouring the neurotransmitter to be the principal cause behind this neuro-motor disorder. Neuroinflammation with glial cell activation is suggested to play a significant role in dopaminergic neurodegeneration. Several biomolecules have been reported to confer dopaminergic neuroprotection in different animal models of PD, owing to their anti-inflammatory potentials. Garcinol is a tri-isoprenylated benzophenone isolated from Garcinia sp. and accumulating evidences suggest that this molecule could provide neuroprotection by modulating oxidative stress and inflammation. However, direct evidence of dopaminergic neuroprotection by garcinol in the pre-clinical model of PD is not yet reported. The present study aims to investigate whether administration of garcinol in the MPTP mouse model of PD may ameliorate the cardinal motor behavioural deficits and prevent the loss of dopaminergic neurons. As expected, garcinol blocked the parkinsonian motor behavioural deficits which include akinesia, catalepsy, and rearing anomalies in the mice model. Most importantly, the degeneration of dopaminergic cell bodies in the substantia nigra region was significantly prevented by garcinol. Furthermore, garcinol reduced the inflammatory marker, glial fibrillary acidic protein, in the substantia nigra region. Since glial hyperactivation-mediated inflammation is inevitably associated with the loss of dopaminergic neurons, our study suggests the anti-inflammatory role of garcinol in facilitating dopaminergic neuroprotection in PD mice. Hence, in the light of the present study, it is suggested that garcinol is an effective anti-parkinsonian agent to block motor behavioural deficits and dopaminergic neurodegeneration in PD.
Collapse
Affiliation(s)
- Banashree Chetia Phukan
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, 788011, India
| | - Ankumoni Dutta
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, 788011, India.,Department of Zoology, Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya (PDUAM), Bishwanath Chariali, Assam, India
| | - Satarupa Deb
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, 788011, India
| | - Rubul Saikia
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, 788011, India
| | | | - Rajib Paul
- Department of Zoology, Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya (PDUAM), Eraligool, Karimganj, Assam, India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat, India
| | - Rajat Sandhir
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, 788011, India.
| |
Collapse
|
12
|
Wang W, Zhang J, Qi W, Su R, He Z, Peng X. Alizarin and Purpurin from Rubia tinctorum L. Suppress Insulin Fibrillation and Reduce the Amyloid-Induced Cytotoxicity. ACS Chem Neurosci 2021; 12:2182-2193. [PMID: 34033711 DOI: 10.1021/acschemneuro.1c00177] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Alizarin (1,2-dihydroxyanthraquinone) and purpurin (1,2,4-trihydroxyanthraquinone), natural anthraquinone compounds from Rubia tinctorum L., are reported to have diverse biological effects including antibacterial, antitumor, antioxidation, and so on, but the inhibition activity against amyloid aggregation has been rarely reported. In this study, we used insulin as a model protein to explore the anti-amyloid effects of the two compounds. The results showed that alizarin and purpurin inhibited the formation of insulin fibrils in a dose-dependent manner and reduced insulin-induced cytotoxicity. Meanwhile, purpurin had a more significant inhibitory effect on insulin amyloid fibrils compared with alizarin. In addition, computer simulations indicated that the two compounds interacted mainly with the hydrophobic residues of insulin chain B and interfered with the binding of phenylalanine residues. The research indicated that natural anthraquinone compounds had potential effects in preventing protein misfolding diseases and could be further used to design effective antiamyloidosis compounds.
Collapse
Affiliation(s)
- Wen Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Jiaxing Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Zhimin He
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Xin Peng
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
13
|
Jayanti S, Moretti R, Tiribelli C, Gazzin S. Bilirubin: A Promising Therapy for Parkinson's Disease. Int J Mol Sci 2021; 22:6223. [PMID: 34207581 PMCID: PMC8228391 DOI: 10.3390/ijms22126223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 02/07/2023] Open
Abstract
Following the increase in life expectancy, the prevalence of Parkinson's disease (PD) as the most common movement disorder is expected to rise. Despite the incredibly huge efforts in research to find the definitive biomarker, to date, the diagnosis of PD still relies mainly upon clinical symptoms. A wide range of treatments is available for PD, mainly alleviating the clinical symptoms. However, none of these current therapies can stop or even slow down the disease evolution. Hence, disease-modifying treatment is still a paramount unmet medical need. On the other side, bilirubin and its enzymatic machinery and precursors have offered potential benefits by targeting multiple mechanisms in chronic diseases, including PD. Nevertheless, only limited discussions are available in the context of neurological conditions, particularly in PD. Therefore, in this review, we profoundly discuss this topic to understand bilirubin's therapeutical potential in PD.
Collapse
Affiliation(s)
- Sri Jayanti
- Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149 Trieste, Italy; (C.T.); (S.G.)
- Faculty of Medicine, University of Hasanuddin, Makassar 90245, Indonesia
- Molecular Biomedicine Ph.D. Program, University of Trieste, 34127 Trieste, Italy
| | - Rita Moretti
- Neurology Clinic, Department of Medical, Surgical, and Health Sciences, University of Trieste, 34139 Trieste, Italy;
| | - Claudio Tiribelli
- Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149 Trieste, Italy; (C.T.); (S.G.)
| | - Silvia Gazzin
- Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149 Trieste, Italy; (C.T.); (S.G.)
| |
Collapse
|
14
|
Soke F, Kocer B, Fidan I, Keskinoglu P, Guclu-Gunduz A. Effects of task-oriented training combined with aerobic training on serum BDNF, GDNF, IGF-1, VEGF, TNF-α, and IL-1β levels in people with Parkinson's disease: A randomized controlled study. Exp Gerontol 2021; 150:111384. [PMID: 33965556 DOI: 10.1016/j.exger.2021.111384] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Parkinson's disease (PD) is a chronic neurodegenerative disease characterized by the death of dopaminergic neurons in the substantia nigra pars compacta. Exercise training, which is incorporated both goal-based training such as task-oriented training (TOT) and aerobic training (AT), has been suggested to induce neuroprotection. However, molecular mechanisms which may underlie exercise-induced neuroprotection are still largely unknown. Thus, the aim of the present study was to investigate the effects of TOT combined with AT (TOT-AT) on serum brain-derived neurotrophic factor (BDNF), glial cell-derived growth factor (GDNF), insulin-like growth factor-1 (IGF-1), vascular endothelial growth factor (VEGF), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) levels in people with PD (PwPD). METHODS Forty PwPD were randomized into 8-week of either exercise group (n = 20) or control group (n = 20). The exercise group received TOT-AT while the control group received only AT. Serum BDNF, GDNF, IGF-1, VEGF, TNF-α, and IL-1β levels determined with ELISA were assessed at baseline and after training. RESULTS A total of 29 PwPD completed this study. Our results showed no significant change in the serum BDNF, GDNF, IGF-1, VEGF, TNF-α, and IL-1β levels in both groups. After the intervention period, no significant difference was observed between the groups regarding the serum BDNF, GDNF, IGF-1, VEGF, TNF-α, and IL-1β levels. CONCLUSION TOT-AT could not be an effective exercise method for changing serum concentrations of BDNF, GDNF, IGF-1, VEGF, TNF-α, and IL-1β in the rehabilitation of PD.
Collapse
Affiliation(s)
- Fatih Soke
- University of Health Sciences, Gulhane Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Ankara, Turkey.
| | - Bilge Kocer
- Diskapi Yildirim Beyazit Teaching and Research Hospital, Department of Neurology, Ankara, Turkey
| | - Isil Fidan
- Gazi University, Faculty of Medicine, Department of Medical Microbiology, Ankara, Turkey
| | - Pembe Keskinoglu
- Dokuz Eylul University, Department of Biostatistics, School of Medicine, Izmir, Turkey
| | - Arzu Guclu-Gunduz
- Gazi University, Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Ankara, Turkey
| |
Collapse
|
15
|
The application of isatin-based multicomponent-reactions in the quest for new bioactive and druglike molecules. Eur J Med Chem 2020; 211:113102. [PMID: 33421712 DOI: 10.1016/j.ejmech.2020.113102] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/16/2022]
Abstract
Oxindole derivatives are known for their great interest in the field of Medicinal Chemistry, as they display vast biological activities. Recent efforts concerning the preparation of oxindole derivatives using isatin-based multicomponent reactions (MCRs) constitute a great advance in generating druglike libraries fast and with wide scaffold diversity. In this review, we address those recent developments, exploring the synthetic pathways and biological activities described for these compounds, namely antitumor, antibacterial, antifungal, antiparasitic, antiviral, antioxidant, anti-inflammatory and central nervous system (CNS) pathologies. To add new depth to this work, we used a well-established web-based free tool (SwissADME) to evaluate the most promising scaffolds in what concerns their druglike properties, namely by evaluating their compliance with some of the most valuable rules applied by medicinal chemists in both academia and industrial settings (Lipinski, Ghose, Veber, Egan, Muegge). The aim of this review is to endorse isatin-based MCRs as a valuable synthetic approach to attain new hit compounds bearing the oxindole privileged structure, while critically exploring these scaffolds' druglike properties.
Collapse
|
16
|
Manzoor S, Hoda N. A comprehensive review of monoamine oxidase inhibitors as Anti-Alzheimer's disease agents: A review. Eur J Med Chem 2020; 206:112787. [PMID: 32942081 DOI: 10.1016/j.ejmech.2020.112787] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/22/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023]
Abstract
Monoamine oxidases (MAO-A and MAO-B) are mammalian flavoenzyme, which catalyze the oxidative deamination of several neurotransmitters like norepinephrine, dopamine, tyramine, serotonin, and some other amines. The oxidative deamination produces several harmful side products like ammonia, peroxides, and aldehydes during the biochemical reaction. The concentration of biochemical neurotransmitter alteration in the brain by MAO is directly related with several neurological disorders like Alzheimer's disease and Parkinson's disease (PD). Activated MAO also contributes to the amyloid beta (Aβ) aggregation by two successive cleft β-secretase and γ-secretase of amyloid precursor protein (APP). Additionally, activated MAO is also involved in aggregation of neurofibrillary tangles and cognitive destruction through the cholinergic neuronal damage and disorder of the cholinergic system. MAO inhibition has general anti-Alzheimer's disease effect as a consequence of oxidative stress reduction prompted by MAO enzymes. In this review, we outlined and addressed recent understanding on MAO enzymes such as their structure, physiological function, catalytic mechanism, and possible therapeutic goals in AD. In addition, it also highlights the current development and discovery of potential MAO inhibitors (MAOIs) from various chemical scaffolds.
Collapse
Affiliation(s)
- Shoaib Manzoor
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Nasimul Hoda
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
17
|
Blue and green emission-transformed fluorescent copolymer: Specific detection of levodopa of anti-Parkinson drug in human serum. Talanta 2020; 214:120817. [DOI: 10.1016/j.talanta.2020.120817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/15/2020] [Accepted: 02/09/2020] [Indexed: 01/04/2023]
|
18
|
Johnson SL, Iannucci J, Seeram NP, Grammas P. Inhibiting thrombin improves motor function and decreases oxidative stress in the LRRK2 transgenic Drosophila melanogaster model of Parkinson's disease. Biochem Biophys Res Commun 2020; 527:532-538. [PMID: 32423817 DOI: 10.1016/j.bbrc.2020.04.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disease characterized by the presence of tremors, loss of dopaminergic neurons and accumulation of α-synuclein. While there is no single direct cause of PD, genetic mutations, exposure to pesticides, diet and traumatic brain injury have been identified as risk factors. Increasing evidence suggests that oxidative stress and neuroinflammation contribute to the pathogenesis of neuronal injury in neurodegenerative diseases such as PD and Alzheimer's disease (AD). We have previously documented that the multifunctional inflammatory mediator thrombin contributes to oxidative stress and neuroinflammation in AD. Here, for the first time, we explore the role of thrombin in a transgenic PD model, the LRRK2 mutant Drosophila melanogaster. Transgenic flies were treated with the direct thrombin inhibitor dabigatran for 7 days and locomotor activity and indices of oxidative stress evaluated. Our data show that dabigatran treatment significantly (p < 0.05) improved climbing activity, a measurement of locomotor ability, in male but had no effect on locomotor performance in female flies. Dabigatran treatment had no effect on tyrosine hydroxylase levels. Analysis of oxidative stress in male flies showed that dabigatran was able to significantly (p < 0.01) lower reactive oxygen species levels. Furthermore, Western blot analysis showed that the pro-oxidant proteins iNOS and NOX4 are elevated in LRRK2 male flies compared to wildtype and that treatment with dabigatran reduced expression of these proteins. Our results indicate that dabigatran treatment could improve motor function in PD by reducing oxidative stress. These data suggest that targeting thrombin may improve oxidative stress related pathologies in PD.
Collapse
Affiliation(s)
- Shelby L Johnson
- The George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, 02881, USA; Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA.
| | - Jaclyn Iannucci
- The George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, 02881, USA; Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Navindra P Seeram
- The George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, 02881, USA; Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Paula Grammas
- The George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, 02881, USA; Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| |
Collapse
|
19
|
Fransen M, Revenco I, Li H, Costa CF, Lismont C, Van Veldhoven PP. Peroxisomal Dysfunction and Oxidative Stress in Neurodegenerative Disease: A Bidirectional Crosstalk. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1299:19-30. [PMID: 33417204 DOI: 10.1007/978-3-030-60204-8_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Peroxisomes are multifunctional organelles best known for their role in cellular lipid and hydrogen peroxide metabolism. In this chapter, we review and discuss the diverse functions of this organelle in brain physiology and neurodegeneration, with a particular focus on oxidative stress. We first briefly summarize what is known about the various nexuses among peroxisomes, the central nervous system, oxidative stress, and neurodegenerative disease. Next, we provide a comprehensive overview of the complex interplay among peroxisomes, oxidative stress, and neurodegeneration in patients suffering from primary peroxisomal disorders. Particular examples that are discussed include the prototypic Zellweger spectrum disorders and X-linked adrenoleukodystrophy, the most prevalent peroxisomal disorder. Thereafter, we elaborate on secondary peroxisome dysfunction in more common neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Finally, we highlight some issues and challenges that need to be addressed to progress towards therapies and prevention strategies preserving, normalizing, or improving peroxisome activity in patients suffering from neurodegenerative conditions.
Collapse
Affiliation(s)
- Marc Fransen
- Department of Cellular and Molecular Medicine, Laboratory of Lipid Biochemistry and Protein Interactions, KU Leuven, Leuven, Belgium.
| | - Iulia Revenco
- Department of Cellular and Molecular Medicine, Laboratory of Lipid Biochemistry and Protein Interactions, KU Leuven, Leuven, Belgium
| | - Hongli Li
- Department of Cellular and Molecular Medicine, Laboratory of Lipid Biochemistry and Protein Interactions, KU Leuven, Leuven, Belgium
| | - Cláudio F Costa
- Department of Cellular and Molecular Medicine, Laboratory of Lipid Biochemistry and Protein Interactions, KU Leuven, Leuven, Belgium
| | - Celien Lismont
- Department of Cellular and Molecular Medicine, Laboratory of Lipid Biochemistry and Protein Interactions, KU Leuven, Leuven, Belgium
| | - Paul P Van Veldhoven
- Department of Cellular and Molecular Medicine, Laboratory of Lipid Biochemistry and Protein Interactions, KU Leuven, Leuven, Belgium
| |
Collapse
|
20
|
Veeresh P, Kaur H, Sarmah D, Mounica L, Verma G, Kotian V, Kesharwani R, Kalia K, Borah A, Wang X, Dave KR, Rodriguez AM, Yavagal DR, Bhattacharya P. Endoplasmic reticulum-mitochondria crosstalk: from junction to function across neurological disorders. Ann N Y Acad Sci 2019; 1457:41-60. [PMID: 31460675 DOI: 10.1111/nyas.14212] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/12/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022]
Abstract
The endoplasmic reticulum (ER) and mitochondria are fundamental organelles highly interconnected with a specialized set of proteins in cells. ER-mitochondrial interconnections form specific microdomains, called mitochondria-associated ER membranes, that have been found to play important roles in calcium signaling and lipid homeostasis, and more recently in mitochondrial dynamics, inflammation, and autophagy. It is not surprising that perturbations in ER-mitochondria connections can result in the progression of disease, especially neurological disorders; hence, their architecture and regulation are crucial in determining the fate of cells and disease. The molecular identity of the specialized proteins regulating ER-mitochondrial crosstalk remains unclear. Our discussion here describes the physical and functional crosstalk between these two dynamic organelles and emphasizes the outcome of altered ER-mitochondrial interconnections in neurological disorders.
Collapse
Affiliation(s)
- Pabbala Veeresh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar, Gujarat, India
| | - Harpreet Kaur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar, Gujarat, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar, Gujarat, India.,Institut Mondor de Recherche Biomédicale (IMRB), INSERM U955, Université Paris-Est, UMR-S955, UPEC, Cretéil, France
| | - Leela Mounica
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar, Gujarat, India
| | - Geetesh Verma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar, Gujarat, India
| | - Vignesh Kotian
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar, Gujarat, India
| | - Radhika Kesharwani
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar, Gujarat, India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar, Gujarat, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kunjan R Dave
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida
| | - Anne-Marie Rodriguez
- Institut Mondor de Recherche Biomédicale (IMRB), INSERM U955, Université Paris-Est, UMR-S955, UPEC, Cretéil, France
| | - Dileep R Yavagal
- Department of Neurology and Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar, Gujarat, India
| |
Collapse
|
21
|
Kotian V, Sarmah D, Kaur H, Kesharwani R, Verma G, Mounica L, Veeresh P, Kalia K, Borah A, Wang X, Dave KR, Yavagal DR, Bhattacharya P. Evolving Evidence of Calreticulin as a Pharmacological Target in Neurological Disorders. ACS Chem Neurosci 2019; 10:2629-2646. [PMID: 31017385 DOI: 10.1021/acschemneuro.9b00158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Calreticulin (CALR), a lectin-like ER chaperone, was initially known only for its housekeeping function, but today it is recognized for many versatile roles in different compartments of a cell. Apart from canonical roles in protein folding and calcium homeostasis, it performs a variety of noncanonical roles, mostly in CNS development. In the past, studies have linked Calreticulin with various other biological components which are detrimental in deciding the fate of neurons. Many neurological disorders that differ in their etiology are commonly associated with aberrant levels of Calreticulin, that lead to modulation of apoptosis and phagocytosis, and impact on transcriptional pathways, impairment in proteostatis, and calcium imbalances. Such multifaceted properties of Calreticulin are the reason why it has been implicated in vital roles of the nervous system in recent years. Hence, understanding its role in the physiology of neurons would help to unearth its involvement in the spectrum of neurological disorders. This Review aims toward exploring the interplay of Calreticulin in neurological disorders which would aid in targeting Calreticulin for developing novel neurotherapeutics.
Collapse
Affiliation(s)
- Vignesh Kotian
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Harpreet Kaur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Radhika Kesharwani
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Geetesh Verma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Leela Mounica
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Pabbala Veeresh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam 788011, India
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Kunjan R. Dave
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Dileep R. Yavagal
- Department of Neurology and Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
22
|
Kesharwani R, Sarmah D, Kaur H, Mounika L, Verma G, Pabbala V, Kotian V, Kalia K, Borah A, Dave KR, Yavagal DR, Bhattacharya P. Interplay between Mitophagy and Inflammasomes in Neurological Disorders. ACS Chem Neurosci 2019; 10:2195-2208. [PMID: 30917655 DOI: 10.1021/acschemneuro.9b00117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mitophagy and inflammasomes have a pivotal role in the development of neuropathology. Molecular mechanisms behind mitophagy and inflammasomes are well-understood, but lacunae prevail in understanding the crosstalk between them in various neurological disorders. As mitochondrial dysfunction is the prime event in neurodegeneration, the clearance of impaired mitochondria is one of the main tasks for maintaining cell integrity in the majority of neuropathologies. Along with it, inflammasome activation also plays a major role, which is usually followed by mitochondrial dysfunction. The present review highlights basics of autophagy, mitophagy, and inflammasomes and the molecular mechanisms involved, and more importantly, it tries to elaborate the interplay between mitophagy and inflammasomes in various neurological disorders. This will help in upgrading the reader's understanding in exploring the link between mitophagy and inflammasomes, which has dealt with limitations in past studies.
Collapse
Affiliation(s)
- Radhika Kesharwani
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar-382 355, Gujarat, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar-382 355, Gujarat, India
| | - Harpreet Kaur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar-382 355, Gujarat, India
| | - Leela Mounika
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar-382 355, Gujarat, India
| | - Geetesh Verma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar-382 355, Gujarat, India
| | - Veeresh Pabbala
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar-382 355, Gujarat, India
| | - Vignesh Kotian
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar-382 355, Gujarat, India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar-382 355, Gujarat, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar-788 011, Assam, India
| | - Kunjan R. Dave
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Dileep R. Yavagal
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar-382 355, Gujarat, India
| |
Collapse
|
23
|
Jia L, Wang Y, Sang J, Cui W, Zhao W, Wei W, Chen B, Lu F, Liu F. Dihydromyricetin Inhibits α-Synuclein Aggregation, Disrupts Preformed Fibrils, and Protects Neuronal Cells in Culture against Amyloid-Induced Cytotoxicity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3946-3955. [PMID: 30900456 DOI: 10.1021/acs.jafc.9b00922] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fibrillogenesis of α-synuclein (αSN) is associated with the onset and progression of Parkinson's disease (PD). Dihydromyricetin (DHM), a natural flavonoid compound extracted from Ampelopsis grossedentata, has proven antioxidative, antineuroinflammatory, and neuroprotective effects in dementia. However, it remains unclear if DHM can impede αSN fibrillogenesis and attenuate the corresponding cytotoxicity. Herein, we found that DHM could inhibit αSN fibrillogenesis and destabilize mature αSN fibrils in a dose-dependent manner. Moreover, DHM protected against αSN-induced cytotoxicity by improving the cell viability by 34.73 ± 3.68% at a 1:1 molar ratio of αSN to DHM. Molecular dynamics simulations showed that DHM interacts with the αSN trimer mainly via nonpolar mechanisms. The key residues by which αSN interacts with DHM were hydrophobic, and their side chains and main chains showed a synergistic effect via hydrophobic and hydrogen-bonding interactions. These findings suggest that DHM possesses great potential to be developed into a new aggregation inhibitor for αSN.
Collapse
Affiliation(s)
- Longgang Jia
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology , Tianjin University of Science & Technology , Tianjin 300457 , People's Republic of China
| | - Ying Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology , Tianjin University of Science & Technology , Tianjin 300457 , People's Republic of China
| | - Jingcheng Sang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology , Tianjin University of Science & Technology , Tianjin 300457 , People's Republic of China
| | - Wei Cui
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine , Ningbo University , Ningbo 315211 , People's Republic of China
| | - Wenping Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology , Tianjin University of Science & Technology , Tianjin 300457 , People's Republic of China
| | - Wei Wei
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology , Tianjin University of Science & Technology , Tianjin 300457 , People's Republic of China
| | - Beibei Chen
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology , Tianjin University of Science & Technology , Tianjin 300457 , People's Republic of China
| | - Fuping Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology , Tianjin University of Science & Technology , Tianjin 300457 , People's Republic of China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control , Tianjin 300457 , People's Republic of China
| | - Fufeng Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology , Tianjin University of Science & Technology , Tianjin 300457 , People's Republic of China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control , Tianjin 300457 , People's Republic of China
| |
Collapse
|
24
|
Jia L, Wang Y, Wei W, Zhao W, Lu F, Liu F. Vitamin B12 inhibits α-synuclein fibrillogenesis and protects against amyloid-induced cytotoxicity. Food Funct 2019; 10:2861-2870. [DOI: 10.1039/c8fo02471e] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
VB12, a necessary micronutrient, is a potential functional factor to ameliorate PD by inhibiting α-synuclein fibrillogenesis and reducing cytotoxicity.
Collapse
Affiliation(s)
- Longgang Jia
- State Key Laboratory of Food Nutrition and Safety
- Tianjin
- P. R. China
- Key Laboratory of Industrial Fermentation Microbiology
- Ministry of Education
| | - Ying Wang
- State Key Laboratory of Food Nutrition and Safety
- Tianjin
- P. R. China
- Key Laboratory of Industrial Fermentation Microbiology
- Ministry of Education
| | - Wei Wei
- State Key Laboratory of Food Nutrition and Safety
- Tianjin
- P. R. China
- Key Laboratory of Industrial Fermentation Microbiology
- Ministry of Education
| | - Wenping Zhao
- State Key Laboratory of Food Nutrition and Safety
- Tianjin
- P. R. China
- Key Laboratory of Industrial Fermentation Microbiology
- Ministry of Education
| | - Fuping Lu
- State Key Laboratory of Food Nutrition and Safety
- Tianjin
- P. R. China
- Key Laboratory of Industrial Fermentation Microbiology
- Ministry of Education
| | - Fufeng Liu
- State Key Laboratory of Food Nutrition and Safety
- Tianjin
- P. R. China
- Key Laboratory of Industrial Fermentation Microbiology
- Ministry of Education
| |
Collapse
|