1
|
Yu B, Bai J, Guan Y, Huang X, Liang L, Ren Z, Song X, Zhang T, Yang C, Dai F, Wang X, Sheng X, Peng J, Wang L, Wang Y, Yin L. Fully biodegradable and self-powered nerve guidance conduit based on zinc-molybdenum batteries for peripheral nerve repair. Biosens Bioelectron 2024; 263:116578. [PMID: 39038398 DOI: 10.1016/j.bios.2024.116578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Peripheral nerve injury (PNI) poses a significant public health issue, often leading to muscle atrophy and persistent neuropathic pain, which can drastically impact the quality of life for patients. Electrical stimulation represents an effective and non-pharmacological treatment to promote nerve regeneration. Yet, the postoperative application of electrical stimulation remains a challenge. Here, we propose a fully biodegradable, self-powered nerve guidance conduit (NGC) based on dissolvable zinc-molybdenum batteries. The conduit can offer topographic guidance for nerve regeneration and deliver sustained electrical cues between both ends of a transected nerve stump, extending beyond the surgical window. Schwann cell proliferation and adenosine triphosphate (ATP) production are enhanced by the introduction of the zinc-molybdenum batteries. In rodent models with 10-mm sciatic nerve damage, the device effectively enhances nerve regeneration and motor function recovery. This study offers innovative strategies for creating biodegradable and electroactive devices that hold important promise to optimize therapeutic outcomes for nerve regeneration.
Collapse
Affiliation(s)
- Bingbing Yu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Jun Bai
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & Injuries PLA, Beijing, 100048, China; Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, and IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China; Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yanjun Guan
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & Injuries PLA, Beijing, 100048, China; Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, and IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Xueying Huang
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Lijing Liang
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & Injuries PLA, Beijing, 100048, China
| | - Zhiqi Ren
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & Injuries PLA, Beijing, 100048, China
| | - Xiangyu Song
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & Injuries PLA, Beijing, 100048, China; Hebei North University, Zhangjiakou, 075051, China
| | - Tieyuan Zhang
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & Injuries PLA, Beijing, 100048, China; Shandong University Center for Orthopedics, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Can Yang
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Fanqi Dai
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Xibo Wang
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, and IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Jiang Peng
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & Injuries PLA, Beijing, 100048, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, 226007, China
| | - Liu Wang
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China.
| | - Yu Wang
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & Injuries PLA, Beijing, 100048, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, 226007, China.
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
2
|
Kaveti R, Jakus MA, Chen H, Jain B, Kennedy DG, Caso EA, Mishra N, Sharma N, Uzunoğlu BE, Han WB, Jang TM, Hwang SW, Theocharidis G, Sumpio BJ, Veves A, Sia SK, Bandodkar AJ. Water-powered, electronics-free dressings that electrically stimulate wounds for rapid wound closure. SCIENCE ADVANCES 2024; 10:eado7538. [PMID: 39110791 PMCID: PMC11305378 DOI: 10.1126/sciadv.ado7538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/28/2024] [Indexed: 08/10/2024]
Abstract
Chronic wounds affect ~2% of the U.S. population and increase risks of amputation and mortality. Unfortunately, treatments for such wounds are often expensive, complex, and only moderately effective. Electrotherapy represents a cost-effective treatment; however, its reliance on bulky equipment limits its clinical use. Here, we introduce water-powered, electronics-free dressings (WPEDs) that offer a unique solution to this issue. The WPED performs even under harsh conditions-situations wherein many present treatments fail. It uses a flexible, biocompatible magnesium-silver/silver chloride battery and a pair of stimulation electrodes; upon the addition of water, the battery creates a radial electric field. Experiments in diabetic mice confirm the WPED's ability to accelerate wound closure and promote healing by increasing epidermal thickness, modulating inflammation, and promoting angiogenesis. Across preclinical wound models, the WPED-treated group heals faster than the control with wound closure rates comparable to treatments requiring expensive biologics and/or complex electronics. The results demonstrate the WPED's potential as an effective and more practical wound treatment dressing.
Collapse
Affiliation(s)
- Rajaram Kaveti
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC 27606, USA
| | - Margaret A. Jakus
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Henry Chen
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC 27606, USA
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC 27606, USA
| | - Bhavya Jain
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC 27606, USA
| | - Darragh G. Kennedy
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Elizabeth A. Caso
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Navya Mishra
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC 27606, USA
| | - Nivesh Sharma
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC 27606, USA
| | - Baha Erim Uzunoğlu
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC 27606, USA
| | - Won Bae Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Tae-Min Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Department of Integrative Energy Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Georgios Theocharidis
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Brandon J. Sumpio
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Aristidis Veves
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Samuel K. Sia
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Amay J. Bandodkar
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC 27606, USA
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC 27606, USA
| |
Collapse
|
3
|
Choe JK, Kim S, Lee AY, Choi C, Cho JH, Jo W, Song MH, Cha C, Kim J. Flexible, Biodegradable, and Wireless Magnetoelectric Paper for Simple In Situ Personalization of Bioelectric Implants. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311154. [PMID: 38174953 DOI: 10.1002/adma.202311154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/20/2023] [Indexed: 01/05/2024]
Abstract
Bioelectronic implants delivering electrical stimulation offer an attractive alternative to traditional pharmaceuticals in electrotherapy. However, achieving simple, rapid, and cost-effective personalization of these implants for customized treatment in unique clinical and physical scenarios presents a substantial challenge. This challenge is further compounded by the need to ensure safety and minimal invasiveness, requiring essential attributes such as flexibility, biocompatibility, lightness, biodegradability, and wireless stimulation capability. Here, a flexible, biodegradable bioelectronic paper with homogeneously distributed wireless stimulation functionality for simple personalization of bioelectronic implants is introduced. The bioelectronic paper synergistically combines i) lead-free magnetoelectric nanoparticles (MENs) that facilitate electrical stimulation in response to external magnetic field and ii) flexible and biodegradable nanofibers (NFs) that enable localization of MENs for high-selectivity stimulation, oxygen/nutrient permeation, cell orientation modulation, and biodegradation rate control. The effectiveness of wireless electrical stimulation in vitro through enhanced neuronal differentiation of neuron-like PC12 cells and the controllability of their microstructural orientation are shown. Also, scalability, design flexibility, and rapid customizability of the bioelectronic paper are shown by creating various 3D macrostructures using simple paper crafting techniques such as cutting and folding. This platform holds promise for simple and rapid personalization of temporary bioelectronic implants for minimally invasive wireless stimulation therapies.
Collapse
Affiliation(s)
- Jun Kyu Choe
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Suntae Kim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Ah-Young Lee
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Cholong Choi
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jae-Hyeon Cho
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Wook Jo
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Myoung Hoon Song
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Chaenyung Cha
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jiyun Kim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Center for Multidimensional Programmable Matter, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| |
Collapse
|
4
|
Shlapakova LE, Surmeneva MA, Kholkin AL, Surmenev RA. Revealing an important role of piezoelectric polymers in nervous-tissue regeneration: A review. Mater Today Bio 2024; 25:100950. [PMID: 38318479 PMCID: PMC10840125 DOI: 10.1016/j.mtbio.2024.100950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/12/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Nerve injuries pose a drastic threat to nerve mobility and sensitivity and lead to permanent dysfunction due to low regenerative capacity of mature neurons. The electrical stimuli that can be provided by electroactive materials are some of the most effective tools for the formation of soft tissues, including nerves. Electric output can provide a distinctly favorable bioelectrical microenvironment, which is especially relevant for the nervous system. Piezoelectric biomaterials have attracted attention in the field of neural tissue engineering owing to their biocompatibility and ability to generate piezoelectric surface charges. In this review, an outlook of the most recent achievements in the field of piezoelectric biomaterials is described with an emphasis on piezoelectric polymers for neural tissue engineering. First, general recommendations for the design of an optimal nerve scaffold are discussed. Then, specific mechanisms determining nerve regeneration via piezoelectric stimulation are considered. Activation of piezoelectric responses via natural body movements, ultrasound, and magnetic fillers is also examined. The use of magnetoelectric materials in combination with alternating magnetic fields is thought to be the most promising due to controllable reproducible cyclic deformations and deep tissue permeation by magnetic fields without tissue heating. In vitro and in vivo applications of nerve guidance scaffolds and conduits made of various piezopolymers are reviewed too. Finally, challenges and prospective research directions regarding piezoelectric biomaterials promoting nerve regeneration are discussed. Thus, the most relevant scientific findings and strategies in neural tissue engineering are described here, and this review may serve as a guideline both for researchers and clinicians.
Collapse
Affiliation(s)
- Lada E. Shlapakova
- Physical Materials Science and Composite Materials Center, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, 634050, Russia
| | - Maria A. Surmeneva
- Physical Materials Science and Composite Materials Center, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, 634050, Russia
- Piezo- and Magnetoelectric Materials Research & Development Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634050, Tomsk, Russia
| | - Andrei L. Kholkin
- Piezo- and Magnetoelectric Materials Research & Development Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634050, Tomsk, Russia
- Department of Physics & CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Roman A. Surmenev
- Physical Materials Science and Composite Materials Center, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, 634050, Russia
- Piezo- and Magnetoelectric Materials Research & Development Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634050, Tomsk, Russia
| |
Collapse
|
5
|
Tominami K, Kudo TA, Noguchi T, Hayashi Y, Luo YR, Tanaka T, Matsushita A, Izumi S, Sato H, Gengyo-Ando K, Matsuzawa A, Hong G, Nakai J. Physical Stimulation Methods Developed for In Vitro Neuronal Differentiation Studies of PC12 Cells: A Comprehensive Review. Int J Mol Sci 2024; 25:772. [PMID: 38255846 PMCID: PMC10815383 DOI: 10.3390/ijms25020772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
PC12 cells, which are derived from rat adrenal pheochromocytoma cells, are widely used for the study of neuronal differentiation. NGF induces neuronal differentiation in PC12 cells by activating intracellular pathways via the TrkA receptor, which results in elongated neurites and neuron-like characteristics. Moreover, the differentiation requires both the ERK1/2 and p38 MAPK pathways. In addition to NGF, BMPs can also induce neuronal differentiation in PC12 cells. BMPs are part of the TGF-β cytokine superfamily and activate signaling pathways such as p38 MAPK and Smad. However, the brief lifespan of NGF and BMPs may limit their effectiveness in living organisms. Although PC12 cells are used to study the effects of various physical stimuli on neuronal differentiation, the development of new methods and an understanding of the molecular mechanisms are ongoing. In this comprehensive review, we discuss the induction of neuronal differentiation in PC12 cells without relying on NGF, which is already established for electrical, electromagnetic, and thermal stimulation but poses a challenge for mechanical, ultrasound, and light stimulation. Furthermore, the mechanisms underlying neuronal differentiation induced by physical stimuli remain largely unknown. Elucidating these mechanisms holds promise for developing new methods for neural regeneration and advancing neuroregenerative medical technologies using neural stem cells.
Collapse
Affiliation(s)
- Kanako Tominami
- Division of Oral Physiology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Tada-aki Kudo
- Division of Oral Physiology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Takuya Noguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Yohei Hayashi
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - You-Ran Luo
- Division for Globalization Initiative, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Takakuni Tanaka
- Division for Globalization Initiative, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Ayumu Matsushita
- Division of Oral Physiology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Satoshi Izumi
- Division of Oral Physiology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Hajime Sato
- Division of Pharmacology, Meikai University School of Dentistry, Sakado 350-0283, Japan
| | - Keiko Gengyo-Ando
- Division of Oral Physiology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Guang Hong
- Division for Globalization Initiative, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Junichi Nakai
- Division of Oral Physiology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| |
Collapse
|
6
|
Ranjbar N, Bakhshandeh B, Pennisi CP. Electroconductive Nanofibrous Scaffolds Enable Neuronal Differentiation in Response to Electrical Stimulation without Exogenous Inducing Factors. Bioengineering (Basel) 2023; 10:1438. [PMID: 38136029 PMCID: PMC10740536 DOI: 10.3390/bioengineering10121438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Among the various biochemical and biophysical inducers for neural regeneration, electrical stimulation (ES) has recently attracted considerable attention as an efficient means to induce neuronal differentiation in tissue engineering approaches. The aim of this in vitro study was to develop a nanofibrous scaffold that enables ES-mediated neuronal differentiation in the absence of exogenous soluble inducers. A nanofibrous scaffold composed of polycaprolactone (PCL), poly-L-lactic acid (PLLA), and single-walled nanotubes (SWNTs) was fabricated via electrospinning and its physicochemical properties were investigated. The cytocompatibility of the electrospun composite with the PC12 cell line and bone marrow-derived mesenchymal stem cells (BMSCs) was investigated. The results showed that the PCL/PLLA/SWNT nanofibrous scaffold did not exhibit cytotoxicity and supported cell attachment, spreading, and proliferation. ES was applied to cells cultured on the nanofibrous scaffolds at different intensities and the expression of the three neural markers (Nestin, Microtubule-associated protein 2, and β tubulin-3) was evaluated using RT-qPCR analysis. The results showed that the highest expression of neural markers could be achieved at an electric field intensity of 200 mV/cm, suggesting that the scaffold in combination with ES can be an efficient tool to accelerate neural differentiation in the absence of exogenous soluble inducers. This has important implications for the regeneration of nerve injuries and may provide insights for further investigations of the mechanisms underlying ES-mediated neuronal commitment.
Collapse
Affiliation(s)
- Nika Ranjbar
- Department of Biotechnology, College of Science, University of Tehran, Tehran 14155-6455, Iran
| | - Behnaz Bakhshandeh
- Department of Biotechnology, College of Science, University of Tehran, Tehran 14155-6455, Iran
| | - Cristian Pablo Pennisi
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, DK-9260 Gistrup, Denmark
| |
Collapse
|
7
|
Jaiswal J, Dhayal M. Rapid neurogenic differentiation of human mesenchymal stem cells through electrochemical stimulation. Bioelectrochemistry 2023; 153:108468. [PMID: 37224602 DOI: 10.1016/j.bioelechem.2023.108468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023]
Abstract
The neurogenic differentiation of human mesenchymal stem cells (hMSCs) has been substantially handicapped with the choice of chemical or electrical stimulations for long durations. We demonstrate an innovative strategy of stimulation with <1.0 V for <200 s to achieve hMSCs differentiation towards neural progenitor cells within 24 h and their commitment towards differentiation to neurons on day 3 with the use of three-electrode electrostimulation. Stimulated hMSCs (ES hMSCs) showed elevated expression of neural-specific markers and mitochondrial membrane potential. A voltage bias of ±0.5 V and ±1.0 V did not show any adverse effect on cell viability and proliferation, whereas cells stimulated with ±1.5 V showed an upsurge in the dead cell populations. With the progression of time after stimulation, a rise in mitochondrial membrane potential (MMP, ΔΨ M) was observed in the ES hMSCs and thereby generating intracellular reactive oxygen species (ROS), acting as a key messenger to induce neuronal differentiation. The stratagem may provide insightful handles to circumvent neurodifferentiation impediments, a focal issue for regenerative medicine.
Collapse
Affiliation(s)
- Juhi Jaiswal
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India; Nano-Cellular Medicine and Biophysics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Marshal Dhayal
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India; Nano-Cellular Medicine and Biophysics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
8
|
Nascimento ATD, Mendes AX, Begeng JM, Duchi S, Stoddart PR, Quigley AF, Kapsa RMI, Ibbotson MR, Silva SM, Moulton SE. A tissue-engineered neural interface with photothermal functionality. Biomater Sci 2023. [PMID: 37194340 DOI: 10.1039/d3bm00139c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Neural interfaces are well-established as a tool to understand the behaviour of the nervous system via recording and stimulation of living neurons, as well as serving as neural prostheses. Conventional neural interfaces based on metals and carbon-based materials are generally optimised for high conductivity; however, a mechanical mismatch between the interface and the neural environment can significantly reduce long-term neuromodulation efficacy by causing an inflammatory response. This paper presents a soft composite material made of gelatin methacryloyl (GelMA) containing graphene oxide (GO) conjugated with gold nanorods (AuNRs). The soft hydrogel presents stiffness within the neural environment range of modulus below 5 kPa, while the AuNRs, when exposed to light in the near infrared range, provide a photothermal response that can be used to improve the spatial and temporal precision of neuromodulation. These favourable properties can be maintained at safer optical power levels when combined with electrical stimulation. In this paper we provide mechanical and biological characterization of the optical activity of the GO-AuNR composite hydrogel. The optical functionality of the material has been evaluated via photothermal stimulation of explanted rat retinal tissue. The outcomes achieved with this study encourage further investigation into optical and electrical costimulation parameters for a range of biomedical applications.
Collapse
Affiliation(s)
- Adriana Teixeira do Nascimento
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Alexandre Xavier Mendes
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - James M Begeng
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
- National Vision Research Institute, The Australian College of Optometry, Carlton, VIC 3058, Australia
| | - Serena Duchi
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- Department of Surgery, University of Melbourne, St Vincent's Hospital, Melbourne, Victoria 3065, Australia
| | - Paul R Stoddart
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Anita F Quigley
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- School of Electrical and Biomedical Engineering, RMIT University, Melbourne, Victoria 3001, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital Melbourne, Victoria 3065, Australia
| | - Robert M I Kapsa
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- School of Electrical and Biomedical Engineering, RMIT University, Melbourne, Victoria 3001, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital Melbourne, Victoria 3065, Australia
| | - Michael R Ibbotson
- National Vision Research Institute, The Australian College of Optometry, Carlton, VIC 3058, Australia
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Saimon M Silva
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria 3122, Australia.
| | - Simon E Moulton
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria 3122, Australia.
| |
Collapse
|
9
|
Wu T, Jing T, Lu Y, Zhang F, He P. In Situ Investigation of Intercellular Signal Transduction Based on Detection of Extracellular pH and ROS by Scanning Electrochemical Microscopy. Anal Chem 2023; 95:7468-7474. [PMID: 37134200 DOI: 10.1021/acs.analchem.2c04655] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Intercellular signal transduction plays an important role in the regulation of biological activities. Herein, a Transwell chamber-based two-layer device combined with scanning electrochemical microscopy (SECM) technology has been proposed for in situ investigation of intercellular signal transduction. The cells in the device were cultured on two layers: the lower layer was for signaling cells, and the upper layer was for signal-receiving cells. The extracellular pH (pHe) and ROS (reactive oxygen species, ROSe) were in situ monitored by SECM potentiometric mode and SECM-MPSW (multipotential step waveform), respectively. When the signaling cells, including MCF-7, HeLa, and HFF cells, were electrically stimulated, the ROS release of the signal-receiving cells was promoted. By detecting the pH at the cell surface, it was found that more H+ generated by the signaling cells and two cell layers at a shorter distance could both cause the signal-receiving cells to release more ROS, revealing that H+ is one of the signaling molecules of intercellular communication. This SECM-based in situ monitoring strategy provides an effective way to investigate intercellular signal transduction and explore the corresponding mechanism.
Collapse
Affiliation(s)
- Tao Wu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Ting Jing
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Yuqi Lu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Fan Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Pingang He
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| |
Collapse
|
10
|
Huang WJ, Wang J. Development of 3D-Printed, Biodegradable, Conductive PGSA Composites for Nerve Tissue Regeneration. Macromol Biosci 2023; 23:e2200470. [PMID: 36525352 DOI: 10.1002/mabi.202200470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Nerve conduits are used to reconnect broken nerve bundles and provide protection to facilitate nerve regeneration. However, the low degradation rate and regeneration rate, as well as the requirement for secondary surgery are some of the most criticized drawbacks of existing nerve conduits. With high processing flexibility from the photo-curability, poly (glycerol sebacate) acrylate (PGSA) is a promising material with tunable mechanical properties and biocompatibility for the development of medical devices. Here, polyvinylpyrrolidone (PVP), silver nanoparticles (AgNPs), and graphene are embedded in biodegradable PGSA matrix. The polymer composites are then assessed for their electrical conductivity, biodegradability, three-dimensional-printability (3D-printability), and promotion of cell proliferation. Through the four-probe technique, it is shown that the PGSA composites are identified as highly conductive in swollen state. Furthermore, biodegradability is evaluated through enzymatic degradation and facilitated hydrolysis. Cell proliferation and guidance are significantly promoted by three-dimensional-printed microstructures and electrical stimulation on PGSA composites, especially on PGSA-PVP. Hence, microstructured nerve conduits are 3D-printed with PGSA-PVP. Guided cell growth and promoted proliferation are subsequently demonstrated by Schwann cell culture combined with electrical stimulation. Consequently, 3D-printed nerve conduits fabricated with PGSA composites hold great potential in nerve tissue regeneration through electrical stimulation.
Collapse
Affiliation(s)
- Wei-Jia Huang
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, ROC 30013, Taiwan
| | - Jane Wang
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, ROC 30013, Taiwan
| |
Collapse
|
11
|
Mediate neurite outgrowth of PC-12 cells using polypyrrole-assisted laser-induced graphene flexible composite electrodes combined with electrical stimulation. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Martín D, Bocio-Nuñez J, Scagliusi SF, Pérez P, Huertas G, Yúfera A, Giner M, Daza P. DC electrical stimulation enhances proliferation and differentiation on N2a and MC3T3 cell lines. J Biol Eng 2022; 16:27. [PMID: 36229846 PMCID: PMC9563743 DOI: 10.1186/s13036-022-00306-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2022] Open
Abstract
Background Electrical stimulation is a novel tool to promote the differentiation and proliferation of precursor cells. In this work we have studied the effects of direct current (DC) electrical stimulation on neuroblastoma (N2a) and osteoblast (MC3T3) cell lines as a model for nervous and bone tissue regeneration, respectively. We have developed the electronics and encapsulation of a proposed stimulation system and designed a setup and protocol to stimulate cell cultures. Methods Cell cultures were subjected to several assays to assess the effects of electrical stimulation on them. N2a cells were analyzed using microscope images and an inmunofluorescence assay, differentiated cells were counted and neurites were measured. MC3T3 cells were subjected to an AlamarBlue assay for viability, ALP activity was measured, and a real time PCR was carried out. Results Our results show that electrically stimulated cells had more tendency to differentiate in both cell lines when compared to non-stimulated cultures, paired with a promotion of neurite growth and polarization in N2a cells and an increase in proliferation in MC3T3 cell line. Conclusions These results prove the effectiveness of electrical stimulation as a tool for tissue engineering and regenerative medicine, both for neural and bone injuries. Bone progenitor cells submitted to electrical stimulation have a higher tendency to differentiate and proliferate, filling the gaps present in injuries. On the other hand, neuronal progenitor cells differentiate, and their neurites can be polarized to follow the electric field applied.
Collapse
Affiliation(s)
- Daniel Martín
- Electronics Technology Department, Universidad de Sevilla, Seville, Spain. .,Microelectronics Institute of Seville, Universidad de Sevilla, Seville, Spain.
| | - J Bocio-Nuñez
- Bone Metabolism Unit, UGC Medicina Interna, HUV Macarena, Seville, Spain
| | - Santiago F Scagliusi
- Electronics Technology Department, Universidad de Sevilla, Seville, Spain.,Microelectronics Institute of Seville, Universidad de Sevilla, Seville, Spain
| | - Pablo Pérez
- Electronics Technology Department, Universidad de Sevilla, Seville, Spain.,Microelectronics Institute of Seville, Universidad de Sevilla, Seville, Spain
| | - Gloria Huertas
- Microelectronics Institute of Seville, Universidad de Sevilla, Seville, Spain.,Electronics and Electromagnetism Department, Universidad de Sevilla, Seville, Spain
| | - Alberto Yúfera
- Electronics Technology Department, Universidad de Sevilla, Seville, Spain.,Microelectronics Institute of Seville, Universidad de Sevilla, Seville, Spain
| | - Mercè Giner
- Departamento de Citologia e Histologia Normal y Patologica, Universidad de Sevilla, Seville, Spain
| | - Paula Daza
- Cell Biology Department, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
13
|
Shaw P, Vanraes P, Kumar N, Bogaerts A. Possible Synergies of Nanomaterial-Assisted Tissue Regeneration in Plasma Medicine: Mechanisms and Safety Concerns. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3397. [PMID: 36234523 PMCID: PMC9565759 DOI: 10.3390/nano12193397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Cold atmospheric plasma and nanomedicine originally emerged as individual domains, but are increasingly applied in combination with each other. Most research is performed in the context of cancer treatment, with only little focus yet on the possible synergies. Many questions remain on the potential of this promising hybrid technology, particularly regarding regenerative medicine and tissue engineering. In this perspective article, we therefore start from the fundamental mechanisms in the individual technologies, in order to envision possible synergies for wound healing and tissue recovery, as well as research strategies to discover and optimize them. Among these strategies, we demonstrate how cold plasmas and nanomaterials can enhance each other's strengths and overcome each other's limitations. The parallels with cancer research, biotechnology and plasma surface modification further serve as inspiration for the envisioned synergies in tissue regeneration. The discovery and optimization of synergies may also be realized based on a profound understanding of the underlying redox- and field-related biological processes. Finally, we emphasize the toxicity concerns in plasma and nanomedicine, which may be partly remediated by their combination, but also partly amplified. A widespread use of standardized protocols and materials is therefore strongly recommended, to ensure both a fast and safe clinical implementation.
Collapse
Affiliation(s)
- Priyanka Shaw
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| | - Patrick Vanraes
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| | - Naresh Kumar
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Guwahati 781125, Assam, India
| | - Annemie Bogaerts
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
14
|
Photoexcited wireless electrical stimulation elevates nerve cell growth. Colloids Surf B Biointerfaces 2022; 220:112890. [DOI: 10.1016/j.colsurfb.2022.112890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 01/17/2023]
|
15
|
Esmaeili Abdar Z, Jafari R, Mohammadi P, Nadri S. The optimal electrical stimulation for neural differentiation of conjunctiva mesenchymal stem cells. Int J Artif Organs 2022; 45:695-703. [PMID: 35773946 DOI: 10.1177/03913988221109618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIMS The combination of biomaterial conductive scaffolds and electrical stimulation (ES) dramatically promotes stem cell differentiation into electro-responsive cells like neural cells. In this study, we aimed to fabricate PCL/PPY nanofiber scaffolds through the electrospinning method and investigate the effect of ES duration on neural differentiation of Conjunctiva Mesenchymal Stem Cells (CJMSCs). METHODS The topography of the fabricated scaffold was characterized using SEM and TEM microscopy, and its mechanical and other properties were determined by tensile, TGA, FTIR, and Contact angle tests. CJMSCs were seeded on the scaffolds and then subjected to electrical current (115 V m-1 at 100 Hz) with durations of 1, 3, and 7 min for 3 days. Then the effect of nanofiber scaffold and electrical currents on cell viability and expression of neural marker genes (Nestin, β-tubulin, MAP-2) was investigated by MTT assay and qPCR analysis. RESULTS Our results revealed the good biocompatibility of the PCL-PPy nanofiber scaffold, and according to q-PCR results, the electrical stimulation of 1 min day-1 for 3 days can induce neural differentiation of CJMSCs as indicated by the fold change of gene expression of Nestin (~127), B-tubulin (~30), and MAP-2 (~52). CONCLUSION This study emphasizes that the utilization of an electrically conductive nanofibrous scaffold in conjunction with electrical current has potential applications in the field of neural tissue engineering.
Collapse
Affiliation(s)
- Zahra Esmaeili Abdar
- Department of Medical Nanotechnology, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Rahim Jafari
- Department of Medical Nanotechnology, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Parvin Mohammadi
- Department of Medical Biotechnology, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Samad Nadri
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
16
|
Ustyantseva E, Pavlova SV, Malakhova AA, Ustyantsev K, Zakian SM, Medvedev SP. Oxidative stress monitoring in iPSC-derived motor neurons using genetically encoded biosensors of H 2O 2. Sci Rep 2022; 12:8928. [PMID: 35624228 PMCID: PMC9142597 DOI: 10.1038/s41598-022-12807-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Oxidative stress plays an important role in the development of neurodegenerative diseases, being either the initiator or part of a pathological cascade that leads to the neuron’s death. Genetically encoded biosensors of oxidative stress demonstrated their general functionality and overall safety in various systems. However, there is still insufficient data regarding their use in the research of disease-related phenotypes in relevant model systems, such as human cells. Here, we establish an approach for monitoring the redox state of live motor neurons with SOD1 mutations associated with amyotrophic lateral sclerosis. Using CRISPR/Cas9, we insert genetically encoded biosensors of cytoplasmic and mitochondrial H2O2 in the genome of induced pluripotent stem cell (iPSC) lines. We demonstrate that the biosensors remain functional in motor neurons derived from these iPSCs and reflect the differences in the stationary redox state of the neurons with different genotypes. Moreover, we show that the biosensors respond to alterations in motor neuron oxidation caused by either environmental changes or cellular stress. Thus, the obtained platform is suitable for cell-based research of neurodegenerative mechanisms.
Collapse
Affiliation(s)
- Elizaveta Ustyantseva
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10, Lavrentiev Ave, 630090, Novosibirsk, Russia.
| | - Sophia V Pavlova
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10, Lavrentiev Ave, 630090, Novosibirsk, Russia.,Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Lavrentiev Ave., 630090, Novosibirsk, Russia.,E. Meshalkin National Medical Research Center of the Ministry of Health of the Russian Federation, 15 Rechkunovskaya Str., 630055, Novosibirsk, Russia
| | - Anastasia A Malakhova
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10, Lavrentiev Ave, 630090, Novosibirsk, Russia.,Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Lavrentiev Ave., 630090, Novosibirsk, Russia.,E. Meshalkin National Medical Research Center of the Ministry of Health of the Russian Federation, 15 Rechkunovskaya Str., 630055, Novosibirsk, Russia
| | - Kirill Ustyantsev
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10, Lavrentiev Ave, 630090, Novosibirsk, Russia
| | - Suren M Zakian
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10, Lavrentiev Ave, 630090, Novosibirsk, Russia.,Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Lavrentiev Ave., 630090, Novosibirsk, Russia.,E. Meshalkin National Medical Research Center of the Ministry of Health of the Russian Federation, 15 Rechkunovskaya Str., 630055, Novosibirsk, Russia
| | - Sergey P Medvedev
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10, Lavrentiev Ave, 630090, Novosibirsk, Russia. .,Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Lavrentiev Ave., 630090, Novosibirsk, Russia. .,E. Meshalkin National Medical Research Center of the Ministry of Health of the Russian Federation, 15 Rechkunovskaya Str., 630055, Novosibirsk, Russia.
| |
Collapse
|
17
|
Afjeh-Dana E, Naserzadeh P, Moradi E, Hosseini N, Seifalian AM, Ashtari B. Stem Cell Differentiation into Cardiomyocytes: Current Methods and Emerging Approaches. Stem Cell Rev Rep 2022; 18:2566-2592. [PMID: 35508757 DOI: 10.1007/s12015-021-10280-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 12/26/2022]
Abstract
Cardiovascular diseases (CVDs) are globally known to be important causes of mortality and disabilities. Common treatment strategies for CVDs, such as pharmacological therapeutics impose serious challenges due to the failure of treatments for myocardial necrosis. By contrast, stem cells (SCs) based therapies are seen to be promising approaches to CVDs treatment. In such approaches, cardiomyocytes are differentiated from SCs. To fulfill SCs complete potential, the method should be appointed to generate cardiomyocytes with more mature structure and well-functioning operations. For heart repairing applications, a greatly scalable and medical-grade cardiomyocyte generation must be used. Nonetheless, there are some challenges such as immune rejection, arrhythmogenesis, tumorigenesis, and graft cell death potential. Herein, we discuss the types of potential SCs, and commonly used methods including embryoid bodies related techniques, co-culture, mechanical stimulation, and electrical stimulation and their applications, advantages and limitations in this field. An estimated 17.9 million people died from CVDs in 2019, representing 32 % of all global deaths. Of these deaths, 85 % were due to heart attack and stroke.
Collapse
Affiliation(s)
- Elham Afjeh-Dana
- Radiation Biology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Parvaneh Naserzadeh
- Radiation Biology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Moradi
- Radiation Biology Research Centre, Iran University of Medical Sciences, Tehran, Iran.,Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Nasrin Hosseini
- Neuroscience Research Centre, Iran University of Medical Sciences, Tehran, Iran.
| | - Alexander Marcus Seifalian
- Nanotechnology & Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd), London BioScience Innovation Centre, London, UK
| | - Behnaz Ashtari
- Radiation Biology Research Centre, Iran University of Medical Sciences, Tehran, Iran. .,Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran. .,Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Novel implantable devices delivering electrical cues for tissue regeneration and functional restoration. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
19
|
Liu K, Yan L, Li R, Song Z, Ding J, Liu B, Chen X. 3D Printed Personalized Nerve Guide Conduits for Precision Repair of Peripheral Nerve Defects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103875. [PMID: 35182046 PMCID: PMC9036027 DOI: 10.1002/advs.202103875] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/25/2021] [Indexed: 05/07/2023]
Abstract
The treatment of peripheral nerve defects has always been one of the most challenging clinical practices in neurosurgery. Currently, nerve autograft is the preferred treatment modality for peripheral nerve defects, while the therapy is constantly plagued by the limited donor, loss of donor function, formation of neuroma, nerve distortion or dislocation, and nerve diameter mismatch. To address these clinical issues, the emerged nerve guide conduits (NGCs) are expected to offer effective platforms to repair peripheral nerve defects, especially those with large or complex topological structures. Up to now, numerous technologies are developed for preparing diverse NGCs, such as solvent casting, gas foaming, phase separation, freeze-drying, melt molding, electrospinning, and three-dimensional (3D) printing. 3D printing shows great potential and advantages because it can quickly and accurately manufacture the required NGCs from various natural and synthetic materials. This review introduces the application of personalized 3D printed NGCs for the precision repair of peripheral nerve defects and predicts their future directions.
Collapse
Affiliation(s)
- Kai Liu
- Department of Hand and Foot SurgeryThe First Hospital of Jilin University1 Xinmin StreetChangchun130061P. R. China
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Lesan Yan
- Biomedical Materials and Engineering Research Center of Hubei ProvinceState Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of Technology122 Luoshi RoadWuhan430070P. R. China
| | - Ruotao Li
- Department of Hand and Foot SurgeryThe First Hospital of Jilin University1 Xinmin StreetChangchun130061P. R. China
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Zhiming Song
- Department of Sports MedicineThe First Hospital of Jilin University1 Xinmin StreetChangchun130061P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
- State Key Laboratory of Molecular Engineering of PolymersFudan University220 Handan RoadShanghai200433P. R. China
| | - Bin Liu
- Department of Hand and Foot SurgeryThe First Hospital of Jilin University1 Xinmin StreetChangchun130061P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| |
Collapse
|
20
|
Panda AK, Sitaramgupta VSN, Pandya HJ, Basu B. Electrical waveform dependent osteogenesis on PVDF/BaTiO 3 composite using a customized and programmable cell stimulator. Biotechnol Bioeng 2022; 119:1578-1597. [PMID: 35244212 DOI: 10.1002/bit.28076] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/07/2022]
Abstract
Directing cellular functionalities using biomaterial-based bioelectronic stimulation remains a significant constraint in translating research outcomes to address specific clinical challenges. Electrical stimulation is now being clinically used as a therapeutic treatment option to promote bone tissue regeneration and to improve neuromuscular functionalities. However, the nature of the electrical waveforms during the stimulation and underlying biophysical rationale are still not scientifically well explored. Furthermore, bone-mimicking implant-based bioelectrical regulation of osteoinductivity has not been translated to clinics. The present study demonstrates the role of the waveform in electrical signal to direct differentiation of stem cells on an electroactive polymeric substrate, using monophasic DC, square wave, and biphasic wave. In this regard, an in-house electrical stimulation device has been fabricated for the uninterrupted delivery of programmed electrical signals to stem cells in culture. To provide a functional platform for stem cells to differentiate, barium titanate (BaTiO3 , BT) reinforced PVDF has been developed with mechanical properties similar to bone. The electrical stimulation of human mesenchymal stem cells (hMSCs) on PVDF/BT composite inhibited proliferation rate at day 7, indicating early commitment for differentiation. The phenotypical characteristics of DC stimulated hMSCs provided signatures of differentiation towards osteogenic lineage, which was subsequently confirmed using ALP assay, collagen deposition, matrix mineralization, and genetic expression. Our findings suggest that DC stimulation induced early osteogenesis in hMSCs with a higher level of intracellular reactive oxygen species (ROS), whereas the stimulation with square wave directed late osteogenesis with a lower ROS regeneration. In summary, the present study critically analyzes the role of electrical stimulation and its waveforms in regulating osteogenesis, without external biochemical differentiation inducers, on a bone-mimicking functional substrate. Such a strategy can potentially be adopted to develop orthopedic implant-based bioelectronic medicine for bone regeneration. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Asish Kumar Panda
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, India
| | - V S N Sitaramgupta
- Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India
| | - Hardik J Pandya
- Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India
- Centre for Product Design and Manufacturing, Indian Institute of Science, Bangalore, India
| | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
21
|
Jaiswal J, Dhayal M. Electrochemically differentiated human MSCs biosensing platform for quantification of nestin and β-III tubulin as whole-cell system. Biosens Bioelectron 2022; 206:114134. [PMID: 35276463 DOI: 10.1016/j.bios.2022.114134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/09/2022] [Accepted: 02/23/2022] [Indexed: 12/14/2022]
Abstract
Polydimethylsiloxane (PDMS) on ITO substrate was used to create a well with conducting surface to adhere human mesenchymal stem cells (hMSCs) and provide electrochemical stimulation for inducing their differentiation into neural-like cells. The cells that received electrochemical stimulation did not show any noticeable change in their viability and proliferation. The cell morphology of the differentiated hMSCs adherent on ITO showed outgrowth and elongation in one dimension, resembling neural-like cells. Immunocytochemistry assessment by quantifying the expression of nestin and β-III tubulin also confirmed the differentiation of hMSCs. These differentiated hMSCs adherent on ITO were used as electrochemical biosensing platform for differential pulse voltammetry (DPV) measurement for selectively quantifying cell surface markers expressed by neural stem cells and mature neurons. The variation of nestin antibodies concentrations from 9 μU to 27 μU showed a linear increase in DPV current with a detection sensitivity of ∼28 nA/μU of antibody. Varying concentrations of β-III tubulin antibodies from 30 μU to 210 μU showed a linear increase in DPV current with a detection sensitivity of ∼2.0 nA/μU of antibody. The highest expression level of cell surface marker corresponding to β-III tubulin in total adherent cells on ITO was calculated. It was in the order of 10-8 U of antibodies/cell, representing the total population of mature neuron cells. This new way of detection may rapidly assess the quantitative expression of cell surface markers/antigens.
Collapse
Affiliation(s)
- Juhi Jaiswal
- Nano-Cellular Medicine and Biophysics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, Uttar Pradesh, India
| | - Marshal Dhayal
- Nano-Cellular Medicine and Biophysics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
22
|
Yang JW, Chen CY, Yu ZY, Chung JH, Liu X, Wu CY, Chen GY. An electroactive hybrid biointerface for enhancing neuronal differentiation and axonal outgrowth on bio-subretinal chip. Mater Today Bio 2022; 14:100253. [PMID: 35464741 PMCID: PMC9018446 DOI: 10.1016/j.mtbio.2022.100253] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/14/2022] [Accepted: 03/31/2022] [Indexed: 12/20/2022] Open
Abstract
Retinal prostheses offer viable vision restoration therapy for patients with blindness. However, a critical requirement for maintaining the stable performance of electrical stimulation and signal transmission is the biocompatibility of the electrode interface. Here, we demonstrated a functionalized electrode-neuron biointerface composed of an annealed graphene oxide-collagen (aGO-COL) composite and neuronal cells. The aGO-COL exhibited an electroactive 3D crumpled surface structure and enhanced the differentiation efficiency of PC-12 cells. It is integrated into a photovoltaic self-powered retinal chip to develop a biohybrid retinal implant that facilitates biocompatibility and tissue regeneration. Moreover, aGO-COL micropatterns fabricated via 3D bioprinting can be used to create neuronal cell microarrays, which supports the possibility of retaining the high spatial resolution achieved through electrical stimulation of the retinal chip. This study paves the way for the next generation of biohybrid retinal implants based on biointerfaces.
Collapse
Affiliation(s)
- Jia-Wei Yang
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
- Department of Electronics and Electrical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Chong-You Chen
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
- Department of Electronics and Electrical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Zih-Yu Yu
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Johnson H.Y. Chung
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW 2500, Australia
| | - Xiao Liu
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW 2500, Australia
| | - Chung-Yu Wu
- Institute of Electronics, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Guan-Yu Chen
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
- Department of Electronics and Electrical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| |
Collapse
|
23
|
Yan Z, Li K, Shao D, Shen Q, Ding Y, Huang S, Xie Y, Zheng X. Visible-light-responsive reduced graphene oxide/g-C 3N 4/TiO 2 composite nanocoating for photoelectric stimulation of neuronal and osteoblastic differentiation. RSC Adv 2022; 12:8878-8888. [PMID: 35424887 PMCID: PMC8985170 DOI: 10.1039/d2ra00282e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/08/2022] [Indexed: 11/21/2022] Open
Abstract
rGO/g-C3N4/TiO2 nanocoating was fabricated on Ti-based implant for photoelectric stimulation of bone and nerve repair. The ternary nanocoating exerted greater photoelectric effects on enhancing osteoblastic differentiation and neurite outgrowth.
Collapse
Affiliation(s)
- Ziru Yan
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Kai Li
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Dandan Shao
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Qingyi Shen
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi Ding
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Shansong Huang
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Youtao Xie
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Xuebin Zheng
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
24
|
Yadav V, Senapati S, Chang HC. Ion-Depleting Action of Perm-Selective Membranes for Enhancing Electrical Communication and Gated Ion Channel Activity in Cell Cultures. ACS Biomater Sci Eng 2021; 8:4618-4621. [PMID: 34932307 DOI: 10.1021/acsbiomaterials.1c01384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ion-depletion action of an ion-selective membrane produces a moat channel that electrically insulates a cell colony and elevates the cell medium potential uniformly to synchronously activate and deactivate the voltage-gated ion channels of all cells. The result is robust synchronization with strong intercellular electrical communication and the discovery of ion channel deactivation that is only possible when the cells are in communication. The study suggests that the collective response of a cell colony to external stimuli is distinct from that of a single cell. Cell proliferation must hence be guided with strong intercellular communication and proper exogenous stimuli.
Collapse
Affiliation(s)
- Vivek Yadav
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Satyajyoti Senapati
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
25
|
Pitsalidis C, Pappa AM, Boys AJ, Fu Y, Moysidou CM, van Niekerk D, Saez J, Savva A, Iandolo D, Owens RM. Organic Bioelectronics for In Vitro Systems. Chem Rev 2021; 122:4700-4790. [PMID: 34910876 DOI: 10.1021/acs.chemrev.1c00539] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bioelectronics have made strides in improving clinical diagnostics and precision medicine. The potential of bioelectronics for bidirectional interfacing with biology through continuous, label-free monitoring on one side and precise control of biological activity on the other has extended their application scope to in vitro systems. The advent of microfluidics and the considerable advances in reliability and complexity of in vitro models promise to eventually significantly reduce or replace animal studies, currently the gold standard in drug discovery and toxicology testing. Bioelectronics are anticipated to play a major role in this transition offering a much needed technology to push forward the drug discovery paradigm. Organic electronic materials, notably conjugated polymers, having demonstrated technological maturity in fields such as solar cells and light emitting diodes given their outstanding characteristics and versatility in processing, are the obvious route forward for bioelectronics due to their biomimetic nature, among other merits. This review highlights the advances in conjugated polymers for interfacing with biological tissue in vitro, aiming ultimately to develop next generation in vitro systems. We showcase in vitro interfacing across multiple length scales, involving biological models of varying complexity, from cell components to complex 3D cell cultures. The state of the art, the possibilities, and the challenges of conjugated polymers toward clinical translation of in vitro systems are also discussed throughout.
Collapse
Affiliation(s)
- Charalampos Pitsalidis
- Department of Physics, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi 127788, UAE.,Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Anna-Maria Pappa
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi 127788, UAE
| | - Alexander J Boys
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Ying Fu
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.,Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, U.K
| | - Chrysanthi-Maria Moysidou
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Douglas van Niekerk
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Janire Saez
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.,Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Avenida Miguel de Unamuno, 3, 01006 Vitoria-Gasteiz, Spain.,Ikerbasque, Basque Foundation for Science, E-48011 Bilbao, Spain
| | - Achilleas Savva
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Donata Iandolo
- INSERM, U1059 Sainbiose, Université Jean Monnet, Mines Saint-Étienne, Université de Lyon, 42023 Saint-Étienne, France
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| |
Collapse
|
26
|
Yang Q, Jiang N, Xu H, Zhang Y, Xiong C, Huang J. Integration of electrotaxis and durotaxis in cancer cells: Subtle nonlinear responses to electromechanical coupling cues. Biosens Bioelectron 2021; 186:113289. [PMID: 33975207 DOI: 10.1016/j.bios.2021.113289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/21/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Cells in living organisms live in multiphysics-coupled environments. There is growing evidence indicating that both exogenous electric field (EEF) and extracellular stiffness gradient (ESG) can regulate directional movement of cells, which are known as electrotaxis and durotaxis, respectively. How single cells respond to the ubiquitous electromechanical coupling cues, however, remains mysterious. Using microfluidic chip-based methodology and finite element-based electromechanical coupling design strategies, we develope an electromechanical coupling microchip system, enabling us to quantitatively investigate polarization and directional migration governed by EEF and ESG at the single cell level. It is revealed that both of electrotaxis and durotaxis nonlinearly depend on the physiological EEF and ESG, respectively. Specific combinations of EEF and ESG can subtly modify the polarization states of single cells and thus induce hyperpolarization and depolarization. Cells can integrate electrotaxis and durotaxis in response to multi-cue microenvironments via subtle mechanisms involving cooperation and competition during cellular electrosensing and mechanosensing. The work offers a platform for quantifying migration and polarization of cells driven by electromechanical cues, which is essential not only for elucidating physiological and pathological processes like embryo development, and invasion and metastasis of cancer cells, but for manipulating cell behaviors in a controllable and programmable fashion.
Collapse
Affiliation(s)
- Qunfeng Yang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, China
| | - Nan Jiang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, China
| | - Hongwei Xu
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, China
| | - Yajun Zhang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, China
| | - Chunyang Xiong
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, China; Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, 100871, China.
| |
Collapse
|
27
|
Huang Y, Jing W, Li Y, Cai Q, Yang X. Composites made of polyorganophosphazene and carbon nanotube up-regulating osteogenic activity of BMSCs under electrical stimulation. Colloids Surf B Biointerfaces 2021; 204:111785. [PMID: 33932894 DOI: 10.1016/j.colsurfb.2021.111785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 04/13/2021] [Accepted: 04/21/2021] [Indexed: 01/02/2023]
Abstract
Bone is an electrically responsive tissue, so electroactive materials that can deliver electrical cues to bone are helpful for enhancing regeneration under electrical stimulation (ES), and conductive materials are crucial in ES transmission to determine osteogenesis. Compared with polyesters, biodegradable polyorganophosphazenes (POPPs) show superiority in the field of bone tissue engineering thanks to their rich phosphorus/nitrogen contents, suggesting that the combination of POPPs-based conductive substrates with ES may achieve synergistic enhancements on osteogenesis. Herein, conductive composite films were fabricated by blending poly[(alanine ethyl ester)-(glycine ethyl ester)]phosphazene (PAGP) with carbon nanotubes (CNTs). After surface modification with polydopamine (PDA), bone marrow mesenchymal stromal cells (BMSCs) were cultured on the films under ES, using the cells cultured on conductive films composed of poly(L-lactide) (PLLA) and CNTs as controls. The BMSCs on PAGP/CNT films demonstrated significantly faster proliferation rates and stronger osteogenic differentiation potentials than those on PLLA/CNT films, while cell attachments on the two PDA-coated substrates were similar. Under appropriate ES, further increases in the expressions of osteogenic markers as alkaline phosphatase, collagen I and calcium deposition were identified in comparison with the cases without ES. The contributions of the osteocompatible POPPs, the substrate conductivity and the ES treatment to enhanced osteogenesis suggested new strategies for the design of bone repair materials.
Collapse
Affiliation(s)
- Yiqian Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wei Jing
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yechen Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
28
|
Chen X, Ranjan VD, Liu S, Liang YN, Lim JSK, Chen H, Hu X, Zhang Y. In Situ Formation of 3D Conductive and Cell-Laden Graphene Hydrogel for Electrically Regulating Cellular Behavior. Macromol Biosci 2021; 21:e2000374. [PMID: 33620138 DOI: 10.1002/mabi.202000374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/18/2020] [Indexed: 12/22/2022]
Abstract
Electroconductive and injectable hydrogels are attracting increasing attention owing to the needs of electrically induced regulation of cell behavior, tissue engineering of electroactive tissues, and achieving minimum invasiveness during tissue repair. In this study, a novel in situ formed 3D conductive and cell-laden hydrogel is developed, which can be broadly used in bioprinting, tissue engineering, neuroengineering etc. An instantaneous, uniform spatial distribution and encapsulation of cells can be achieved as a result of hydrogen bonding induced hydrogel formation. Particularly, the cell-laden hydrogel can be easily obtained by simply mixing and shaking the polydopamine (PDA) functionalized rGO (rGO-PDA) with polyvinyl alcohol (PVA) solution containing cells. Graphene oxide is reduced and functionalized by dopamine to restore the electrical conductivity, while simultaneously enhancing both hydrophilicity and biocompatibility of reduced graphene oxide. In vitro culture of PC12 cells within the cell-laden hydrogel demonstrates its biocompatibility, noncytotoxicity as well as the ability to support long-term cell growth and proliferation. Enhanced neuronal differentiation is also observed, both with and without electrical stimulation. Overall, this 3D conductive, cell-laden hydrogel holds great promise as potential platform for tissue engineering of electroactive tissues.
Collapse
Affiliation(s)
- Xuelong Chen
- School of Material Science and Engineering, Nanyang Technological University, Nanyang Avenue, Singapore, 639798, Singapore
| | - Vivek Damodar Ranjan
- NTU Institute for Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, Singapore, 639798, Singapore
| | - Sijun Liu
- Advanced Rheology Institute, Department of Polymer Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yen Nan Liang
- Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore
| | - Jacob Song Kiat Lim
- Temasek Laboratories, Nanyang Technological University, 50 Nanyang Drive, Singapore, 637553, Singapore
| | - Hui Chen
- Temasek Laboratories, Nanyang Technological University, 50 Nanyang Drive, Singapore, 637553, Singapore
| | - Xiao Hu
- School of Material Science and Engineering, Nanyang Technological University, Nanyang Avenue, Singapore, 639798, Singapore.,Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore.,Temasek Laboratories, Nanyang Technological University, 50 Nanyang Drive, Singapore, 637553, Singapore
| | - Yilei Zhang
- Department of mechanical engineering, University of Canterbury, Christchurch, 8041, New Zealand
| |
Collapse
|
29
|
Wang L, Lu C, Yang S, Sun P, Wang Y, Guan Y, Liu S, Cheng D, Meng H, Wang Q, He J, Hou H, Li H, Lu W, Zhao Y, Wang J, Zhu Y, Li Y, Luo D, Li T, Chen H, Wang S, Sheng X, Xiong W, Wang X, Peng J, Yin L. A fully biodegradable and self-electrified device for neuroregenerative medicine. SCIENCE ADVANCES 2020; 6:eabc6686. [PMID: 33310851 PMCID: PMC7732202 DOI: 10.1126/sciadv.abc6686] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/26/2020] [Indexed: 05/08/2023]
Abstract
Peripheral nerve regeneration remains one of the greatest challenges in regenerative medicine. Deprivation of sensory and/or motor functions often occurs with severe injuries even treated by the most advanced microsurgical intervention. Although electrical stimulation represents an essential nonpharmacological therapy that proved to be beneficial for nerve regeneration, the postoperative delivery at surgical sites remains daunting. Here, a fully biodegradable, self-electrified, and miniaturized device composed of dissolvable galvanic cells on a biodegradable scaffold is achieved, which can offer both structural guidance and electrical cues for peripheral nerve regeneration. The electroactive device can provide sustained electrical stimuli beyond intraoperative window, which can promote calcium activity, repopulation of Schwann cells, and neurotrophic factors. Successful motor functional recovery is accomplished with the electroactive device in behaving rodent models. The presented materials options and device schemes provide important insights into self-powered electronic medicine that can be critical for various types of tissue regeneration and functional restoration.
Collapse
Affiliation(s)
- Liu Wang
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Changfeng Lu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Shuhui Yang
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Pengcheng Sun
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P. R. China.
| | - Yanjun Guan
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Shuang Liu
- School of Life Sciences, IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing 100084, P. R. China
| | - Dali Cheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, and Beijing Innovation Center for Future Chips, Tsinghua University, Beijing 100084, P. R. China
| | - Haoye Meng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Qiang Wang
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, and Beijing Innovation Center for Future Chips, Tsinghua University, Beijing 100084, P. R. China
| | - Jianguo He
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Hanqing Hou
- School of Life Sciences, IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing 100084, P. R. China
| | - Huo Li
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Wei Lu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Yanxu Zhao
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Jing Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Yaqiong Zhu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Yunxuan Li
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Dong Luo
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Tong Li
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Hao Chen
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Shirong Wang
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, and Beijing Innovation Center for Future Chips, Tsinghua University, Beijing 100084, P. R. China
| | - Wei Xiong
- School of Life Sciences, IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing 100084, P. R. China
| | - Xiumei Wang
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P. R. China.
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
30
|
Wang J, Wang H, Mo X, Wang H. Reduced Graphene Oxide-Encapsulated Microfiber Patterns Enable Controllable Formation of Neuronal-Like Networks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2004555. [PMID: 32875631 PMCID: PMC10865229 DOI: 10.1002/adma.202004555] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/31/2020] [Indexed: 05/24/2023]
Abstract
Scaffold-guided formation of neuronal-like networks, especially under electrical stimulation, can be an appealing avenue toward functional restoration of injured nervous systems. Here, 3D conductive scaffolds are fabricated based on printed microfiber constructs using near-field electrostatic printing (NFEP) and graphene oxide (GO) coating. Various microfiber patterns are obtained from poly(l-lactic acid-co-caprolactone) (PLCL) using NFEP and complexity is achieved via modulating the fiber overlay angles (45°, 60°, 75°, 90°), fiber diameters (15 to 148 µm), and fiber spatial organization (spider web and tubular structure). Upon coating GO onto PLCL microfibers via a layer-by-layer (L-b-L) assembly technique and in situ reduction into reduced GO (rGO), the obtained conductive scaffolds, with 25-50 layers of rGO, demonstrate superior conductivity (≈0.95 S cm-1 ) and capability of inducing neuronal-like network formation along the conductive microfibers under electrical stimulation (100-150 mV cm-1 ). Both electric field (0-150 mV cm-1 ) and microfiber diameter (17-150 µm) affect neurite outgrowth (PC-12 cells and primary mouse hippocampal neurons) and the formation of orientated neuronal-like networks. With further demonstration of such guidance to neuronal cells, these conductive scaffolds may see versatile applications in nerve regeneration and neural engineering.
Collapse
Affiliation(s)
- Juan Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Haoyu Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Hongjun Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| |
Collapse
|
31
|
Sun L, Yu Y, Chen Z, Bian F, Ye F, Sun L, Zhao Y. Biohybrid robotics with living cell actuation. Chem Soc Rev 2020; 49:4043-4069. [DOI: 10.1039/d0cs00120a] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review comprehensively discusses recent advances in the basic components, controlling methods and especially in the applications of biohybrid robots.
Collapse
Affiliation(s)
- Lingyu Sun
- Department of Rheumatology and Immunology
- The Affiliated Drum Tower Hospital of Nanjing University Medical School
- 210008 Nanjing
- China
- Department of Rheumatology and Immunology
| | - Yunru Yu
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- 210096 Nanjing
- China
| | - Zhuoyue Chen
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- 210096 Nanjing
- China
| | - Feika Bian
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- 210096 Nanjing
- China
| | - Fangfu Ye
- Wenzhou Institute
- University of Chinese Academy of Sciences
- Wenzhou
- China
- Beijing National Laboratory for Condensed Matter Physics
| | - Lingyun Sun
- Department of Rheumatology and Immunology
- The Affiliated Drum Tower Hospital of Nanjing University Medical School
- 210008 Nanjing
- China
- Department of Rheumatology and Immunology
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology
- The Affiliated Drum Tower Hospital of Nanjing University Medical School
- 210008 Nanjing
- China
- Department of Rheumatology and Immunology
| |
Collapse
|
32
|
Sun H, Yu D, Guan Y, Du Z, Ren J, Qu X. Wireless near-infrared electrical stimulation of neurite outgrowth. Chem Commun (Camb) 2019; 55:9833-9836. [PMID: 31363722 DOI: 10.1039/c9cc03537k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Herein, through using electropolymerized pyrrole (PPy) to coat near-infrared upconversion nanoparticles (UCNPs) on an indium tin oxide (ITO) electrode, the as-prepared PPy/UCNPs photoelectrode could generate an interfacial electric field, release rare earth ions and induce reactive oxygen species (ROS) in PC12 cells under NIR irradiation, which could realize wireless neurite development and outgrowth.
Collapse
Affiliation(s)
- Hanjun Sun
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | | | | | | | | | | |
Collapse
|
33
|
Zheng Z, Huang L, Yan L, Yuan F, Wang L, Wang K, Lawson T, Lin M, Liu Y. Polyaniline Functionalized Graphene Nanoelectrodes for the Regeneration of PC12 Cells via Electrical Stimulation. Int J Mol Sci 2019; 20:E2013. [PMID: 31022890 PMCID: PMC6515035 DOI: 10.3390/ijms20082013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 02/05/2023] Open
Abstract
The regeneration of neurons is an important goal of neuroscience and clinical medicine. The electrical stimulation of cells is a promising technique to meet this goal. However, its efficiency highly depends on the electrochemical properties of the stimulation electrodes used. This work reports on the preparation and use of a highly electroactive and biocompatible nanoelectrode made from a novel polyaniline functionalized graphene composite. This nanocomposite was prepared using a facile and efficient polymerization-enhanced ball-milling method. It was used to stimulate the growth of PC12 cells under various electrical fields. The enhanced growth of axons and improved wound regeneration of PC12 cells were observed after this treatment, suggesting a promising strategy for neuro traumatology.
Collapse
Affiliation(s)
- Zheng Zheng
- Laboratory of Nanoscale Biosensing and Bioimaging, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuanxi Road, Wenzhou 325027, China.
| | - Libin Huang
- Laboratory of Nanoscale Biosensing and Bioimaging, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuanxi Road, Wenzhou 325027, China.
| | - Lu Yan
- Laboratory of Nanoscale Biosensing and Bioimaging, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuanxi Road, Wenzhou 325027, China.
| | - Feng Yuan
- Laboratory of Nanoscale Biosensing and Bioimaging, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuanxi Road, Wenzhou 325027, China.
| | - Lefeng Wang
- Laboratory of Nanoscale Biosensing and Bioimaging, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuanxi Road, Wenzhou 325027, China.
| | - Ke Wang
- Laboratory of Nanoscale Biosensing and Bioimaging, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuanxi Road, Wenzhou 325027, China.
| | - Tom Lawson
- ARC Center of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW 2109, Australia.
| | - Mimi Lin
- Laboratory of Nanoscale Biosensing and Bioimaging, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuanxi Road, Wenzhou 325027, China.
| | - Yong Liu
- Laboratory of Nanoscale Biosensing and Bioimaging, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuanxi Road, Wenzhou 325027, China.
| |
Collapse
|