1
|
Vessella T, Xiang S, Xiao C, Stilwell M, Fok J, Shohet J, Rozen E, Zhou HS, Wen Q. DDR2 signaling and mechanosensing orchestrate neuroblastoma cell fate through different transcriptome mechanisms. FEBS Open Bio 2024; 14:867-882. [PMID: 38538106 PMCID: PMC11073507 DOI: 10.1002/2211-5463.13798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/24/2024] [Accepted: 03/18/2024] [Indexed: 05/07/2024] Open
Abstract
The extracellular matrix (ECM) regulates carcinogenesis by interacting with cancer cells via cell surface receptors. Discoidin Domain Receptor 2 (DDR2) is a collagen-activated receptor implicated in cell survival, growth, and differentiation. Dysregulated DDR2 expression has been identified in various cancer types, making it as a promising therapeutic target. Additionally, cancer cells exhibit mechanosensing abilities, detecting changes in ECM stiffness, which is particularly important for carcinogenesis given the observed ECM stiffening in numerous cancer types. Despite these, whether collagen-activated DDR2 signaling and ECM stiffness-induced mechanosensing exert similar effects on cancer cell behavior and whether they operate through analogous mechanisms remain elusive. To address these questions, we performed bulk RNA sequencing (RNA-seq) on human SH-SY5Y neuroblastoma cells cultured on collagen-coated substrates. Our results show that DDR2 downregulation induces significant changes in the cell transcriptome, with changes in expression of 15% of the genome, specifically affecting the genes associated with cell division and differentiation. We validated the RNA-seq results by showing that DDR2 knockdown redirects the cell fate from proliferation to senescence. Like DDR2 knockdown, increasing substrate stiffness diminishes cell proliferation. Surprisingly, RNA-seq indicates that substrate stiffness has no detectable effect on the transcriptome. Furthermore, DDR2 knockdown influences cellular responses to substrate stiffness changes, highlighting a crosstalk between these two ECM-induced signaling pathways. Based on our results, we propose that the ECM could activate DDR2 signaling and mechanosensing in cancer cells to orchestrate their cell fate through distinct mechanisms, with or without involving gene expression, thus providing novel mechanistic insights into cancer progression.
Collapse
Affiliation(s)
- Theadora Vessella
- Department of Chemical EngineeringWorcester Polytechnic InstituteMAUSA
| | | | - Cong Xiao
- Nash Family Department of Neuroscience, Friedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Black Family Stem Cell InstituteIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Madelyn Stilwell
- Department of Biomedical EngineeringWichita State UniversityKSUSA
| | - Jaidyn Fok
- Department of NeurobiologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Jason Shohet
- Department of PediatricsUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Esteban Rozen
- Department of PediatricsUniversity of Massachusetts Medical SchoolWorcesterMAUSA
- Crnic Institute Boulder Branch, BioFrontiers InstituteUniversity of Colorado BoulderCOUSA
| | - H. Susan Zhou
- Department of Chemical EngineeringWorcester Polytechnic InstituteMAUSA
| | - Qi Wen
- Department of PhysicsWorcester Polytechnic InstituteMAUSA
| |
Collapse
|
2
|
Chamorro B, Izquierdo-Bermejo S, Martín-de-Saavedra MD, López-Muñoz F, Chioua M, Marco-Contelles J, Oset-Gasque MJ. Neuroprotective and Antioxidant Properties of CholesteroNitrone ChN2 and QuinolylNitrone QN23 in an Experimental Model of Cerebral Ischemia: Involvement of Necrotic and Apoptotic Cell Death. Antioxidants (Basel) 2023; 12:1364. [PMID: 37507904 PMCID: PMC10376237 DOI: 10.3390/antiox12071364] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Ischemic stroke is the leading cause of disability and the second leading cause of death worldwide. However, current therapeutic strategies are scarce and of limited efficacy. The abundance of information available on the molecular pathophysiology of ischemic stroke has sparked considerable interest in developing new neuroprotective agents that can target different events of the ischemic cascade and may be used in combination with existing treatments. In this regard, nitrones represent a very promising alternative due to their renowned antioxidant and anti-inflammatory effects. In this study, we aimed to further investigate the neuroprotective effects of two nitrones, cholesteronitrone 2 (ChN2) and quinolylnitrone 23 (QN23), which have previously shown great potential for the treatment of stroke. Using an experimental in vitro model of cerebral ischemia, we compared their anti-necrotic, anti-apoptotic, and antioxidant properties with those of three reference compounds. Both ChN2 and QN23 demonstrated significant neuroprotective effects (EC50 = 0.66 ± 0.23 μM and EC50 = 2.13 ± 0.47 μM, respectively) comparable to those of homo-bis-nitrone 6 (HBN6) and N-acetylcysteine (NAC) and superior to those of α-phenyl-N-tert-butylnitrone (PBN). While primarily derived from the nitrones' anti-necrotic capacities, their anti-apoptotic effects at high concentrations and antioxidant powers-especially in the case of QN23-also contribute to their neuroprotective effects.
Collapse
Affiliation(s)
- Beatriz Chamorro
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain
- Faculty of Health, Camilo José Cela University, Villanueva de la Cañada, 28692 Madrid, Spain
| | - Sara Izquierdo-Bermejo
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain
| | - María Dolores Martín-de-Saavedra
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain
| | - Francisco López-Muñoz
- Faculty of Health, Camilo José Cela University, Villanueva de la Cañada, 28692 Madrid, Spain
- Neuropsychopharmacology Unit, "Hospital 12 de Octubre" Research Institute, 28041 Madrid, Spain
| | - Mourad Chioua
- Laboratory of Medicinal Chemistry, Institute of Organic Chemistry (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry, Institute of Organic Chemistry (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
| | - María Jesús Oset-Gasque
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain
| |
Collapse
|
3
|
Matthiesen I, Jury M, Rasti Boroojeni F, Ludwig SL, Holzreuter M, Buchmann S, Åman Träger A, Selegård R, Winkler TE, Aili D, Herland A. Astrocyte 3D culture and bioprinting using peptide functionalized hyaluronan hydrogels. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2165871. [PMID: 36733710 PMCID: PMC9888471 DOI: 10.1080/14686996.2023.2165871] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Astrocytes play an important role in the central nervous system, contributing to the development of and maintenance of synapses, recycling of neurotransmitters, and the integrity and function of the blood-brain barrier. Astrocytes are also linked to the pathophysiology of various neurodegenerative diseases. Astrocyte function and organization are tightly regulated by interactions mediated by the extracellular matrix (ECM). Engineered hydrogels can mimic key aspects of the ECM and can allow for systematic studies of ECM-related factors that govern astrocyte behaviour. In this study, we explore the interactions between neuroblastoma (SH-SY5Y) and glioblastoma (U87) cell lines and human fetal primary astrocytes (FPA) with a modular hyaluronan-based hydrogel system. Morphological analysis reveals that FPA have a higher degree of interactions with the hyaluronan-based gels compared to the cell lines. This interaction is enhanced by conjugation of cell-adhesion peptides (cRGD and IKVAV) to the hyaluronan backbone. These effects are retained and pronounced in 3D bioprinted structures. Bioprinted FPA using cRGD functionalized hyaluronan show extensive and defined protrusions and multiple connections between neighboring cells. Possibilities to tailor and optimize astrocyte-compatible ECM-mimicking hydrogels that can be processed by means of additive biofabrication can facilitate the development of advanced tissue and disease models of the central nervous system.
Collapse
Affiliation(s)
- Isabelle Matthiesen
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden
- CVRM Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Michael Jury
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Fatemeh Rasti Boroojeni
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Saskia L. Ludwig
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Muriel Holzreuter
- AIMES, Center for Integrated Medical and Engineering Science, Department of Neuroscience, Karolinska Institute, Solna, Sweden
| | - Sebastian Buchmann
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden
- AIMES, Center for Integrated Medical and Engineering Science, Department of Neuroscience, Karolinska Institute, Solna, Sweden
- Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
| | - Andrea Åman Träger
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Robert Selegård
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Thomas E. Winkler
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden
- Institute of Microtechnology & Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Daniel Aili
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Anna Herland
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden
- AIMES, Center for Integrated Medical and Engineering Science, Department of Neuroscience, Karolinska Institute, Solna, Sweden
- Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
| |
Collapse
|
4
|
Manzoor S, Almarghalani DA, James AW, Raza MK, Kausar T, Nayeem SM, Hoda N, Shah ZA. Synthesis and Pharmacological Evaluation of Novel Triazole-Pyrimidine Hybrids as Potential Neuroprotective and Anti-neuroinflammatory Agents. Pharm Res 2023; 40:167-185. [PMID: 36376607 PMCID: PMC10964282 DOI: 10.1007/s11095-022-03429-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/29/2022] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Neuroprotection is a precise target for the treatment of neurodegenerative diseases, ischemic stroke, and traumatic brain injury. Pyrimidine and its derivatives have been proven to use antiviral, anticancer, antioxidant, and antimicrobial activity prompting us to study the neuroprotection and anti-inflammatory activity of the triazole-pyrimidine hybrid on human microglia and neuronal cell model. METHODS A series of novel triazole-pyrimidine-based compounds were designed, synthesized and characterized by mass spectra, 1HNMR, 13CNMR, and a single X-Ray diffraction analysis. Further, the neuroprotective, anti-neuroinflammatory activity was evaluated by cell viability assay (MTT), Elisa, qRT-PCR, western blotting, and molecular docking. RESULTS The molecular results revealed that triazole-pyrimidine hybrid compounds have promising neuroprotective and anti-inflammatory properties. Among the 14 synthesized compounds, ZA3-ZA5, ZB2-ZB6, and intermediate S5 showed significant anti-neuroinflammatory properties through inhibition of nitric oxide (NO) and tumor necrosis factor-α (TNF-α) production in LPS-stimulated human microglia cells. From 14 compounds, six (ZA2 to ZA6 and intermediate S5) exhibited promising neuroprotective activity by reduced expression of the endoplasmic reticulum (ER) chaperone, BIP, and apoptosis marker cleaved caspase-3 in human neuronal cells. Also, a molecular docking study showed that lead compounds have favorable interaction with active residues of ATF4 and NF-kB proteins. CONCLUSION The possible mechanism of action was observed through the inhibition of ER stress, apoptosis, and the NF-kB inflammatory pathway. Thus, our study strongly indicates that the novel scaffolds of triazole-pyrimidine-based compounds can potentially be developed as neuroprotective and anti-neuroinflammatory agents.
Collapse
Affiliation(s)
- Shoaib Manzoor
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia Central University, New Delhi, India, 110025
| | - Daniyah A Almarghalani
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, 43614, USA
| | - Antonisamy William James
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, 43614, USA
| | - Md Kausar Raza
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Tasneem Kausar
- Department of Chemistry, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Shahid M Nayeem
- Department of Chemistry, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Nasimul Hoda
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia Central University, New Delhi, India, 110025.
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, 43614, USA.
| |
Collapse
|
5
|
Konar M, Ghosh D, Samanta S, Govindaraju T. Combating amyloid-induced cellular toxicity and stiffness by designer peptidomimetics. RSC Chem Biol 2022; 3:220-226. [PMID: 35360886 PMCID: PMC8827053 DOI: 10.1039/d1cb00235j] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 12/21/2021] [Indexed: 12/24/2022] Open
Abstract
Amyloid beta (Aβ) aggregation species-associated cellular stress instigates cytotoxicity and adverse cellular stiffness in neuronal cells. The study and modulation of these adverse effects demand immediate attention to tackle Alzheimer's disease (AD). We present a de novo design, synthesis and evaluation of Aβ14-23 peptidomimetics with cyclic dipeptide (CDP) units at defined positions. Our study identified AkdNMC with CDP units at the middle, N- and C-termini as a potent candidate to understand and ameliorate Aβ aggregation-induced cellular toxicity and adverse stiffness. Aβ14-23 peptidomimetics incorporated with cyclic dipeptide-based unnatural amino acid at defined positions serve as potential candidates to understand and ameliorate amyloid-induced cellular toxicity and physio-mechanical anomalies.![]()
Collapse
Affiliation(s)
- Mouli Konar
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Debasis Ghosh
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Sourav Samanta
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| |
Collapse
|
6
|
Lamb MC, Kaluarachchi CP, Lansakara TI, Mellentine SQ, Lan Y, Tivanski AV, Tootle TL. Fascin limits Myosin activity within Drosophila border cells to control substrate stiffness and promote migration. eLife 2021; 10:69836. [PMID: 34698017 PMCID: PMC8547955 DOI: 10.7554/elife.69836] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022] Open
Abstract
A key regulator of collective cell migrations, which drive development and cancer metastasis, is substrate stiffness. Increased substrate stiffness promotes migration and is controlled by Myosin. Using Drosophila border cell migration as a model of collective cell migration, we identify, for the first time, that the actin bundling protein Fascin limits Myosin activity in vivo. Loss of Fascin results in: increased activated Myosin on the border cells and their substrate, the nurse cells; decreased border cell Myosin dynamics; and increased nurse cell stiffness as measured by atomic force microscopy. Reducing Myosin restores on-time border cell migration in fascin mutant follicles. Further, Fascin’s actin bundling activity is required to limit Myosin activation. Surprisingly, we find that Fascin regulates Myosin activity in the border cells to control nurse cell stiffness to promote migration. Thus, these data shift the paradigm from a substrate stiffness-centric model of regulating migration, to uncover that collectively migrating cells play a critical role in controlling the mechanical properties of their substrate in order to promote their own migration. This understudied means of mechanical regulation of migration is likely conserved across contexts and organisms, as Fascin and Myosin are common regulators of cell migration.
Collapse
Affiliation(s)
- Maureen C Lamb
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, United States
| | | | | | - Samuel Q Mellentine
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, United States
| | - Yiling Lan
- Department of Chemistry, University of Iowa, Iowa City, United States
| | - Alexei V Tivanski
- Department of Chemistry, University of Iowa, Iowa City, United States
| | - Tina L Tootle
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, United States
| |
Collapse
|
7
|
Chang L, Wang C, Han S, Sun X, Xu F. Chemically Triggered Hydrogel Transformations through Covalent Adaptable Networks and Applications in Cell Culture. ACS Macro Lett 2021; 10:901-906. [PMID: 35549189 DOI: 10.1021/acsmacrolett.1c00276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this article, we report a "smart" hydrogel system, which can be remodeled into multiple architectures through dynamic covalent adaptable networks. The topological changes in hydrogel structures yield dynamically tunable properties through the reformation of covalent chemical linkages via amine-thiol scrambling, thiol-thiol exchange, decoupling reaction, and disulfide formation. The stiffness of the hydrogels can be regulated via dynamic covalent bonding, with some hydrogels displaying self-healing and shear thinning properties, as demonstrated by rheological measurements. Significantly, the dramatic structural transformations are achieved under neutral aqueous conditions at room temperature. These "smart" hydrogels show good biocompatibility, which can induce cell growth in two-dimensional cell culture and effectively serve as a scaffold for encapsulating and releasing human mesenchymal stem cells in three-dimensional cell culture. Thus, the developed "smart" hydrogel system holds great potential in biomedical applications such as tissue engineering and cell therapy.
Collapse
Affiliation(s)
- Le Chang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, China
| | - Cong Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, China
| | - Shuang Han
- Department of Gastroenterology of Honghui Hospital, Xi’an 710054, China
| | - Xiaolong Sun
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
8
|
Investigation on the Composition of Agarose-Collagen I Blended Hydrogels as Matrices for the Growth of Spheroids from Breast Cancer Cell Lines. Pharmaceutics 2021; 13:pharmaceutics13070963. [PMID: 34206758 PMCID: PMC8308953 DOI: 10.3390/pharmaceutics13070963] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Three-dimensional (3D) cell culture systems mimic the structural complexity of the tissue microenvironment and are gaining increasing importance as they resemble the extracellular matrix (ECM)–cell and cell–cell physical interactions occurring in vivo. Several scaffold-based culture systems have been already proposed as valuable tools for large-scale production of spheroids, but they often suffer of poor reproducibility or high costs of production. In this work, we present a reliable 3D culture system based on collagen I-blended agarose hydrogels and show how the variation in the agarose percentage affects the physical and mechanical properties of the resulting hydrogel. The influence of the different physical and mechanical properties of the blended hydrogels on the growth, size, morphology, and cell motility of the spheroids obtained by culturing three different breast cancer cell lines (MCF-7, MDA-MB-361, and MDA-MB-231) was also evaluated. As proof of concept, the cisplatin penetration and its cytotoxic effect on the tumor spheroids as function of the hydrogel stiffness were also investigated. Noteworthily, the possibility to recover the spheroids from the hydrogels for further processing and other biological studies has been considered. This feature, in addition to the ease of preparation, the lack of cross-linking chemistry and the high reproducibility, makes this hydrogel a reliable biomimetic matrix for the growth of 3D cell structures.
Collapse
|
9
|
Bell KJ, Lansakara TI, Crawford R, Monroe TB, Tivanski AV, Salem AK, Stevens LL. Mechanical cues protect against silica nanoparticle exposure in SH-SY5Y neuroblastoma. Toxicol In Vitro 2021; 70:105031. [PMID: 33075489 PMCID: PMC7877221 DOI: 10.1016/j.tiv.2020.105031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/31/2022]
Abstract
The increasing appearance of engineered nanomaterials in broad biomedical and industrial sectors poses an escalating health concern from unintended exposure with unknown consequences. Routine in vitro assessments of nanomaterial toxicity are a vital component to addressing these mounting health concerns; however, despite the known role of cell-cell and cell-matrix contacts in governing cell survival, these physical interactions are generally ignored. Herein, we demonstrate that exposure to amorphous silica particles destabilizes mitochondrial membrane potential, stimulates reactive oxygen species (ROS) production and promotes cytotoxicity in SH-SY5Y human neuroblastoma through mechanisms that are potently matrix dependent, with SH-SY5Y cells plated on the softest matrix displaying a near complete recovery in viability compared to dose-matched cells plated on tissue-culture plastic. Cells on the softest matrix (3 kPa) further displayed a 50% reduction in ROS production and preserved mitochondrial membrane potential. The actin cytoskeleton is mechanosensitive and closely related to ROS production. SH-SY5Y cells exposed to a 100 μg/mL dose of 50 nm silica particles displayed distinct cytoskeletal aberrations and a 70% increase in cell stiffness. Overall, this study establishes that the mechanical environment can significantly impact silica nanoparticle toxicity in SH-SY5Y cells. The mechanobiochemical mechanisms behind this regulation, which are initiated at the cell-matrix interface to adjust cytoskeletal structure and intracellular tension, demand specific attention for a comprehensive understanding of nanotoxicity.
Collapse
Affiliation(s)
- Kendra J Bell
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, IA 52242, United States of America
| | - Thiranjeewa I Lansakara
- Department of Chemistry, The University of Iowa, Iowa City, IA 52245, United States of America
| | - Rachel Crawford
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, IA 52242, United States of America
| | - T Blake Monroe
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, IA 52242, United States of America
| | - Alexei V Tivanski
- Department of Chemistry, The University of Iowa, Iowa City, IA 52245, United States of America
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, IA 52242, United States of America
| | - Lewis L Stevens
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, IA 52242, United States of America.
| |
Collapse
|
10
|
Ozgun A, Erkoc-Biradlı FZ, Bulut O, Garipcan B. Substrate stiffness effects on SH-SY5Y: The dichotomy of morphology and neuronal behavior. J Biomed Mater Res B Appl Biomater 2020; 109:92-101. [PMID: 32627383 DOI: 10.1002/jbm.b.34684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/05/2020] [Accepted: 06/23/2020] [Indexed: 11/11/2022]
Abstract
Like many other cell types, neuroblastoma cells are also known to respond to mechanical cues in their microenvironment in vitro. They were shown to have mechanotransduction pathways, which result in enhanced neuronal morphology on stiff substrates. However, in previous studies, the differentiation process was monitored only by morphological parameters. Motivated by the lack of comprehensive studies that investigate the effects of mechanical cues on neuroblastoma differentiation, we used SH-SY5Y cells differentiated on polyacrylamide (PA) gels as a model. Cells differentiated on the surface of PA hydrogels with three different elastic moduli (0.1, 1, and 50 kPa) were morphologically evaluated and their electrophysiological responsiveness was probed using calcium imaging. Immunodetection of neural marker TUJ1 and p-FAK was used for biochemical characterization. Groups with defined stiffness that are matching and nonmatching to neural tissue extracellular matrix were used to distinguish biomimetic results from other effects. Results show that while cells display morphologies that do not resemble neurons on soft substrates, they are in fact electrophysiologically more responsive and abundant in neuronal marker TUJ1. Our findings suggest that while neuronal differentiation occurs more efficiently in microenvironments mechanically mimicking neural tissue, the SH-SY5Y model demonstrates morphologies that conflict with neuronal behavior under these conditions. These results are expected to contribute considerable input to researchers that use SH-SY5Y as a neuron model.
Collapse
Affiliation(s)
- Alp Ozgun
- Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey
| | | | - Osman Bulut
- Faculty of Civil Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Bora Garipcan
- Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey
| |
Collapse
|
11
|
Kruger TM, Bell KJ, Lansakara TI, Tivanski AV, Doorn JA, Stevens LL. A Soft Mechanical Phenotype of SH-SY5Y Neuroblastoma and Primary Human Neurons Is Resilient to Oligomeric Aβ(1-42) Injury. ACS Chem Neurosci 2020; 11:840-850. [PMID: 32058688 DOI: 10.1021/acschemneuro.9b00401] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Aggregated amyloid beta (Aβ) is widely reported to cause neuronal dystrophy and toxicity through multiple pathways: oxidative stress, disrupting calcium homeostasis, and cytoskeletal dysregulation. The neuro-cytoskeleton is a dynamic structure that reorganizes to maintain cell homeostasis in response to varying soluble and physical cues presented from the extracellular matrix (ECM). Due this relationship between cell health and the ECM, we hypothesize that amyloid toxicity may be directly influenced by physical changes to the ECM (stiffness and dimensionality) through mechanosensitive pathways, and while previous studies demonstrated that Aβ can distort focal adhesion signaling with pathological consequences, these studies do not address the physical contribution from a physiologically relevant matrix. To test our hypothesis that physical cues can adjust Aβ toxicity, SH-SY5Y human neuroblastoma and primary human cortical neurons were plated on soft and stiff, 2D polyacrylamide matrices or suspended in 3D collagen gels. Each cell culture was exposed to escalating concentrations of oligomeric or fibrillated Aβ(1-42) with MTS viability and lactate dehydrogenase toxicity assessed. Actin restructuring was further monitored in live cells by atomic force microscopy nanoindentation, and our results demonstrate that increasing either matrix stiffness or exposure to oligomeric Aβ promotes F-actin polymerization and cell stiffening, while mature Aβ fibrils yielded no apparent cell stiffening and minor toxicity. Moreover, the rounded, softer mechanical phenotype displayed by cells plated onto a compliant matrix also demonstrated a resilience to oligomeric Aβ as noted by a significant recovery of viability when compared to same-dosed cells plated on traditional tissue culture plastic. This recovery was reproduced pharmacologically through inhibiting actin polymerization with cytochalasin D prior to Aβ exposure. These studies indicate that the cell-ECM interface can modify amyloid toxicity in neurons and the matrix-mediated pathways that promote this protection may offer unique targets in amyloid pathologies like Alzheimer's disease.
Collapse
Affiliation(s)
- Terra M. Kruger
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Kendra J. Bell
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, United States
| | | | - Alexei V. Tivanski
- Department of Chemistry, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Jonathan A. Doorn
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Lewis L. Stevens
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
12
|
Lin CH, Nicol CJ, Cheng YC, Yen C, Wang YS, Chiang MC. Neuroprotective effects of resveratrol against oxygen glucose deprivation induced mitochondrial dysfunction by activation of AMPK in SH-SY5Y cells with 3D gelatin scaffold. Brain Res 2020; 1726:146492. [DOI: 10.1016/j.brainres.2019.146492] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/26/2019] [Accepted: 10/02/2019] [Indexed: 12/21/2022]
|
13
|
Abstract
Physical stimuli are essential for the function of eukaryotic cells, and changes in physical signals are important elements in normal tissue development as well as in disease initiation and progression. The complexity of physical stimuli and the cellular signals they initiate are as complex as those triggered by chemical signals. One of the most important, and the focus of this review, is the effect of substrate mechanical properties on cell structure and function. The past decade has produced a nearly exponentially increasing number of mechanobiological studies to define how substrate stiffness alters cell biology using both purified systems and intact tissues. Here we attempt to identify common features of mechanosensing in different systems while also highlighting the numerous informative exceptions to what in early studies appeared to be simple rules by which cells respond to mechanical stresses.
Collapse
Affiliation(s)
- Paul A Janmey
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Bioengineering, University of California-Berkeley, Berkeley, California; and Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Daniel A Fletcher
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Bioengineering, University of California-Berkeley, Berkeley, California; and Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Cynthia A Reinhart-King
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Bioengineering, University of California-Berkeley, Berkeley, California; and Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|