1
|
Khan H, Naseem T, Kaushik P, Narang J, Khan R, Panwar S, Parvez S. Decoding paradoxical links of cytokine markers in cognition: Cross talk between physiology, inflammaging, and Alzheimer's disease- related cognitive decline. Ageing Res Rev 2024; 101:102535. [PMID: 39374831 DOI: 10.1016/j.arr.2024.102535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
Recent research has revolutionized our understanding of memory consolidation by emphasizing the critical role of astrocytes, microglia, and immune cells in through cytokine signaling. Cytokines, compact proteins, play pivotal roles in neuronal development, synaptic transmission, and normal aging. This review explores the cellular mechanisms contributing to cognitive decline in inflammaging and Alzheimer's disease, highlighting the paradoxical effects of most studied cytokines (IL-1, IL-6, TNF-α) in brain function, which act as a double-edged sword in brain physiology, acting both as facilitators of healthy cognitive function and as a potential contributor to cognitive decline.
Collapse
Affiliation(s)
- Hiba Khan
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Talib Naseem
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Pooja Kaushik
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Jagriti Narang
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector 81, Knowledge City, Sahibzada Ajit Singh Nagar, Mohali, Punjab 140306, India
| | - Siddharth Panwar
- School of Computing and Electrical Engineering, Indian Institute of Technology, Mandi, Himachal Pradesh 175075, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
2
|
Song Q, E S, Zhang Z, Liang Y. Neuroplasticity in the transition from acute to chronic pain. Neurotherapeutics 2024:e00464. [PMID: 39438166 DOI: 10.1016/j.neurot.2024.e00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/10/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
Acute pain is a transient sensation that typically serves as part of the body's defense mechanism. However, in certain patients, acute pain can evolve into chronic pain, which persists for months or even longer. Neuroplasticity refers to the capacity for variation and adaptive alterations in the morphology and functionality of neurons and synapses, and it plays a significant role in the transmission and modulation of pain. In this paper, we explore the molecular mechanisms and signaling pathways underlying neuroplasticity during the transition of pain. We also examine the effects of neurotransmitters, inflammatory mediators, and central sensitization on neuroplasticity, as well as the potential of neuroplasticity as a therapeutic strategy for preventing chronic pain. The aims of this article is to clarify the role of neuroplasticity in the transformation from acute pain to chronic pain, with the hope of providing a novel theoretical basis for unraveling the pathogenesis of chronic pain and offering more effective strategies and approaches for its diagnosis and treatment.
Collapse
Affiliation(s)
- Qingbiao Song
- School of Anesthesiology, Shandong Second Medical University, Weifang 261053, China
| | - Sihan E
- School of Anesthesiology, Shandong Second Medical University, Weifang 261053, China
| | - Zhiyu Zhang
- Department of Orthopedics, Affiliated Hospital of Shandong Second Medical University, Weifang 261035, China
| | - Yingxia Liang
- School of Anesthesiology, Shandong Second Medical University, Weifang 261053, China.
| |
Collapse
|
3
|
Grieco M, Giorgi A, Giacovazzo G, Maggiore A, Ficchì S, d'Erme M, Mosca L, Mignogna G, Maras B, Coccurello R. β-Hexachlorocyclohexane triggers neuroinflammatory activity, epigenetic histone post-translational modifications and cognitive dysfunction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116487. [PMID: 38810285 DOI: 10.1016/j.ecoenv.2024.116487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/06/2024] [Accepted: 05/18/2024] [Indexed: 05/31/2024]
Abstract
Persistent organic pollutants (POPs), which encompass pesticides and industrial chemicals widely utilized across the globe, pose a covert threat to human health. β-hexachlorocyclohexane (β-HCH) is an organochlorine pesticide with striking stability, still illegally dumped in many countries, and recognized as responsible for several pathogenetic mechanisms. This study represents a pioneering exploration into the neurotoxic effects induced by the exposure to β-HCH specifically targeting neuronal cells (N2a), microglia (BV-2), and C57BL/6 mice. As shown by western blot and qPCR analyses, the administration of β-HCH triggered a modulation of NF-κB, a key factor influencing both inflammation and pro-inflammatory cytokines expression. We demonstrated by proteomic and western blot techniques epigenetic modifications in H3 histone induced by β-HCH. Histone acetylation of H3K9 and H3K27 increased in N2a, and in the prefrontal cortex of C57BL/6 mice administered with β-HCH, whereas it decreased in BV-2 cells and in the hippocampus. We also observed a severe detrimental effect on recognition memory and spatial navigation by the Novel Object Recognition Test (NORT) and the Object Place Recognition Task (OPRT) behavioural tests. Cognitive impairment was linked to decreased expression of the genes BDNF and SNAP-25, which are mediators involved in synaptic function and activity. The obtained results expand our understanding of the harmful impact produced by β-HCH exposure by highlighting its implication in the pathogenesis of neurological diseases. These findings will support intervention programs to limit the risk induced by exposure to POPs. Regulatory agencies should block further illicit use, causing environmental hazards and endangering human and animal health.
Collapse
Affiliation(s)
- Maddalena Grieco
- Department of Biochemical Sciences, Sapienza University, Rome, Italy
| | - Alessandra Giorgi
- Department of Biochemical Sciences, Sapienza University, Rome, Italy
| | - Giacomo Giacovazzo
- European Center for Brain Research, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Anna Maggiore
- Department of Biochemical Sciences, Sapienza University, Rome, Italy; Department of Brain Sciences, Imperial College, London, UK
| | - Serena Ficchì
- Department of Biochemical Sciences, Sapienza University, Rome, Italy
| | - Maria d'Erme
- Department of Biochemical Sciences, Sapienza University, Rome, Italy
| | - Luciana Mosca
- Department of Biochemical Sciences, Sapienza University, Rome, Italy
| | | | - Bruno Maras
- Department of Biochemical Sciences, Sapienza University, Rome, Italy.
| | - Roberto Coccurello
- European Center for Brain Research, Santa Lucia Foundation IRCCS, Rome, Italy; Institute for Complex Systems, National Research Council (CNR), Roma, Italy
| |
Collapse
|
4
|
Dong Y, Zhang X, Wang Y. Interleukins in Epilepsy: Friend or Foe. Neurosci Bull 2024; 40:635-657. [PMID: 38265567 PMCID: PMC11127910 DOI: 10.1007/s12264-023-01170-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/28/2023] [Indexed: 01/25/2024] Open
Abstract
Epilepsy is a chronic neurological disorder with recurrent unprovoked seizures, affecting ~ 65 million worldwide. Evidence in patients with epilepsy and animal models suggests a contribution of neuroinflammation to epileptogenesis and the development of epilepsy. Interleukins (ILs), as one of the major contributors to neuroinflammation, are intensively studied for their association and modulatory effects on ictogenesis and epileptogenesis. ILs are commonly divided into pro- and anti-inflammatory cytokines and therefore are expected to be pathogenic or neuroprotective in epilepsy. However, both protective and destructive effects have been reported for many ILs. This may be due to the complex nature of ILs, and also possibly due to the different disease courses that those ILs are involved in. In this review, we summarize the contributions of different ILs in those processes and provide a current overview of recent research advances, as well as preclinical and clinical studies targeting ILs in the treatment of epilepsy.
Collapse
Affiliation(s)
- Yuan Dong
- Neuropsychiatry Research Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China.
| | - Xia Zhang
- Neuropsychiatry Research Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China
| | - Ying Wang
- Neuropsychiatry Research Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
5
|
Chang J, Jiang T, Shan X, Zhang M, Li Y, Qi X, Bian Y, Zhao L. Pro-inflammatory cytokines in stress-induced depression: Novel insights into mechanisms and promising therapeutic strategies. Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110931. [PMID: 38176531 DOI: 10.1016/j.pnpbp.2023.110931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/12/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Stress-mediated depression is one of the common psychiatric disorders with a high prevalence and suicide rate, there is a lack of effective treatment. Accordingly, effective treatments with few adverse effects are urgently needed. Pro-inflammatory cytokines (PICs) may play a key role in stress-mediated depression. Thereupon, both preclinical and clinical studies have found higher levels of IL-1β, TNF-α and IL-6 in peripheral blood and brain tissue of patients with depression. Recent studies have found PICs cause depression by affecting neuroinflammation, monoamine neurotransmitters, hypothalamic pituitary adrenal axis and neuroplasticity. Moreover, they play an important role in the symptom, development and progression of depression, maybe a potential diagnostic and therapeutic marker of depression. In addition, well-established antidepressant therapies have some relief on high levels of PICs. Importantly, anti-inflammatory drugs relieve depressive symptoms by reducing levels of PICs. Collectively, reducing PICs may represent a promising therapeutic strategy for depression.
Collapse
Affiliation(s)
- Jun Chang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Tingcan Jiang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoqian Shan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Mingxing Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yujiao Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Xin Qi
- Department of Cardiology, Tianjin Union Medical Center, 300121, China
| | - Yuhong Bian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Lan Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
6
|
Bellingacci L, Canonichesi J, Mancini A, Parnetti L, Di Filippo M. Cytokines, synaptic plasticity and network dynamics: a matter of balance. Neural Regen Res 2023; 18:2569-2572. [PMID: 37449591 DOI: 10.4103/1673-5374.371344] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
The modern view of the immune system as a sensitizing and modulating machinery of the central nervous system is now well recognized. However, the specific mechanisms underlying this fine crosstalk have yet to be fully disentangled. To control cognitive function and behavior, the two systems are engaged in a subtle interacting act. In this scenario, a dual action of pro-inflammatory cytokines in the modulation of brain network connections is emerging. Pro-inflammatory cytokines are indeed required to express physiological plasticity in the hippocampal network while being detrimental when over-expressed during uncontrolled inflammatory processes. In this dynamic equilibrium, synaptic functioning and the performance of neural networks are ensured by maintaining an appropriate balance between pro- and anti-inflammatory molecules in the central nervous system microenvironment.
Collapse
Affiliation(s)
- Laura Bellingacci
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Jacopo Canonichesi
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Andrea Mancini
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Lucilla Parnetti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Massimiliano Di Filippo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
7
|
Vincent JC, Garnett CN, Watson JB, Higgins EK, Macheda T, Sanders L, Roberts KN, Shahidehpour RK, Blalock EM, Quan N, Bachstetter AD. IL-1R1 signaling in TBI: assessing chronic impacts and neuroinflammatory dynamics in a mouse model of mild closed-head injury. J Neuroinflammation 2023; 20:248. [PMID: 37884959 PMCID: PMC10601112 DOI: 10.1186/s12974-023-02934-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Neuroinflammation contributes to secondary injury cascades following traumatic brain injury (TBI), with alternating waves of inflammation and resolution. Interleukin-1 (IL-1), a critical neuroinflammatory mediator originating from brain endothelial cells, microglia, astrocytes, and peripheral immune cells, is acutely overexpressed after TBI, propagating secondary injury and tissue damage. IL-1 affects blood-brain barrier permeability, immune cell activation, and neural plasticity. Despite the complexity of cytokine signaling post-TBI, we hypothesize that IL-1 signaling specifically regulates neuroinflammatory response components. Using a closed-head injury (CHI) TBI model, we investigated IL-1's role in the neuroinflammatory cascade with a new global knock-out (gKO) mouse model of the IL-1 receptor (IL-1R1), which efficiently eliminates all IL-1 signaling. We found that IL-1R1 gKO attenuated behavioral impairments 14 weeks post-injury and reduced reactive microglia and astrocyte staining in the neocortex, corpus callosum, and hippocampus. We then examined whether IL-1R1 loss altered acute neuroinflammatory dynamics, measuring gene expression changes in the neocortex at 3, 9, 24, and 72 h post-CHI using the NanoString Neuroinflammatory panel. Of 757 analyzed genes, IL-1R1 signaling showed temporal specificity in neuroinflammatory gene regulation, with major effects at 9 h post-CHI. IL-1R1 signaling specifically affected astrocyte-related genes, selectively upregulating chemokines like Ccl2, Ccl3, and Ccl4, while having limited impact on cytokine regulation, such as Tnfα. This study provides further insight into IL-1R1 function in amplifying the neuroinflammatory cascade following CHI in mice and demonstrates that suppression of IL-1R1 signaling offers long-term protective effects on brain health.
Collapse
Affiliation(s)
- Jonathan C Vincent
- Department of Neuroscience, University of Kentucky, 741 S. Limestone St., Lexington, KY, 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- MD/PhD Program, University of Kentucky, Lexington, KY, USA
| | - Colleen N Garnett
- Department of Neuroscience, University of Kentucky, 741 S. Limestone St., Lexington, KY, 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James B Watson
- Department of Neuroscience, University of Kentucky, 741 S. Limestone St., Lexington, KY, 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
| | - Emma K Higgins
- Department of Neuroscience, University of Kentucky, 741 S. Limestone St., Lexington, KY, 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
| | - Teresa Macheda
- Department of Neuroscience, University of Kentucky, 741 S. Limestone St., Lexington, KY, 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
| | - Lydia Sanders
- Department of Neuroscience, University of Kentucky, 741 S. Limestone St., Lexington, KY, 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
| | - Kelly N Roberts
- Department of Neuroscience, University of Kentucky, 741 S. Limestone St., Lexington, KY, 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
| | - Ryan K Shahidehpour
- Department of Neuroscience, University of Kentucky, 741 S. Limestone St., Lexington, KY, 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Eric M Blalock
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Ning Quan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Adam D Bachstetter
- Department of Neuroscience, University of Kentucky, 741 S. Limestone St., Lexington, KY, 40536, USA.
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA.
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
8
|
González Olmo BM, Bettes MN, DeMarsh JW, Zhao F, Askwith C, Barrientos RM. Short-term high-fat diet consumption impairs synaptic plasticity in the aged hippocampus via IL-1 signaling. NPJ Sci Food 2023; 7:35. [PMID: 37460765 DOI: 10.1038/s41538-023-00211-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
More Americans are consuming diets higher in saturated fats and refined sugars than ever before. These trends could have serious consequences for the older population because high-fat diet (HFD) consumption, known to induce neuroinflammation, has been shown to accelerate and aggravate memory declines. We have previously demonstrated that short-term HFD consumption, which does not evoke obesity-related comorbidities, produced profound impairments to hippocampal-dependent memory in aged rats. These impairments were precipitated by increases in proinflammatory cytokines, primarily interleukin-1 beta (IL-1β). Here, we explored the extent to which short-term HFD consumption disrupts hippocampal synaptic plasticity, as measured by long-term potentiation (LTP), in young adult and aged rats. We demonstrated that (1) HFD disrupted late-phase LTP in the hippocampus of aged, but not young adult rats, (2) HFD did not disrupt early-phase LTP, and (3) blockade of the IL-1 receptor rescued L-LTP in aged HFD-fed rats. These findings suggest that hippocampal memory impairments in aged rats following HFD consumption occur through the deterioration of synaptic plasticity and that IL-1β is a critical driver of that deterioration.
Collapse
Affiliation(s)
- Brigitte M González Olmo
- Department of Biomedical Education & Anatomy, Ohio State University, Columbus, OH, USA
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA
| | - Menaz N Bettes
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA
| | - James W DeMarsh
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA
| | - Fangli Zhao
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Candice Askwith
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Ruth M Barrientos
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA.
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA.
- Department of Psychiatry and Behavioral Health, Ohio State University, Columbus, OH, USA.
- Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
9
|
Du J, Zhang F, Chen M, Xiao Y, Zhang L, Dong L, Dong D, Wu B. Jujuboside A ameliorates cognitive deficiency in delirium through promoting hippocampal E4BP4 in mice. J Pharm Pharmacol 2023:rgad057. [PMID: 37330271 DOI: 10.1093/jpp/rgad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/31/2023] [Indexed: 06/19/2023]
Abstract
OBJECTIVE Delirium (acute brain syndrome) is a common and serious neuropsychiatric disorder characterized by an acute decline in cognitive function. However, there is no effective treatment clinically. Here we investigated the potential effect of jujuboside A (JuA, a natural triterpenoid saponin) on cognitive impairment in delirium. METHODS Delirium models of mice were established by injecting lipopolysaccharide (LPS) plus midazolam and implementing a jet lag protocol. Novel object recognition test and Y maze test were used to evaluate the effects of JuA on delirium-associated cognitive impairment. The mRNA and protein levels of relevant clock factors and inflammatory factors were measured by qPCR and Western blotting. Hippocampal Iba1+ intensity was determined by immunofluorescence staining. KEY FINDINGS JuA ameliorated delirium (particularly delirium-associated cognitive impairment) in mice, which was proved by the behavioural tests, including a preference for new objects, an increase of spontaneous alternation and improvement of locomotor activity. Furthermore, JuA inhibited the expression of ERK1/2, p-p65, TNFα and IL-1β in hippocampus, and repressed microglial activation in delirious mice. This was attributed to the increased expression of E4BP4 (a negative regulator of ERK1/2 cascade and microglial activation). Moreover, loss of E4bp4 in mice abrogated the effects of JuA on delirium as well as on ERK1/2 cascade and microglial activation in the hippocampus of delirious mice. Additionally, JuA treatment increased the expression of E4BP4 and decreased the expression of p-p65, TNFα and IL-1β in LPS-stimulated BV2 cells, supporting a protective effect of JuA on delirium. CONCLUSIONS JuA protects against delirium-associated cognitive impairment through promoting hippocampal E4BP4 in mice. Our findings are of great significance to the drug development of JuA against delirium and related disorders.
Collapse
Affiliation(s)
- Jianhao Du
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Fugui Zhang
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Chen
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Yifei Xiao
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Zhang
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Linlin Dong
- HeBei Geo-environment Monitoring Institute, Shijiazhuang, HeBei, China
| | - Dong Dong
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Baojian Wu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
10
|
Tsagkaris C, Bilal M, Aktar I, Aboufandi Y, Tas A, Aborode AT, Suvvari TK, Ahmad S, Shkodina A, Phadke R, Emhamed MS, Baig AA, Alexiou A, Ashraf GM, Kamal MA. Cytokine storm and neuropathological alterations in patients with neurological manifestations of COVID-19. Curr Alzheimer Res 2022; 19:CAR-EPUB-126211. [PMID: 36089786 DOI: 10.2174/1567205019666220908084559] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/05/2022] [Accepted: 07/22/2022] [Indexed: 11/22/2022]
Abstract
The COVID-19 pandemic is caused by the severe acute respiratory syndrome coronavirus (SARS-CoV-2), a respiratory pathogen with neuroinvasive potential. Neurological COVID-19 manifestations include loss of smell and taste, headache, dizziness, stroke, and potentially fatal encephalitis. Several studies found elevated proinflammatory cytokines such as TNF-α, IFN-γ, IL-6 IL-8, IL-10 IL-16, IL-17A, and IL-18 in severely and critically ill COVID-19 patients, which may persist even after apparent recovery from infection. Biomarker studies on CSF and plasma and serum from COVID-19 patients have also shown a high level of IL-6, intrathecal IgG, neurofilament light chain (NFL), glial fibrillary acidic protein (GFAP), and tau protein. Emerging evidence on the matter has established the concept of COVID-19 associated neuroinflammation, in the context of COVID-19 associated cytokine storm. While the short-term implications of this condition are extensively documented, its long-term implications are yet to be understood. The association of the aforementioned cytokines with the pathogenesis of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington disease, and amyotrophic lateral sclerosis, may increase COVID-19 patients' risk to develop neurodegenerative diseases. Analysis of proinflammatory cytokines and CSF biomarkers in patients with COVID-19 can contribute to the early detection of the disease's exacerbation, monitoring the neurological implications of the disease and devising risk scales, and identifying treatment targets.
Collapse
Affiliation(s)
| | - Muhammad Bilal
- College of Pharmacy, Liaquat University of Medical and health Sciences, Jamshoro, Pakistan
| | - Irem Aktar
- Istanbul University, Istanbul Faculty of Medicine, Istanbul,Turkey
| | | | - Ahmet Tas
- Istanbul University, Istanbul Faculty of Medicine, Istanbul,Turkey
| | | | | | - Shoaib Ahmad
- Punjab Medical College, Faisalabad, Pakistan
- Faisalabad Medical University, Faisalabad, Pakistan
| | | | | | | | - Atif Amin Baig
- Faculty of Medicine, Universiti Sultan Zainal Abidin, Malaysia
| | - Athanasios Alexiou
- Novel Global Community Educational Foundation, Hebersham, 2770 NSW, Australia
- AFNP Med Austria, 1010 Wien, Austria
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, 22254 Jeddah, Saudi Arabia
| | - Mohammad Amjad Kamal
- West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770; Novel Global Community Educational Foundation, Australia
| |
Collapse
|
11
|
Hikosaka M, Kawano T, Wada Y, Maeda T, Sakurai T, Ohtsuki G. Immune-Triggered Forms of Plasticity Across Brain Regions. Front Cell Neurosci 2022; 16:925493. [PMID: 35978857 PMCID: PMC9376917 DOI: 10.3389/fncel.2022.925493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/16/2022] [Indexed: 01/03/2023] Open
Abstract
Immune cells play numerous roles in the host defense against the invasion of microorganisms and pathogens, which induces the release of inflammatory mediators (e.g., cytokines and chemokines). In the CNS, microglia is the major resident immune cell. Recent efforts have revealed the diversity of the cell types and the heterogeneity of their functions. The refinement of the synapse structure was a hallmark feature of the microglia, while they are also involved in the myelination and capillary dynamics. Another promising feature is the modulation of the synaptic transmission as synaptic plasticity and the intrinsic excitability of neurons as non-synaptic plasticity. Those modulations of physiological properties of neurons are considered induced by both transient and chronic exposures to inflammatory mediators, which cause behavioral disorders seen in mental illness. It is plausible for astrocytes and pericytes other than microglia and macrophage to induce the immune-triggered plasticity of neurons. However, current understanding has yet achieved to unveil what inflammatory mediators from what immune cells or glia induce a form of plasticity modulating pre-, post-synaptic functions and intrinsic excitability of neurons. It is still unclear what ion channels and intracellular signaling of what types of neurons in which brain regions of the CNS are involved. In this review, we introduce the ubiquitous modulation of the synaptic efficacy and the intrinsic excitability across the brain by immune cells and related inflammatory cytokines with the mechanism for induction. Specifically, we compare neuro-modulation mechanisms by microglia of the intrinsic excitability of cerebellar Purkinje neurons with cerebral pyramidal neurons, stressing the inverted directionality of the plasticity. We also discuss the suppression and augmentation of the extent of plasticity by inflammatory mediators, as the meta-plasticity by immunity. Lastly, we sum up forms of immune-triggered plasticity in the different brain regions with disease relevance. Together, brain immunity influences our cognition, sense, memory, and behavior via immune-triggered plasticity.
Collapse
Affiliation(s)
| | | | | | | | | | - Gen Ohtsuki
- Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
12
|
Muscat SM, Barrientos RM. The Perfect Cytokine Storm: How Peripheral Immune Challenges Impact Brain Plasticity & Memory Function in Aging. Brain Plast 2021; 7:47-60. [PMID: 34631420 PMCID: PMC8461734 DOI: 10.3233/bpl-210127] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Precipitous declines in cognitive function can occur in older individuals following a variety of peripheral immune insults, such as surgery, infection, injury, and unhealthy diet. Aging is associated with numerous changes to the immune system that shed some light on why this abrupt cognitive deterioration may occur. Normally, peripheral-to-brain immune signaling is tightly regulated and advantageous; communication between the two systems is bi-directional, via either humoral or neural routes. Following an immune challenge, production, secretion, and translocation of cytokines into the brain is critical to the development of adaptive sickness behaviors. However, aging is normally associated with neuroinflammatory priming, notably microglial sensitization. Microglia are the brain's innate immune cells and become sensitized with advanced age, such that upon immune stimulation they will mount more exaggerated neuroimmune responses. The resultant elevation of pro-inflammatory cytokine expression, namely IL-1β, has profound effects on synaptic plasticity and, consequentially, cognition. In this review, we (1) investigate the processes which lead to aberrantly elevated inflammatory cytokine expression in the aged brain and (2) examine the impact of the pro-inflammatory cytokine IL-1β on brain plasticity mechanisms, including its effects on BDNF, AMPA and NMDA receptor-mediated long-term potentiation.
Collapse
Affiliation(s)
- Stephanie M Muscat
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Ruth M Barrientos
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
- Chronic Brain Injury Program, Discovery Themes Initiative, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
13
|
York EM, Zhang J, Choi HB, MacVicar BA. Neuroinflammatory inhibition of synaptic long-term potentiation requires immunometabolic reprogramming of microglia. Glia 2020; 69:567-578. [PMID: 32946147 DOI: 10.1002/glia.23913] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/05/2020] [Accepted: 09/06/2020] [Indexed: 12/12/2022]
Abstract
Immunometabolism refers to the rearrangement of metabolic pathways in response to immune stimulation, and the ability of these metabolic pathways themselves to control immune functions. Many aspects of immunometabolism have been revealed through studies of peripheral immune cells. However, immunometabolic reprogramming of microglia, the resident immune cell of the central nervous system, and the consequential outcome on neuronal activity have remained difficult to unravel. Microglia are highly sensitive to subtle changes in their environment, limiting the techniques available to study their metabolic and inflammatory profiles. Here, using fluorescence lifetime imaging of endogenous NAD(P)H, we measure the metabolic activity of individual microglia within acute hippocampal slices. We observed an LPS-induced increase in aerobic glycolysis, which was blocked by the addition of 5 mM 2-deoxyglucose (2DG). This LPS-induced glycolysis in microglia was necessary for the stabilization of hypoxia inducible factor-1α (HIF-1α) and production of the proinflammatory cytokine, interleukin-1β (IL-1β). Upon release, IL-1β acted via the neuronal interleukin-1 receptor to inhibit the formation of synaptic long-term potentiation (LTP) following high frequency stimulation. Remarkably, the addition of 2DG to blunt the microglial glycolytic increase also inhibited HIF-1α accumulation and IL-1β production, and therefore rescued LTP in LPS-stimulated slices. Overall, these data reveal the importance of metabolic reprogramming in regulating microglial immune functions, with appreciable outcomes on cytokine release and neuronal activity.
Collapse
Affiliation(s)
- Elisa M York
- Djavad Mowafaghian Centre for Brain Health, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada.,Harvard Medical School, Department of Neurobiology, Boston, Massachusetts, USA
| | - Jingfei Zhang
- Djavad Mowafaghian Centre for Brain Health, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hyun B Choi
- Djavad Mowafaghian Centre for Brain Health, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian A MacVicar
- Djavad Mowafaghian Centre for Brain Health, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|