1
|
Saroj N, Shanker S, Serrano-Hernández E, Manjarrez-Gutiérrez G, Mondragón JA, Moreno-Martínez S, Jarillo-Luna RA, López-Sánchez P, Terrón JA. Expression of tryptophan hydroxylase in rat adrenal glands: Upregulation of TPH2 by chronic stress. Psychoneuroendocrinology 2025; 171:107219. [PMID: 39467477 DOI: 10.1016/j.psyneuen.2024.107219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/09/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024]
Abstract
It has been shown that chronic restraint stress (CRS) increases adrenal 5-HT levels and turnover through a mechanism that appears unrelated to tryptophan hydroxylase (TPH). In the present study we re-analyzed the effects of CRS (20 min/day) for 14 days relative to control (CTRL) conditions on TPH expression, distribution, and activity in rat adrenal glands. On day 15, adrenal glands were collected for TPH1 and TPH2 immunohistochemistry, Western blot, and RT-PCR; TPH activity was estimated by quantification of 5-hydroxytryptophan (5-HTP) and, indirectly, through measurement of 5-HT and 5-hydroxindolacetic acid (5-HIAA) levels and turnover (5-HIAA/5-HT ratio) by HPLC. TPH expression and activity in the dorsal raphe nucleus (DRN) were also determined for comparison. TPH1 and TPH2 immunostaining was observed in the adrenal medulla, and measurable levels of TPH1 and TPH2 protein and mRNA were detected in rat adrenal glands from CTRL animals. CRS exposure noticeably increased TPH2- but not THP1-immunostaining in the medulla and the outer adrenocortical areas of left (LAG) but not of right adrenal glands (RAG). In addition, CRS exposure increased TPH2 protein and mRNA levels in LAG; however, both measures decreased in DRN. Finally, CRS treatment produced an increase and a decrease of TPH activity and 5-HT turnover in LAG and DRN, respectively. Results indicate that TPH is indeed expressed in rat adrenal glands. Exposure to CRS upregulates TPH2 in LAG, while inducing downregulation of it in the DRN. Then, the increased levels of 5-HT in LAG from CRS-exposed animals likely results from TPH2-mediated synthesis.
Collapse
Affiliation(s)
- Neeshu Saroj
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, La Laguna Ticomán, CP 07360, México
| | - Shiv Shanker
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del IPN, Plan de San Luis y Díaz Mirón s/n, Casco de Sto. Tomás, Mexico
| | - Eduardo Serrano-Hernández
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, La Laguna Ticomán, CP 07360, México
| | - Gabriel Manjarrez-Gutiérrez
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico
| | - José-Antonio Mondragón
- Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología del IPN, Av. Acueducto, La Laguna Ticomán, CP 07340, Mexico
| | - Saidel Moreno-Martínez
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, La Laguna Ticomán, CP 07360, México
| | - Rosa A Jarillo-Luna
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del IPN, Plan de San Luis y Díaz Mirón s/n, Casco de Sto. Tomás, Mexico
| | - Pedro López-Sánchez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del IPN, Plan de San Luis y Díaz Mirón s/n, Casco de Sto. Tomás, Mexico
| | - José A Terrón
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, La Laguna Ticomán, CP 07360, México.
| |
Collapse
|
2
|
Nikolaus S, Chao OY, Henke J, Beu M, Fazari B, Almeida FR, Abdel-Hafiz L, Antke C, Hautzel H, Mamlins E, Müller HW, Huston JP, von Gall C, Giesel FL. 5-HT 1A and 5-HT 2A receptor effects on recognition memory, motor/exploratory behaviors, emotionality and regional dopamine transporter binding in the rat. Behav Brain Res 2024; 469:115051. [PMID: 38777263 DOI: 10.1016/j.bbr.2024.115051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Both dopamine (DA) and serotonin (5-HT) play key roles in numerous functions including motor control, stress response and learning. So far, there is scarce or conflicting evidence about the effects of 5-HT1A and 5-HT2A receptor (R) agonists and antagonists on recognition memory in the rat. This also holds for their effect on cerebral DA as well as 5-HT release. In the present study, we assessed the effects of the 5-HT1AR agonist 8-OH-DPAT and antagonist WAY100,635 and the 5-HT2AR agonist DOI and antagonist altanserin (ALT) on rat behaviors. Moreover, we investigated their impact on monoamine efflux by measuring monoamine transporter binding in various regions of the rat brain. After injection of either 8-OH-DPAT (3 mg/kg), WAY100,635 (0.4 mg/kg), DOI (0.1 mg/kg), ALT (1 mg/kg) or the respective vehicle (saline, DMSO), rats underwent an object and place recognition memory test in the open field. Upon the assessment of object exploration, motor/exploratory parameters and feces excretion, rats were administered the monoamine transporter radioligand N-o-fluoropropyl-2b-carbomethoxy-3b-(4-[123I]iodophenyl)-nortropane ([123I]-FP-CIT; 8.9 ± 2.6 MBq) into the tail vein. Regional radioactivity accumulations in the rat brain were determined post mortem. Compared vehicle, administration of 8-OH-DPAT impaired memory for place, decreased rearing behavior, and increased ambulation as well as head-shoulder movements. DOI administration led to a reduction in rearing behavior but an increase in head-shoulder motility relative to vehicle. Feces excretion was diminished after ALT relative to vehicle. Dopamine transporter (DAT) binding was increased in the caudateputamen (CP), but decreased in the nucleus accumbens (NAC) after 8-OH-DPAT relative to vehicle. Moreover, DAT binding was decreased in the NAC after ALT relative to vehicle. Findings indicate that 5-HT1AR inhibition and 5-HT2AR activation may impair memory for place. Furthermore, results imply associations not only between recognition memory, motor/exploratory behavior and emotionality but also between the respective parameters and the levels of available DA in CP and NAC.
Collapse
MESH Headings
- Animals
- Dopamine Plasma Membrane Transport Proteins/metabolism
- Male
- Recognition, Psychology/drug effects
- Recognition, Psychology/physiology
- Exploratory Behavior/drug effects
- Exploratory Behavior/physiology
- Rats
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptor, Serotonin, 5-HT1A/drug effects
- Receptor, Serotonin, 5-HT2A/metabolism
- Receptor, Serotonin, 5-HT2A/drug effects
- Motor Activity/drug effects
- Motor Activity/physiology
- Brain/metabolism
- Brain/drug effects
- Emotions/drug effects
- Emotions/physiology
- Serotonin 5-HT1 Receptor Agonists/pharmacology
- Serotonin 5-HT2 Receptor Agonists/pharmacology
- Rats, Wistar
Collapse
Affiliation(s)
- Susanne Nikolaus
- Clinic of Nuclear Medicine, Medical Faculty, Heinrich-Heine University, Moorenstr. 5, Düsseldorf D-40225, Germany.
| | - Owen Y Chao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Jan Henke
- Clinic of Nuclear Medicine, Medical Faculty, Heinrich-Heine University, Moorenstr. 5, Düsseldorf D-40225, Germany
| | - Markus Beu
- Clinic of Nuclear Medicine, Medical Faculty, Heinrich-Heine University, Moorenstr. 5, Düsseldorf D-40225, Germany
| | - Benedetta Fazari
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine University, Universitätsstr. 1, Düsseldorf D-40225, Germany
| | - Filipe Rodrigues Almeida
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine University, Universitätsstr. 1, Düsseldorf D-40225, Germany
| | - Laila Abdel-Hafiz
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine University, Universitätsstr. 1, Düsseldorf D-40225, Germany
| | - Christina Antke
- Clinic of Nuclear Medicine, Medical Faculty, Heinrich-Heine University, Moorenstr. 5, Düsseldorf D-40225, Germany
| | - Hubertus Hautzel
- Clinic of Nuclear Medicine, University Hospital Essen, Hufelandstraße 55, Essen D-45122, Germany
| | - Eduards Mamlins
- Clinic of Nuclear Medicine, Medical Faculty, Heinrich-Heine University, Moorenstr. 5, Düsseldorf D-40225, Germany
| | - Hans-Wilhelm Müller
- Clinic of Nuclear Medicine, Medical Faculty, Heinrich-Heine University, Moorenstr. 5, Düsseldorf D-40225, Germany
| | - Joseph P Huston
- Center for Behavioural Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University, Universitätsstr. 1, Düsseldorf D-40225, Germany
| | - Charlotte von Gall
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine University, Universitätsstr. 1, Düsseldorf D-40225, Germany
| | - Frederik L Giesel
- Clinic of Nuclear Medicine, Medical Faculty, Heinrich-Heine University, Moorenstr. 5, Düsseldorf D-40225, Germany
| |
Collapse
|
3
|
Alonso L, Peeva P, Fernández-del Valle Alquicira T, Erdelyi N, Gil Nolskog Á, Bader M, Winter Y, Alenina N, Rivalan M. Poor Decision Making and Sociability Impairment Following Central Serotonin Reduction in Inducible TPH2-Knockdown Rats. Int J Mol Sci 2024; 25:5003. [PMID: 38732220 PMCID: PMC11084943 DOI: 10.3390/ijms25095003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Serotonin is an essential neuromodulator for mental health and animals' socio-cognitive abilities. However, we previously found that a constitutive depletion of central serotonin did not impair rat cognitive abilities in stand-alone tests. Here, we investigated how a mild and acute decrease in brain serotonin would affect rats' cognitive abilities. Using a novel rat model of inducible serotonin depletion via the genetic knockdown of tryptophan hydroxylase 2 (TPH2), we achieved a 20% decrease in serotonin levels in the hypothalamus after three weeks of non-invasive oral doxycycline administration. Decision making, cognitive flexibility, and social recognition memory were tested in low-serotonin (Tph2-kd) and control rats. Our results showed that the Tph2-kd rats were more prone to choose disadvantageously in the long term (poor decision making) in the Rat Gambling Task and that only the low-serotonin poor decision makers were more sensitive to probabilistic discounting and had poorer social recognition memory than other low-serotonin and control individuals. Flexibility was unaffected by the acute brain serotonin reduction. Poor social recognition memory was the most central characteristic of the behavioral network of low-serotonin poor decision makers, suggesting a key role of social recognition in the expression of their profile. The acute decrease in brain serotonin appeared to specifically amplify the cognitive impairments of the subgroup of individuals also identified as poor decision makers in the population. This study highlights the great opportunity the Tph2-kd rat model offers to study inter-individual susceptibilities to develop cognitive impairment following mild variations of brain serotonin in otherwise healthy individuals. These transgenic and differential approaches together could be critical for the identification of translational markers and vulnerabilities in the development of mental disorders.
Collapse
Affiliation(s)
- Lucille Alonso
- Institut für Biologie, Humboldt-Universität zu Berlin, 10099 Berlin, Germany; (L.A.); (T.F.-d.V.A.); (Y.W.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany (M.B.)
- Univ. Bordeaux, CNRS, IINS, UMR 5297, F-33000 Bordeaux, France
| | - Polina Peeva
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Tania Fernández-del Valle Alquicira
- Institut für Biologie, Humboldt-Universität zu Berlin, 10099 Berlin, Germany; (L.A.); (T.F.-d.V.A.); (Y.W.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany (M.B.)
| | - Narda Erdelyi
- Institut für Biologie, Humboldt-Universität zu Berlin, 10099 Berlin, Germany; (L.A.); (T.F.-d.V.A.); (Y.W.)
| | - Ángel Gil Nolskog
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany (M.B.)
| | - Michael Bader
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany (M.B.)
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Institute for Biology, University of Lübeck, 23562 Lübeck, Germany
| | - York Winter
- Institut für Biologie, Humboldt-Universität zu Berlin, 10099 Berlin, Germany; (L.A.); (T.F.-d.V.A.); (Y.W.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany (M.B.)
| | - Natalia Alenina
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Marion Rivalan
- Institut für Biologie, Humboldt-Universität zu Berlin, 10099 Berlin, Germany; (L.A.); (T.F.-d.V.A.); (Y.W.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany (M.B.)
- NeuroPSI—Paris-Saclay Institute of Neuroscience, CNRS—Université Paris-Saclay, F-91400 Saclay, France
| |
Collapse
|
4
|
Hernández-Arteaga E, Ågmo A. Seminatural environments for rodent behavioral testing: a representative design improving animal welfare and enhancing replicability. Front Behav Neurosci 2023; 17:1192213. [PMID: 37424748 PMCID: PMC10323197 DOI: 10.3389/fnbeh.2023.1192213] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Abstract
The low replicability of scientific studies has become an important issue. One possible cause is low representativeness of the experimental design employed. Already in the 1950's, Egon Brunswick pointed out that experimental setups ideally should be based on a random sample of stimuli from the subjects' natural environment or at least include basic features of that environment. Only experimental designs satisfying this criterion, representative designs in Brunswikian terminology, can produce results generalizable beyond the procedure used and to situations outside the laboratory. Such external validity is crucial in preclinical drug studies, for example, and should be important for replicability in general. Popular experimental setups in rodent research on non-human animals, like the tail suspension test or the Geller-Seifter procedure, do not correspond to contexts likely to be encountered in the animals' habitat. Consequently, results obtained in this kind of procedures can be generalized neither to other procedures nor to contexts outside the laboratory. Furthermore, many traditional procedures are incompatible with current notions of animal welfare. An approximation to the natural social and physical context can be provided in the laboratory, in the form of a seminatural environment. In addition to satisfy the basic demands for a representative design, such environments offer a far higher level of animal welfare than the typical small cages. This perspective article will briefly discuss the basic principles of the generalizability of experimental results, the virtues of representative designs and the coincidence of enhanced scientific quality and animal welfare provided by this kind of design.
Collapse
Affiliation(s)
| | - Anders Ågmo
- Department of Psychology, University of Tromsø, Tromsø, Norway
| |
Collapse
|
5
|
Wang F, Luo D, Chen J, Pan C, Wang Z, Fu H, Xu J, Yang M, Mo S, Zhuang L, Wang W. Influence of TPH2 and HTR1A polymorphisms on lifelong premature ejaculation risk among the chinese Han population. BMC Urol 2023; 23:86. [PMID: 37161455 PMCID: PMC10170821 DOI: 10.1186/s12894-023-01222-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/21/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Lifelong premature ejaculation (LPE) is one of the most common ejaculatory dysfunctions in men. The serotonin (5-HT) synthesis rate-limiting enzyme (TPH2) and receptor (HTR1A) in the 5-HT regulatory system may play a key role in the pathogenesis of LPE. However, there are few studies on the effects of TPH2 and HTR1A polymorphisms on LPE risk. We speculated that TPH2 and HTR1A polymorphisms may affect the occurrence and development of LPE in the Chinese Han population. METHODS In this study, 91 patients with LPE and 362 normal controls aged 18 to 64 years were enrolled in the male urology department of Hainan General Hospital in China from January 2016 to December 2018. The SNPs in HTR1A and TPH2, which are related to 5-HT regulation, were selected as indexes to genotype the collected blood samples of participants. Logistic regression was used to analyze the correlation between SNPs of HTR1A and TPH2 with LPE susceptibility, as well as the relationship with leptin, 5-HT and folic acid levels. RESULTS The results revealed that HTR1A-rs6295 increased LPE risk in recessive model. Rs11178996 in TPH2 significantly reduced susceptibility to LPE in allelic (odds ratio (OR) = 0.68, 95% confidence interval (95% CI) = 0.49-0.96, p = 0.027), codominant (OR = 0.58, 95% CI = 0.35-0.98, p = 0.040), dominant (OR = 0.58, 95% CI = 0.36-0.92, p = 0.020), and additive (OR = 0.71, 95% CI = 0.52-0.98, p = 0.039) models. Grs11179041Trs10879352 could reduce the risk of LPE (OR = 0.44, 95% CI = 0.22-0.90, p = 0.024) by haplotype analysis. CONCLUSION HTR1A-rs6295 and TPH2-rs11178996 are associated with LPE risk in the Chinese Han population based on the finding of this study.
Collapse
Affiliation(s)
- Fei Wang
- Department of Urology, Hainan General Hospital, Affiliated Hainan Hospital of Hainan Medical University, No.19, Xiuhua Road, Xiuying District, Haikou, Hainan Province, 570311, China
| | - Defan Luo
- Department of Lung Transplatation, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 571199, China
| | - Jianxiang Chen
- Department of Urology, Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, 423000, China
| | - Cuiqing Pan
- Department of Urology, Hainan General Hospital, Affiliated Hainan Hospital of Hainan Medical University, No.19, Xiuhua Road, Xiuying District, Haikou, Hainan Province, 570311, China
| | - Zhongyao Wang
- Department of Urology, Hainan General Hospital, Affiliated Hainan Hospital of Hainan Medical University, No.19, Xiuhua Road, Xiuying District, Haikou, Hainan Province, 570311, China
| | - Housheng Fu
- Department of Urology, Hainan General Hospital, Affiliated Hainan Hospital of Hainan Medical University, No.19, Xiuhua Road, Xiuying District, Haikou, Hainan Province, 570311, China
| | - Jianbing Xu
- Department of Urology, Hainan General Hospital, Affiliated Hainan Hospital of Hainan Medical University, No.19, Xiuhua Road, Xiuying District, Haikou, Hainan Province, 570311, China
| | - Meng Yang
- Department of Kidney Transplatation, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, 571199, China
| | - Shaowei Mo
- Ministry of Science and Education, Hainan Women and Children's Medical Center, Haikou, Hainan, 571100, China
| | - Liying Zhuang
- Library, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Weifu Wang
- Department of Urology, Hainan General Hospital, Affiliated Hainan Hospital of Hainan Medical University, No.19, Xiuhua Road, Xiuying District, Haikou, Hainan Province, 570311, China.
| |
Collapse
|
6
|
Sidorova M, Kronenberg G, Matthes S, Petermann M, Hellweg R, Tuchina O, Bader M, Alenina N, Klempin F. Enduring Effects of Conditional Brain Serotonin Knockdown, Followed by Recovery, on Adult Rat Neurogenesis and Behavior. Cells 2021; 10:3240. [PMID: 34831469 PMCID: PMC8618971 DOI: 10.3390/cells10113240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 01/31/2023] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is a crucial signal in the neurogenic niche of the hippocampus, where it is involved in antidepressant action. Here, we utilized a new transgenic rat model (TetO-shTPH2), where brain 5-HT levels can be acutely altered based on doxycycline (Dox)-inducible shRNA-expression. On/off stimulations of 5-HT concentrations might uniquely mirror the clinical course of major depression (e.g., relapse after discontinuation of antidepressants) in humans. Specifically, we measured 5-HT levels, and 5-HT metabolite 5-HIAA, in various brain areas following acute tryptophan hydroxylase 2 (Tph2) knockdown, and replenishment, and examined behavior and proliferation and survival of newly generated cells in the dentate gyrus. We found that decreased 5-HT levels in the prefrontal cortex and raphe nuclei, but not in the hippocampus of TetO-shTPH2 rats, lead to an enduring anxious phenotype. Surprisingly, the reduction in 5-HT synthesis is associated with increased numbers of BrdU-labeled cells in the dentate gyrus. At 3 weeks of Tph2 replenishment, 5-HT levels return to baseline and survival of newly generated cells is unaffected. We speculate that the acutely induced decrease in 5-HT concentrations and increased neurogenesis might represent a compensatory mechanism.
Collapse
Affiliation(s)
- Maria Sidorova
- School of Life Sciences, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia; (M.S.); (O.T.)
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany; (S.M.); (M.P.); (M.B.); (N.A.)
| | - Golo Kronenberg
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatrische Universitätsklinik, 8032 Zürich, Switzerland;
- Department of Psychiatry and Psychotherapy, Charité University Medicine, 10117 Berlin, Germany;
| | - Susann Matthes
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany; (S.M.); (M.P.); (M.B.); (N.A.)
| | - Markus Petermann
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany; (S.M.); (M.P.); (M.B.); (N.A.)
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin Luther University, 06120 Halle, Germany
| | - Rainer Hellweg
- Department of Psychiatry and Psychotherapy, Charité University Medicine, 10117 Berlin, Germany;
| | - Oksana Tuchina
- School of Life Sciences, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia; (M.S.); (O.T.)
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany; (S.M.); (M.P.); (M.B.); (N.A.)
| | - Natalia Alenina
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany; (S.M.); (M.P.); (M.B.); (N.A.)
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Friederike Klempin
- School of Life Sciences, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia; (M.S.); (O.T.)
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany; (S.M.); (M.P.); (M.B.); (N.A.)
- Department of Psychiatry and Psychotherapy, Charité University Medicine, 10117 Berlin, Germany;
| |
Collapse
|
7
|
Mordhorst A, Dhandapani P, Matthes S, Mosienko V, Rothe M, Todiras M, Self J, Schunck WH, Schütz A, Bader M, Alenina N. Phenylalanine hydroxylase contributes to serotonin synthesis in mice. FASEB J 2021; 35:e21648. [PMID: 33993565 DOI: 10.1096/fj.202100366r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/11/2021] [Accepted: 04/21/2021] [Indexed: 12/31/2022]
Abstract
Serotonin is an important signaling molecule in the periphery and in the brain. The hydroxylation of tryptophan is the first and rate-limiting step of its synthesis. In most vertebrates, two enzymes have been described to catalyze this step, tryptophan hydroxylase (TPH) 1 and 2, with expression localized to peripheral and neuronal cells, respectively. However, animals lacking both TPH isoforms still exhibit about 10% of normal serotonin levels in the blood demanding an additional source of the monoamine. In this study, we provide evidence by the gain and loss of function approaches in in vitro and in vivo systems, including stable-isotope tracing in mice, that phenylalanine hydroxylase (PAH) is a third TPH in mammals. PAH contributes to serotonin levels in the blood, and may be important as a local source of serotonin in organs in which no other TPHs are expressed, such as liver and kidney.
Collapse
Affiliation(s)
- Alexander Mordhorst
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany.,Charite - University Medicine, Berlin, Germany
| | - Priyavathi Dhandapani
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Susann Matthes
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Valentina Mosienko
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | | | - Mihail Todiras
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Nicolae Testemiţanu State University of Medicine and Pharmacy, Chișinău, Moldova
| | - Julie Self
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Wolf-Hagen Schunck
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Anja Schütz
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany.,Charite - University Medicine, Berlin, Germany.,Institute for Biology, University of Lübeck, Lübeck, Germany
| | - Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany.,Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.,Institute of Cytology, Russian Academy of Science, St. Petersburg, Russia
| |
Collapse
|
8
|
Chenxuan H, Qiaoxian Y, Yifan C, Dehe W, Rongyan Z, Guoxian Z, Hui C. Effects of in ovo injection of serotonin on behavior and hypothalamic genes expression in post hatch-chicks. Appl Anim Behav Sci 2021. [DOI: 10.1016/j.applanim.2020.105176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|