1
|
Lin Z, Liao Y, Tian D, Liao J, Chen Q, Yin J. Small-Molecule Fluorescent Probes for Butyrylcholinesterase. ChemMedChem 2024:e202400875. [PMID: 39714828 DOI: 10.1002/cmdc.202400875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Butyrylcholinesterase plays an indispensable role in organisms, and its abnormal expression poses a significant threat to human health and safety, covering various aspects including liver-related diseases, diabetes, obesity, cardiovascular and cerebrovascular diseases, and neurodegenerative diseases. In addition, toxic substances such as organophosphorus and carbamate pesticides markedly inhibit BChE activity. BChE activity serves as a critical parameter for the clinical diagnosis of acute organophosphorus pesticide poisoning and the evaluation of organophosphorus and carbamate pesticide residues. Therefore, the accurate and reliable detection of butyrylcholinesterase activity is particularly urgent and important for in-depth analysis of its biological function, diagnosis and therapy of related diseases, drug screening and sensitive detection of pesticide residues. Fluorescent probes have become a promising tool for sensing and imaging of butyrylcholinesterase, due to its advantages of high spatio-temporal resolution, high selectivity, non-invasive, high sensitivity, and tailored molecule structures. Here, this paper provides a comprehensive overview of the research progress in the sensing, imaging and therapy of butyrylcholinesterase utilizing fluorescent probes. This paper might be a useful guideline for researchers to design new high-performance fluorescence probes for BChE, and making further contributions to this intriguing field.
Collapse
Affiliation(s)
- Zibo Lin
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Yuanyuan Liao
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Donglei Tian
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Junyu Liao
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Qiong Chen
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Jun Yin
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| |
Collapse
|
2
|
Seddon AR, MacArthur CP, Hampton MB, Stevens AJ. Inflammation and DNA methylation in Alzheimer's disease: mechanisms of epigenetic remodelling by immune cell oxidants in the ageing brain. Redox Rep 2024; 29:2428152. [PMID: 39579010 PMCID: PMC11587723 DOI: 10.1080/13510002.2024.2428152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024] Open
Abstract
Alzheimer's disease is a neurodegenerative disease involving memory impairment, confusion, and behavioural changes. The disease is characterised by the accumulation of amyloid beta plaques and neurofibrillary tangles in the brain, which disrupt normal neuronal function. There is no known cure for Alzheimer's disease and due to increasing life expectancy, occurrence is projected to rise over the coming decades. The causes of Alzheimer's disease are multifactorial with inflammation, oxidative stress, genetic and epigenetic variation, and cerebrovascular abnormalities among the strongest contributors. We review the current literature surrounding inflammation and epigenetics in Alzheimer's disease, with a focus on how oxidants from infiltrating immune cells have the potential to alter DNA methylation profiles in the ageing brain.
Collapse
Affiliation(s)
- A. R. Seddon
- Mātai Hāora – Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, New Zealand
| | - C. P. MacArthur
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, New Zealand
| | - M. B. Hampton
- Mātai Hāora – Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - A. J. Stevens
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, New Zealand
| |
Collapse
|
3
|
Cabello MC, Chen G, Melville MJ, Osman R, Kumar GD, Domaille DW, Lippert AR. Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes. Chem Rev 2024; 124:9225-9375. [PMID: 39137397 DOI: 10.1021/acs.chemrev.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Gen Chen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Michael J Melville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - G Dinesh Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
4
|
Suri K, Ramesh M, Bhandari M, Gupta V, Kumar V, Govindaraju T, Murugan NA. Role of Amyloidogenic and Non-Amyloidogenic Protein Spaces in Neurodegenerative Diseases and their Mitigation Using Theranostic Agents. Chembiochem 2024; 25:e202400224. [PMID: 38668376 DOI: 10.1002/cbic.202400224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/23/2024] [Indexed: 06/15/2024]
Abstract
Neurodegenerative diseases (NDDs) refer to a complex heterogeneous group of diseases which are associated with the accumulation of amyloid fibrils or plaques in the brain leading to progressive loss of neuronal functions. Alzheimer's disease is one of the major NDD responsible for 60-80 % of all dementia cases. Currently, there are no curative or disease-reversing/modifying molecules for many of the NDDs except a few such as donepezil, rivastigmine, galantamine, carbidopa and levodopa which treat the disease-associated symptoms. Similarly, there are very few FDA-approved tracers such as flortaucipir (Tauvid) for tau fibril imaging and florbetaben (Neuraceq), flutemetamol (Vizamyl), and florbetapir (Amyvid) for amyloid imaging available for diagnosis. Recent advances in the cryogenic electron microscopy reported distinctly different microstructures for tau fibrils associated with different tauopathies highlighting the possibility to develop tauopathy-specific imaging agents and therapeutics. In addition, it is important to identify the proteins that are associated with disease development and progression to know about their 3D structure to develop various diagnostics, therapeutics and theranostic agents. The current article discusses in detail the disease-associated amyloid and non-amyloid proteins along with their structural insights. We comprehensively discussed various novel proteins associated with NDDs and their implications in disease pathology. In addition, we document various emerging chemical compounds developed for diagnosis and therapy of different NDDs with special emphasis on theranostic agents for better management of NDDs.
Collapse
Affiliation(s)
- Kapali Suri
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT-Delhi) Okhla, Phase III, New Delhi, 110020, India
| | - Madhu Ramesh
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur P.O., Bengaluru, 560064, Karnataka, India
| | - Mansi Bhandari
- Department of computer science and engineering, Jamia Hamdard University, Hamdard Nagar, New Delhi, Delhi, 110062
| | - Vishakha Gupta
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT-Delhi) Okhla, Phase III, New Delhi, 110020, India
| | - Virendra Kumar
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT-Delhi) Okhla, Phase III, New Delhi, 110020, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur P.O., Bengaluru, 560064, Karnataka, India
| | - N Arul Murugan
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT-Delhi) Okhla, Phase III, New Delhi, 110020, India
| |
Collapse
|
5
|
Samanta S, Akhter F, Roy A, Chen D, Turner B, Wang Y, Clemente N, Wang C, Swerdlow RH, Battaile KP, Lovell S, Yan SF, Yan SS. New cyclophilin D inhibitor rescues mitochondrial and cognitive function in Alzheimer's disease. Brain 2024; 147:1710-1725. [PMID: 38146639 PMCID: PMC11484516 DOI: 10.1093/brain/awad432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 11/16/2023] [Accepted: 12/05/2023] [Indexed: 12/27/2023] Open
Abstract
Mitochondrial dysfunction is an early pathological feature of Alzheimer disease and plays a crucial role in the development and progression of Alzheimer's disease. Strategies to rescue mitochondrial function and cognition remain to be explored. Cyclophilin D (CypD), the peptidylprolyl isomerase F (PPIase), is a key component in opening the mitochondrial membrane permeability transition pore, leading to mitochondrial dysfunction and cell death. Blocking membrane permeability transition pore opening by inhibiting CypD activity is a promising therapeutic approach for Alzheimer's disease. However, there is currently no effective CypD inhibitor for Alzheimer's disease, with previous candidates demonstrating high toxicity, poor ability to cross the blood-brain barrier, compromised biocompatibility and low selectivity. Here, we report a new class of non-toxic and biocompatible CypD inhibitor, ebselen, using a conventional PPIase assay to screen a library of ∼2000 FDA-approved drugs with crystallographic analysis of the CypD-ebselen crystal structure (PDB code: 8EJX). More importantly, we assessed the effects of genetic and pharmacological blockade of CypD on Alzheimer's disease mitochondrial and glycolytic bioenergetics in Alzheimer's disease-derived mitochondrial cybrid cells, an ex vivo human sporadic Alzheimer's disease mitochondrial model, and on synaptic function, inflammatory response and learning and memory in Alzheimer's disease mouse models. Inhibition of CypD by ebselen protects against sporadic Alzheimer's disease- and amyloid-β-induced mitochondrial and glycolytic perturbation, synaptic and cognitive dysfunction, together with suppressing neuroinflammation in the brain of Alzheimer's disease mouse models, which is linked to CypD-related membrane permeability transition pore formation. Thus, CypD inhibitors have the potential to slow the progression of neurodegenerative diseases, including Alzheimer's disease, by boosting mitochondrial bioenergetics and improving synaptic and cognitive function.
Collapse
Affiliation(s)
- Sourav Samanta
- Division of Surgical Science of Department of Surgery, Columbia University in New York, New York, NY 10032, USA
| | - Firoz Akhter
- Division of Surgical Science of Department of Surgery, Columbia University in New York, New York, NY 10032, USA
| | - Anuradha Roy
- High Throughput Screening Laboratory, Del M. Shankel Structural Biology Center, University of Kansas, Lawrence, KS 66047, USA
| | - Doris Chen
- Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Benjamin Turner
- High Throughput Screening Laboratory, Del M. Shankel Structural Biology Center, University of Kansas, Lawrence, KS 66047, USA
| | - Yongfu Wang
- Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Nicolina Clemente
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, New York, NY 12180-3590, USA
| | - Chunyu Wang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, New York, NY 12180-3590, USA
| | | | - Kevin P Battaile
- New York Structural Biology Center, NSLS-II, Upton, NY 11973, USA
| | - Scott Lovell
- Protein Structure and X-Ray Crystallography Laboratory, The University of Kansas, Lawrence, KS 66047, USA
| | - Shi Fang Yan
- Division of Surgical Science of Department of Surgery, Columbia University in New York, New York, NY 10032, USA
| | - Shirley ShiDu Yan
- Division of Surgical Science of Department of Surgery, Columbia University in New York, New York, NY 10032, USA
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
6
|
Mi L, Niu C, Chen J, Han F, Ji X. Development of an activatable far-red fluorescent probe for rapid visualization of hypochlorous acid in live cells and mice with neuroinflammation. Front Chem 2024; 12:1355238. [PMID: 38370093 PMCID: PMC10869478 DOI: 10.3389/fchem.2024.1355238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024] Open
Abstract
Recent investigations have suggested that abnormally elevated levels of HOCl may be tightly related to the severity of neuroinflammation. Although some successes have been achieved, fluorescent probes with far-red fluorescence emission and capable of detecting HOCl with high specificity in pure aqueous solution are still urgently needed. Herein, a responsive far-red fluorescent probe, DCI-H, has been constructed to monitor HOCl activity in vivo and in vitro. DCI-H could rapidly respond to HOCl within 120 s and had a low detection limit for HOCl of 1.5 nM. Importantly, physiologically common interfering species, except for HOCl, did not cause a change in the fluorescence intensity of DCI-HOCl at 655 nm. The results of confocal imaging demonstrated the ability of DCI-H to visualize endogenous HOCl produced by MPO-catalyzed H2O2/Cl- and LPS stimulation. With the assistance of DCI-H, upregulation of HOCl levels was observed in the mice model of LPS-induced neuroinflammation. Thus, we believed that DCI-H provided a valuable tool for HOCl detection and diagnosis of inflammation-related diseases.
Collapse
Affiliation(s)
- Long Mi
- Department of Radiology, Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
| | - Changhe Niu
- Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianqiang Chen
- Department of Radiology, Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
| | - Feng Han
- Department of Radiology, Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
| | - Xueying Ji
- Department of Radiology, Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
| |
Collapse
|
7
|
Liu G, Yang C, Wang X, Chen X, Wang Y, Le W. Oxygen metabolism abnormality and Alzheimer's disease: An update. Redox Biol 2023; 68:102955. [PMID: 37956598 PMCID: PMC10665957 DOI: 10.1016/j.redox.2023.102955] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/13/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Oxygen metabolism abnormality plays a crucial role in the pathogenesis of Alzheimer's disease (AD) via several mechanisms, including hypoxia, oxidative stress, and mitochondrial dysfunction. Hypoxia condition usually results from living in a high-altitude habitat, cardiovascular and cerebrovascular diseases, and chronic obstructive sleep apnea. Chronic hypoxia has been identified as a significant risk factor for AD, showing an aggravation of various pathological components of AD, such as amyloid β-protein (Aβ) metabolism, tau phosphorylation, mitochondrial dysfunction, and neuroinflammation. It is known that hypoxia and excessive hyperoxia can both result in oxidative stress and mitochondrial dysfunction. Oxidative stress and mitochondrial dysfunction can increase Aβ and tau phosphorylation, and Aβ and tau proteins can lead to redox imbalance, thus forming a vicious cycle and exacerbating AD pathology. Hyperbaric oxygen therapy (HBOT) is a non-invasive intervention known for its capacity to significantly enhance cerebral oxygenation levels, which can significantly attenuate Aβ aggregation, tau phosphorylation, and neuroinflammation. However, further investigation is imperative to determine the optimal oxygen pressure, duration of exposure, and frequency of HBOT sessions. In this review, we explore the prospects of oxygen metabolism in AD, with the aim of enhancing our understanding of the underlying molecular mechanisms in AD. Current research aimed at attenuating abnormalities in oxygen metabolism holds promise for providing novel therapeutic approaches for AD.
Collapse
Affiliation(s)
- Guangdong Liu
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Cui Yang
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xin Wang
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xi Chen
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yanjiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Weidong Le
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China; Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China.
| |
Collapse
|
8
|
Deng S, Huang Y, Hu E, Ning LJ, Xie R, Yu K, Lu F, Lan G, Lu B. Chitosan/silk fibroin nanofibers-based hierarchical sponges accelerate infected diabetic wound healing via a HClO self-producing cascade catalytic reaction. Carbohydr Polym 2023; 321:121340. [PMID: 37739514 DOI: 10.1016/j.carbpol.2023.121340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/12/2023] [Accepted: 08/27/2023] [Indexed: 09/24/2023]
Abstract
The diabetic chronic wound healing is extremely restricted by issues such as hyperglycemia, excessive exudate and reactive oxygen species (ROS), and bacterial infection, causing significant disability and fatality rate. Herein, the chitosan/silk fibroin nanofibers-based hierarchical 3D sponge (CSSF-P/AuGCs) with effective exudate transfer and wound microenvironment modulation are produced by integrating cascade reactor (AuGC) into sponge substrates with parallel-arranged microchannels. When applied to diabetic wounds, the uniformly parallel-arranged microchannels endow CSSF-P/AuGCs with exceptional exudate absorption capacity, keeping the wound clean and moist; additionally, AuGCs efficiently depletes glucose in wounds to generate H2O2, which is then converted into HClO via cascade catalytic reaction to eliminate bacterial infection and reduce inflammation. Experiments in vitro demonstrated that the antibacterial activity of CSSF-P/AuGCs against S. aureus and E. coli was 92.7 and 94.27 %, respectively. Experiments on animals indicated that CSSF-P/AuGC could cure wounds in 11 days, displaying superior wound-healing abilities when compared to the commercial medication Tegaderm™. This versatile CSSF-P/AuGCs dressing may be an attractive choice for expediting diabetic wound healing with little cytotoxicity, providing a novel therapeutic method for establishing a favorable pathological microenvironment for tissue repair.
Collapse
Affiliation(s)
- Suya Deng
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Yinggui Huang
- Southwest University (Changshu) Research Institute, Changshu, Suzhou 215500, China
| | - Enling Hu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Liang-Ju Ning
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China
| | - Ruiqi Xie
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Kun Yu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Fei Lu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Guangqian Lan
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Bitao Lu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China.
| |
Collapse
|
9
|
Guo J, Sun J, Liu D, Liu J, Gui L, Luo M, Kong D, Wusiman S, Yang C, Liu T, Yuan Z, Li R. Developing a Two-Photon "AND" Logic Probe and Its Application in Alzheimer's Disease Differentiation. Anal Chem 2023; 95:16868-16876. [PMID: 37947381 DOI: 10.1021/acs.analchem.3c02634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
In Alzheimer's disease, hypochlorous acid involved in the clearance of invading bacteria or pathogens and butyrylcholinesterase engaged in the hydrolysis of the neurotransmitter acetylcholine are relatively significantly altered. However, there are few dual detection probes for hypochlorous acid and butyrylcholinesterase. In addition, single-response probes suffer from serious off-target effects and near-infrared probes do not easily penetrate the blood-brain barrier due to their excessive molecular weight. In this work, we constructed a two-photon fluorescent probe that recognizes hypochlorous acid and butyrylcholinesterase based on a dual-lock strategy. The thiocarbonyl group is oxidized in the presence of hypochlorous acid, and the hydrolysis occurs at the 7-position ester bond in the existence of butyrylcholinesterase, releasing a strongly fluorescent fluorophore, 4-methylumbelliferone. Excellent imaging was performed in PC12 cells using this probe, and deep two-photon imaging was observed in the brains of AD mice after tail vein injection with this probe. It indicates that the probe can provide a promising tool for the more precise diagnosis of Alzheimer's disease.
Collapse
Affiliation(s)
- Jingxuan Guo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
- Department of Biomedical Engineering, School of Engineering, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jia Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Donghui Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
- School of Pharmacy, Guizhou Medical University, Guiyang 55004, China
| | - Ji Liu
- Department of Biomedical Engineering, School of Engineering, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lijuan Gui
- Department of Biomedical Engineering, School of Engineering, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Man Luo
- Department of Biomedical Engineering, School of Engineering, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Dexin Kong
- Department of Biomedical Engineering, School of Engineering, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Sainaiwaiergul Wusiman
- Department of Biomedical Engineering, School of Engineering, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Chang Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
- School of Pharmacy, Guizhou Medical University, Guiyang 55004, China
| | - Zhenwei Yuan
- Department of Biomedical Engineering, School of Engineering, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ruixi Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
10
|
Pratihar S, Bhagavath KK, Govindaraju T. Small molecules and conjugates as theranostic agents. RSC Chem Biol 2023; 4:826-849. [PMID: 37920393 PMCID: PMC10619134 DOI: 10.1039/d3cb00073g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/28/2023] [Indexed: 11/04/2023] Open
Abstract
Theranostics, the integration of therapy and diagnostics into a single entity for the purpose of monitoring disease progression and treatment response. Diagnostics involves identifying specific characteristics of a disease, while therapeutics refers to the treatment of the disease based on this identification. Advancements in medicinal chemistry and technology have led to the development of drug modalities that provide targeted therapeutic effects while also providing real-time updates on disease progression and treatment. The inclusion of imaging in therapy has significantly improved the prognosis of devastating diseases such as cancer and neurodegeneration. Currently, theranostic treatment approaches are based on nuclear medicine, while nanomedicine and a wide diversity of macromolecular systems such as gels, polymers, aptamers, and dendrimer-based agents are being developed for the purpose. Theranostic agents have significant roles to play in both early-stage drug development and clinical-stage therapeutic-containing drug candidates. This review will briefly outline the pros and cons of existing and evolving theranostic approaches before comprehensively discussing the role of small molecules and their conjugates.
Collapse
Affiliation(s)
- Sumon Pratihar
- Bioorganic Chemistry Laboratory, New Chemistry Unit, and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur P.O. Bengaluru 560064 Karnataka India
| | - Krithi K Bhagavath
- Bioorganic Chemistry Laboratory, New Chemistry Unit, and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur P.O. Bengaluru 560064 Karnataka India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur P.O. Bengaluru 560064 Karnataka India
| |
Collapse
|
11
|
Wen H, Liu Z, Su Z, Kowah JAH, Hao E, Liu X. Development of a novel hypochlorite ratio probe based on coumarin and its application in living cells. RSC Adv 2023; 13:32518-32522. [PMID: 37928861 PMCID: PMC10624156 DOI: 10.1039/d3ra04729f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023] Open
Abstract
Hypochlorous acid is a reactive oxygen species that is widely present in the body and has been found to exhibit an elevated concentration in tumors. As a result, fluorescent probes for tumor detection have recently gained significant attention. In this study, we designed and synthesized a novel ratiometric fluorescent probe, LW-1, using coumarin as a scaffold, and characterized its spectral properties. LW-1 displayed indigo blue fluorescence at low concentrations of hypochlorous acid. As the concentration of hypochlorous acid increased, the probe underwent a reaction, resulting in a red shift in its fluorescence peak and exhibiting green fluorescence. The fluorescence intensity ratio (green/blue) was a susceptible detection signal for HClO. LW-1 exhibited favorable characteristics, including a low detection limit, high sensitivity, good stability, and low background interference. The detection limit has reached 2.4642 nM. Moreover, we successfully employed LW-1 to image normal human liver and colon cancer cells in vitro, demonstrating its potential as a promising tool for tumor detection. Overall, our findings suggest that LW-1 could serve as a valuable addition to the current arsenal of fluorescent probes for tumor detection, with potential applications in the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Hao Wen
- Department of Chemical Engineering and Technology, College of Chemistry and Chemical Engineering, Guangxi University Nanning 530004 China
| | - Zifan Liu
- Department of Pharmacy, College of Medicine, Guangxi University Nanning 530004 China
| | - Zixia Su
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine Nanning 530200 Guangxi China
| | - Jamal A H Kowah
- Department of Chemical Engineering and Technology, College of Chemistry and Chemical Engineering, Guangxi University Nanning 530004 China
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine Nanning 530200 Guangxi China
| | - Xu Liu
- Department of Pharmacy, College of Medicine, Guangxi University Nanning 530004 China
| |
Collapse
|
12
|
Liu C, Li Z, Zhang H, Yu H, Yan J, Wei D, Song Z, Cao J, Sun Y. Visualization of the elevated levels of hypochlorous acid in Alzheimer's disease with a ruthenium(II) complex-based luminescence probe. Anal Chim Acta 2023; 1279:341779. [PMID: 37827677 DOI: 10.1016/j.aca.2023.341779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 10/14/2023]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder that devastatingly affects people's lives. Accumulating evidence indicates that the pathological progression of AD is inseparably connected with hypochlorous acid (HClO). However, further exploring the biological function remains an open challenging due to a lack of effective tools to image HClO in AD brains. To this end, a ruthenium(II) luminescence probe, Ru-HClO, is developed for quantitative detection and visualization of HClO in nerve cells and AD brains. Ru-HClO shows quenched luminescence due to the PET process (excited electron transfer from Ru(II) center to diaminomaleonitrile) and the CN bond isomerization in the excited state. The HClO-triggered specific cleavage reaction with Ru-HClO cleaves the CN bond to form highly luminescent Ru-COOH. Ru-HClO shows rapid response speed, high sensitivity and selectivity, excellent biocompatibility, which makes the probe to be applied to semi-quantitative analysis of HClO in nerve cells and high-throughput screening of anti-AD drugs in the AD cell model. Moreover, using Ru-HClO as a probe, present work further validated that the elevated levels of HClO secretion were accompanied by the AD progressed. These findings may provide valuable results for figuring out the biological roles that HClO played in AD but also for accelerating anti-AD therapeutic discovery.
Collapse
Affiliation(s)
- Chaolong Liu
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266071, China.
| | - Zhipeng Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Hao Zhang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Hongli Yu
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Jianqin Yan
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Dengshuai Wei
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Zhenhua Song
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Jie Cao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
13
|
Liu XL, Yang X, Li L, Xie T, Zhang X, Yang T, Jiang D, Chen J, Chen Y, Cai L, Wang Y, Zhang P. An analyte-replacement near-infrared fluorogenic probe for ultrafast detection of hypochlorite in rheumatoid arthritis. Bioorg Chem 2023; 139:106757. [PMID: 37543016 DOI: 10.1016/j.bioorg.2023.106757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023]
Affiliation(s)
- Xue-Liang Liu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Xue Yang
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Lu Li
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Tingfei Xie
- Department of Nephrology, The People's Hospital of Baoan Shenzhen, The Second School of Clinical Medicine, Southern Medical University, China
| | - Xiuwen Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Daoyong Jiang
- Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China; Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jihong Chen
- Department of Nephrology, The People's Hospital of Baoan Shenzhen, The Second School of Clinical Medicine, Southern Medical University, China
| | - Yizhao Chen
- Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China; Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yong Wang
- Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China.
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
14
|
Mañucat-Tan NB, Chowdhury A, Cataldi R, Abdullah RZ, Kumita JR, Wyatt AR. Hypochlorite-induced oxidation promotes aggregation and reduces toxicity of amyloid beta 1-42. Redox Biol 2023; 63:102736. [PMID: 37216700 DOI: 10.1016/j.redox.2023.102736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/24/2023] Open
Abstract
Exacerbated hypochlorite (OCl-) production is linked to neurodegenerative processes, but there is growing evidence that lower levels of hypochlorite activity are important to protein homeostasis. In this study we characterise the effects of hypochlorite on the aggregation and toxicity of amyloid beta peptide 1-42 (Aβ1-42), a major component of amyloid plaques that form in the brain in Alzheimer's disease. Our results demonstrate that treatment with hypochlorite promotes the formation of Aβ1-42 assemblies ≥100 kDa that have reduced surface exposed hydrophobicity compared to the untreated peptide. This effect is the result of the oxidation of Aβ1-42 at a single site as determined by mass spectrometry analysis. Although treatment with hypochlorite promotes the aggregation of Aβ1-42, the solubility of the peptide is enhanced and amyloid fibril formation is inhibited as assessed by filter trap assay, thioflavin T assay and transmission electron microscopy. The results of in vitro assays using SH-SY5Y neuroblastoma cells show that pre-treatment of Aβ1-42 with a sub-stoichiometric amount of hypochlorite substantially reduces its toxicity. The results of flow cytometry analysis and internalisation assays indicate that hypochlorite-induced modification of Aβ1-42 reduces its toxicity via at least two-distinct mechanism, reducing the total binding of Aβ1-42 to the surface of cells and facilitating the cell surface clearance of Aβ1-42 to lysosomes. Our data is consistent with a model in which tightly regulated production of hypochlorite in the brain is protective against Aβ-induced toxicity.
Collapse
Affiliation(s)
- Noralyn B Mañucat-Tan
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, SA, Australia, 5048
| | - Ashfaq Chowdhury
- Yusef Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Rodrigo Cataldi
- Yusef Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Rafaa Zeineddine Abdullah
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, NSW, Australia, 2500
| | - Janet R Kumita
- Yusef Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK; Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK.
| | - Amy R Wyatt
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, SA, Australia, 5048.
| |
Collapse
|
15
|
Qiao L, Shen Y, Li G, Lv G, Li C. Hypochlorous Acid-Activated UCNPs-LMB/VQIVYK Multifunctional Nanosystem for Alzheimer's Disease Treatment. J Funct Biomater 2023; 14:jfb14040207. [PMID: 37103297 PMCID: PMC10143957 DOI: 10.3390/jfb14040207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/28/2023] Open
Abstract
The development of nanosystems, which can photooxygenate amyloid-β (Aβ), detect the Tau protein, and inhibit effectively the Tau aggregation, is increasingly important in the diagnosis and therapy of Alzheimer's disease (AD). Herein, UCNPs-LMB/VQIVYK (UCNPs: upconversion nanoparticles, LMB: Leucomethylene blue, and VQIVYK: Biocompatible peptide) is designed as a HOCl-controlled released nanosystem for AD synergistic treatment. Under exposure to high levels of HOCl, the released MB from UCNPs-LMB/VQIVYK will produce singlet oxygen (1O2) under red light to depolymerize Aβ aggregation and reduce cytotoxicity. Meanwhile, UCNPs-LMB/VQIVYK can act as an inhibitor to decrease Tau-induced neurotoxicity. Besides, UCNPs-LMB/VQIVYK can be used for upconversion luminescence (UCL) due to its unexceptionable luminescence properties. This HOCl-responsive nanosystem offers a new therapy for AD treatment.
Collapse
Affiliation(s)
- Luying Qiao
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinarity Science, Shandong University, Qingdao 266237, China
| | - Yang Shen
- Center for Biotechnology and Biomedical Engineering, Yiwu Research Institute of Fudan University, Yiwu 322000, China
| | - Guangzhi Li
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Guanglei Lv
- Center for Biotechnology and Biomedical Engineering, Yiwu Research Institute of Fudan University, Yiwu 322000, China
| | - Chunxia Li
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinarity Science, Shandong University, Qingdao 266237, China
| |
Collapse
|
16
|
Gharai PK, Khan J, Mallesh R, Garg S, Saha A, Ghosh S, Ghosh S. Vanillin Benzothiazole Derivative Reduces Cellular Reactive Oxygen Species and Detects Amyloid Fibrillar Aggregates in Alzheimer's Disease Brain. ACS Chem Neurosci 2023; 14:773-786. [PMID: 36728363 DOI: 10.1021/acschemneuro.2c00771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The misfolding of amyloid beta (Aβ) peptides into Aβ fibrillary aggregates is a major hallmark of Alzheimer's disease (AD), which responsible for the excess production of hydrogen peroxide (H2O2), a prominent reactive oxygen species (ROS) from the molecular oxygen (O2) by the reduction of the Aβ-Cu(I) complex. The excessive production of H2O2 causes oxidative stress and inflammation in the AD brain. Here, we have designed and developed a dual functionalized molecule VBD by using π-conjugation (C═C) in the backbone structure. In the presence of H2O2, the VBD can turn into fluorescent probe VBD-1 by cleaving of the selective boronate ester group. The fluorescent probe VBD-1 can undergo intramolecular charge transfer transition (ICT) by a π-conjugative system, and as a result, its emission increases from the yellow (532 nm) to red (590 nm) region. The fluorescence intensity of VBD-1 increases by 3.5-fold upon binding with Aβ fibrillary aggregates with a high affinity (Kd = 143 ± 12 nM). Finally, the VBD reduces the cellular toxic H2O2 as proven by the CCA assay and DCFDA assay and the binding affinity of VBD-1 was confirmed by using in vitro histological staining in 8- and 18-month-old triple transgenic AD (3xTg-AD) mice brain slices.
Collapse
Affiliation(s)
- Prabir Kumar Gharai
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, WB, India.,Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342037, India
| | - Juhee Khan
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, WB, India.,Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342037, India
| | - Rathnam Mallesh
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, WB, India.,Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342037, India.,National Institute of Pharmaceutical Education and Research, Kolkata, Chunilal Bhawan 168, Maniktala Main Road, Kolkata 700054, India
| | - Shubham Garg
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342037, India
| | - Abhijit Saha
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India
| | - Subhajit Ghosh
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, WB, India
| | - Surajit Ghosh
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, WB, India.,Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342037, India.,National Institute of Pharmaceutical Education and Research, Kolkata, Chunilal Bhawan 168, Maniktala Main Road, Kolkata 700054, India
| |
Collapse
|
17
|
Ramesh M, Govindaraju T. Multipronged diagnostic and therapeutic strategies for Alzheimer's disease. Chem Sci 2022; 13:13657-13689. [PMID: 36544728 PMCID: PMC9710308 DOI: 10.1039/d2sc03932j] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/13/2022] [Indexed: 12/24/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and a major contributor to dementia cases worldwide. AD is clinically characterized by learning, memory, and cognitive deficits. The accumulation of extracellular amyloid β (Aβ) plaques and neurofibrillary tangles (NFTs) of tau are the pathological hallmarks of AD and are explored as targets for clinical diagnosis and therapy. AD pathology is poorly understood and there are no fully approved diagnosis and treatments. Notwithstanding the gap, decades of research in understanding disease mechanisms have revealed the multifactorial nature of AD. As a result, multipronged and holistic approaches are pertinent to targeting multiple biomarkers and targets for developing effective diagnosis and therapeutics. In this perspective, recent developments in Aβ and tau targeted diagnostic and therapeutic tools are discussed. Novel indirect, combination, and circulating biomarkers as potential diagnostic targets are highlighted. We underline the importance of multiplexing and multimodal detection of multiple biomarkers to generate biomarker fingerprints as a reliable diagnostic strategy. The classical therapeutics targeting Aβ and tau aggregation pathways are described with bottlenecks in the strategy. Drug discovery efforts targeting multifaceted toxicity involving protein aggregation, metal toxicity, oxidative stress, mitochondrial damage, and neuroinflammation are highlighted. Recent efforts focused on multipronged strategies to rationally design multifunctional modulators targeting multiple pathological factors are presented as future drug development strategies to discover potential therapeutics for AD.
Collapse
Affiliation(s)
- Madhu Ramesh
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O. Bengaluru Karnataka 560064 India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O. Bengaluru Karnataka 560064 India
| |
Collapse
|
18
|
Ke J, Zhao P, Li J, Fu Q. Visualization of HOCl in the brains of Alzheimer's disease models using an easily available two-photon fluorogenic probe. J Mater Chem B 2022; 10:8744-8749. [PMID: 36254770 DOI: 10.1039/d2tb01502a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As an inflammatory signaling molecule, hypochlorous acid (HOCl), which is generated by myeloperoxidase (MPO) catalysis, is associated with neuronal cell death during neuroinflammation and the etiology of Alzheimer's disease (AD). Thus, it is significant to employ effective tools for the in vivo mapping of HOCl during the early pathology of AD. In this study, we propose the use of an easily available two-photon fluorogenic probe, named Q-HOCl, for the specific and sensitive detection of HOCl in AD brains. The Q-HOCl probe displayed favorable selectivity and rapid response (20 s) to HOCl with a limit of detection of 12.5 nM. In addition, the Q-HOCl probe manifested splendid ability to penetrate the blood-brain barrier. Subsequently, it was utilized to visualize HOCl fluctuation induced by LPS in PC12 cells via two-photon imaging. Importantly, we monitored the elevated level of HOCl in AD brains compared to normal brains. Ultimately, based on the two-photon imaging of the hippocampus of brain slices and Morris water maze test, the cognitive ability of the AD model mice was effectually ameliorated by treatment with an MPO inhibitor. Thus, we expect that the Q-HOCl probe can be applied to reveal the capacity of HOCl in AD pathology and develop efficacious MPO inhibitor drugs for the treatment of AD.
Collapse
Affiliation(s)
- Jia Ke
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Peixu Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Jianfeng Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
19
|
Snell JA, Jandova J, Wondrak GT. Hypochlorous Acid: From Innate Immune Factor and Environmental Toxicant to Chemopreventive Agent Targeting Solar UV-Induced Skin Cancer. Front Oncol 2022; 12:887220. [PMID: 35574306 PMCID: PMC9106365 DOI: 10.3389/fonc.2022.887220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/31/2022] [Indexed: 12/15/2022] Open
Abstract
A multitude of extrinsic environmental factors (referred to in their entirety as the 'skin exposome') impact structure and function of skin and its corresponding cellular components. The complex (i.e. additive, antagonistic, or synergistic) interactions between multiple extrinsic (exposome) and intrinsic (biological) factors are important determinants of skin health outcomes. Here, we review the role of hypochlorous acid (HOCl) as an emerging component of the skin exposome serving molecular functions as an innate immune factor, environmental toxicant, and topical chemopreventive agent targeting solar UV-induced skin cancer. HOCl [and its corresponding anion (OCl-; hypochlorite)], a weak halogen-based acid and powerful oxidant, serves two seemingly unrelated molecular roles: (i) as an innate immune factor [acting as a myeloperoxidase (MPO)-derived microbicidal factor] and (ii) as a chemical disinfectant used in freshwater processing on a global scale, both in the context of drinking water safety and recreational freshwater use. Physicochemical properties (including redox potential and photon absorptivity) determine chemical reactivity of HOCl towards select biochemical targets [i.e. proteins (e.g. IKK, GRP78, HSA, Keap1/NRF2), lipids, and nucleic acids], essential to its role in innate immunity, antimicrobial disinfection, and therapeutic anti-inflammatory use. Recent studies have explored the interaction between solar UV and HOCl-related environmental co-exposures identifying a heretofore unrecognized photo-chemopreventive activity of topical HOCl and chlorination stress that blocks tumorigenic inflammatory progression in UV-induced high-risk SKH-1 mouse skin, a finding with potential implications for the prevention of human nonmelanoma skin photocarcinogenesis.
Collapse
Affiliation(s)
| | | | - Georg T. Wondrak
- Department of Pharmacology and Toxicology, R.K. Coit College of Pharmacy & UA Cancer Center, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
20
|
Qi YL, Wang HR, Chen LL, Guo L, Cao YY, Yang YS, Duan YT, Zhu HL. Recent advances in reaction-based fluorescent probes for the detection of central nervous system-related pathologies in vivo. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214068] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Wu P, Zhu Y, Chen L, Tian Y, Xiong H. A Fast-Responsive OFF-ON Near-Infrared-II Fluorescent Probe for In Vivo Detection of Hypochlorous Acid in Rheumatoid Arthritis. Anal Chem 2021; 93:13014-13021. [PMID: 34524814 DOI: 10.1021/acs.analchem.1c02831] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rheumatoid arthritis (RA) is a common chronic autoimmune inflammatory disease, and its etiology is closely related to the overproduction of hypochlorous acid (HClO). However, early detection of RA using an activatable near-infrared-II (NIR-II, 1000-1700 nm) fluorescent probe remains challenging. Herein, we first report an "OFF-ON" NIR-II fluorescent probe named PTA (phenothiazine triphenylamine) for imaging HClO in deep-seated early RA. Electron-rich phenothiazine in the core of PTA was utilized as both an HClO-recognition moiety and a precursor of electron acceptors, displaying a typical donor-acceptor-donor structure with excellent NIR-II emission at 936/1237 nm once reacted with HClO. The probe PTA exhibited good water solubility, high photostability, and rapid response capability toward HClO within 30 s. Moreover, it was able to sensitively and specifically detect exogenous and endogenous HClO in living cells in both visible and NIR-II windows. Notably, PTA enabled the sensitive and rapid visualization of HClO generation in an inflammatory RA mouse model, showing a 4.3-fold higher NIR-II fluorescence intensity than that in normal hindlimb joints. These results demonstrate that PTA holds great promise as a robust platform for diagnosis of HOCl-mediated inflammatory disorders.
Collapse
Affiliation(s)
- Peng Wu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu Zhu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lulu Chen
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yang Tian
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hu Xiong
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
22
|
Kim KH, Kim SJ, Singha S, Yang YJ, Park SK, Ahn KH. Ratiometric Detection of Hypochlorous Acid in Brain Tissues of Neuroinflammation and Maternal Immune Activation Models with a Deep-Red/Near-Infrared Emitting Probe. ACS Sens 2021; 6:3253-3261. [PMID: 34467757 DOI: 10.1021/acssensors.1c00930] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Reactive oxygen species (ROS) produced by an inflammatory response in the brain are associated with various neurological disorders. To investigate ROS-associated neuroinflammatory diseases, fluorescent probes with practicality are in demand. We have investigated hypochlorous acid, an important ROS, in the brain tissues of neuroinflammation and maternal immune activation (MIA) model mice, using a new fluorescent probe. The probe has outstanding features over many known probes, such as providing two bright ratio signals in cells and tissues in deep-red/near-infrared wavelength regions with a large spectral separation, in addition to being strongly fluorescent, photo- and chemo-stable, highly selective and sensitive, fast responding, and biocompatible. We have found that the level of hypochlorous acid in the brain tissue of a neuroinflammatory mouse model was higher (2.7-4.0-fold) compared with that in normal brain tissue. Furthermore, the level of hypochlorous acid in the brain tissue of a MIA mouse model was higher (1.2-1.3-fold) compared with that in the normal brain tissue. The "robust" probe provides a practical tool for studying ROS-associated neurological disorders.
Collapse
Affiliation(s)
- Kyeong Hwan Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk 37673, Republic of Korea
| | - Soo Jeong Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk 37673, Republic of Korea
| | - Subhankar Singha
- Institute of Advanced Studies and Research, JIS University, Kolkata 700091, India
| | - Yun Jae Yang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk 37673, Republic of Korea
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk 37673, Republic of Korea
| | - Kyo Han Ahn
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk 37673, Republic of Korea
| |
Collapse
|
23
|
Bao X, Yao Y, Xu Y, Shen Y, Lv G, Zhao D, Li C. Hypochlorous Acid Activating MB‐O to Release Methylene Blue for Photodegrading of Aβ Aggregates. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xinlu Bao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University Jinhua 321004 Zhejiang P. R. China
| | - Yusi Yao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University Jinhua 321004 Zhejiang P. R. China
| | - Yunze Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University Jinhua 321004 Zhejiang P. R. China
| | - Yang Shen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University Jinhua 321004 Zhejiang P. R. China
| | - Guanglei Lv
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University Jinhua 321004 Zhejiang P. R. China
| | - Dian Zhao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University Jinhua 321004 Zhejiang P. R. China
| | - Chunxia Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University Jinhua 321004 Zhejiang P. R. China
- Institute of Molecular Sciences and Engineering Shandong University Qingdao 266237 Shandong P. R. China
| |
Collapse
|
24
|
Everett J, Lermyte F, Brooks J, Tjendana-Tjhin V, Plascencia-Villa G, Hands-Portman I, Donnelly JM, Billimoria K, Perry G, Zhu X, Sadler PJ, O'Connor PB, Collingwood JF, Telling ND. Biogenic metallic elements in the human brain? SCIENCE ADVANCES 2021; 7:eabf6707. [PMID: 34108207 PMCID: PMC8189590 DOI: 10.1126/sciadv.abf6707] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/22/2021] [Indexed: 05/12/2023]
Abstract
The chemistry of copper and iron plays a critical role in normal brain function. A variety of enzymes and proteins containing positively charged Cu+, Cu2+, Fe2+, and Fe3+ control key processes, catalyzing oxidative metabolism and neurotransmitter and neuropeptide production. Here, we report the discovery of elemental (zero-oxidation state) metallic Cu0 accompanying ferromagnetic elemental Fe0 in the human brain. These nanoscale biometal deposits were identified within amyloid plaque cores isolated from Alzheimer's disease subjects, using synchrotron x-ray spectromicroscopy. The surfaces of nanodeposits of metallic copper and iron are highly reactive, with distinctly different chemical and magnetic properties from their predominant oxide counterparts. The discovery of metals in their elemental form in the brain raises new questions regarding their generation and their role in neurochemistry, neurobiology, and the etiology of neurodegenerative disease.
Collapse
Affiliation(s)
- James Everett
- School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Thornburrow Drive, Keele University, Staffordshire ST4 7QB, UK
- School of Engineering, Library Road, University of Warwick, Coventry CV4 7AL, UK
| | - Frederik Lermyte
- School of Engineering, Library Road, University of Warwick, Coventry CV4 7AL, UK
- Department of Chemistry, Technical University of Darmstadt, Alarich-Weiss-Strasse 4, 64287 Darmstadt, Germany
| | - Jake Brooks
- School of Engineering, Library Road, University of Warwick, Coventry CV4 7AL, UK
| | - Vindy Tjendana-Tjhin
- School of Engineering, Library Road, University of Warwick, Coventry CV4 7AL, UK
| | - Germán Plascencia-Villa
- Department of Biology and Neurosciences Institute, The University of Texas at San Antonio (UTSA), San Antonio, TX 78249, USA
| | - Ian Hands-Portman
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| | - Jane M Donnelly
- School of Engineering, Library Road, University of Warwick, Coventry CV4 7AL, UK
| | - Kharmen Billimoria
- School of Engineering, Library Road, University of Warwick, Coventry CV4 7AL, UK
- Department of Chemistry, Library Road, University of Warwick, Coventry CV4 7AL, UK
- LGC Ltd., Queens Road, Teddington TW11 0LY, UK
| | - George Perry
- Department of Biology and Neurosciences Institute, The University of Texas at San Antonio (UTSA), San Antonio, TX 78249, USA
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Peter J Sadler
- Department of Chemistry, Library Road, University of Warwick, Coventry CV4 7AL, UK
| | - Peter B O'Connor
- Department of Chemistry, Library Road, University of Warwick, Coventry CV4 7AL, UK
| | - Joanna F Collingwood
- School of Engineering, Library Road, University of Warwick, Coventry CV4 7AL, UK
| | - Neil D Telling
- School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Thornburrow Drive, Keele University, Staffordshire ST4 7QB, UK.
| |
Collapse
|
25
|
Xia Y, Xie D, Xu A, Ding S, Liu C. A theoretical study of the photophysical properties of coumarin-carbohydrazone and coumarin-thiocarbohydrazone. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Moorthy H, Govindaraju T. Dendrimer Architectonics to Treat Cancer and Neurodegenerative Diseases with Implications in Theranostics and Personalized Medicine. ACS APPLIED BIO MATERIALS 2021; 4:1115-1139. [PMID: 35014470 DOI: 10.1021/acsabm.0c01319] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Integration of diagnostic and therapeutic functions in a single platform namely theranostics has become a cornerstone for personalized medicine. Theranostics platform facilitates noninvasive detection and treatment while allowing the monitoring of disease progression and therapeutic efficacy in case of chronic conditions of cancer and Alzheimer's disease (AD). Theranostic tools function by themselves or with the aid of carrier, viz. liposomes, micelles, polymers, or dendrimers. The dendrimer architectures (DA) are well-characterized molecular nanoobjects with a large number of terminal functional groups to enhance solubility and offer multivalency and multifunctional properties. Various noninvasive diagnostic tools like magnetic resonance imaging (MRI), computed tomography (CT), gamma scintigraphy, and optical techniques have been accomplished utilizing DAs for simultaneous imaging and drug delivery. Obstacles in the formulation design, drug loading, payload delivery, biocompatibility, overcoming cellular membrane and blood-brain barrier (BBB), and systemic circulation remain a bottleneck in translational efforts. This review focuses on the diagnostic, therapeutic and theranostic potential of DA-based nanocarriers in treating cancer and neurodegenerative disorders like AD and Parkinson's disease (PD), among others. In view of the inverse relationship between cancer and AD, designing suitable DA-based theranostic nanodrug with high selectivity has tremendous implications in personalized medicine to treat cancer and neurodegenerative disorders.
Collapse
Affiliation(s)
- Hariharan Moorthy
- Bioorganic Chemistry Laboratory, New Chemistry Unit and The School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P. O., Bengaluru, Karnataka 560064, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit and The School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P. O., Bengaluru, Karnataka 560064, India
| |
Collapse
|
27
|
Ghadami SA, Shevidi S, Hosseinzadeh L, Adibi H. Synthesis and in vitro quantification of amyloid fibrils by barbituric and thiobarbituric acid-based chromene derivatives. Biophys Chem 2021; 269:106522. [PMID: 33352334 DOI: 10.1016/j.bpc.2020.106522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 01/09/2023]
Abstract
Neurodegenerative disease is caused by the abnormal build-up of proteins in and around cells called amyloid. The amyloid fibril formation and its mechanism have been investigated with various techniques, including dye-binding assay. Thioflavin T (ThT) has been one of the most widely used dyes for quantifying amyloid deposits, but ThT has a weak fluorescence signal especially at low concentration of amyloid fibrils, low lipophilicity and positive charge that makes it unable to cross the blood-brain barrier (BBB) to detect amyloid fibrils in vivo. Hence, there is a strong motivation for designing and developing the new compounds for in vitro amyloid quantification and in vivo amyloid imaging. The need for new probes to detect amyloid fibrils, especially within the cell, is highlighted by the fact that an accurate understanding of the molecular details of amyloid fibril formation is required to design and develop strategies for controlling the amyloid formation, and this needs more reliable probes for amyloid identification. In this work, we synthesized and applied barbituric and thiobarbituric acid-based chromene derivatives, as new fluorescent dyes to quantitatively detect the amyloid fibrils of bovine serum albumin (BSA) and human insulin in comparison with native soluble proteins or amorphous aggregation. Our results showed that among the 14 synthesized compounds, five compounds 4a, 4h, 4j, 4k, and 4l could selectively and specifically bind to amyloid fibrils while other compounds demonstrated a low-affinity binding. Furthermore, according to the cell viability experiment, compounds 4a, 4j and 4l at low concentration of compounds are not toxic, especially compound 4j which could be used as a suitable candidate for in vivo study. Further studies are needed to determine all the properties of compounds, especially in vivo experiments.
Collapse
Affiliation(s)
| | - Setayesh Shevidi
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Leila Hosseinzadeh
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hadi Adibi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
28
|
Samanta S, Rajasekhar K, Ramesh M, Murugan NA, Alam S, Shah D, Clement JP, Govindaraju T. Naphthalene Monoimide Derivative Ameliorates Amyloid Burden and Cognitive Decline in a Transgenic Mouse Model of Alzheimer's Disease. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000225] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Sourav Samanta
- Bioorganic Chemistry Laboratory New Chemistry Unit Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O. Bengaluru 560064 India
| | - Kolla Rajasekhar
- Bioorganic Chemistry Laboratory New Chemistry Unit Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O. Bengaluru 560064 India
| | - Madhu Ramesh
- Bioorganic Chemistry Laboratory New Chemistry Unit Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O. Bengaluru 560064 India
| | - Natarajan Arul Murugan
- Department of Theoretical Chemistry and Biology School of Chemistry Biotechnology and Health KTH Royal Institute of Technology S‐106 91 Stockholm Sweden
| | - Shadab Alam
- Bioorganic Chemistry Laboratory New Chemistry Unit Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O. Bengaluru 560064 India
| | - Devanshi Shah
- Neuroscience Unit Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O. Bengaluru 560064 India
| | - James Premdas Clement
- Neuroscience Unit Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O. Bengaluru 560064 India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory New Chemistry Unit Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O. Bengaluru 560064 India
| |
Collapse
|
29
|
Kumar A, Datta LP, Samanta S, Arora H, Govindaraju T. Benzothiazole‐Phenothiazine Conjugate Based Molecular Probe for the Differential Detection of Glycated Albumin. Isr J Chem 2021. [DOI: 10.1002/ijch.202000098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ashish Kumar
- Bioorganic Chemistry Laboratory New Chemistry Unit and The School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P. O. Bengaluru 560064 Karnataka India
| | - Lakshmi Priya Datta
- Bioorganic Chemistry Laboratory New Chemistry Unit and The School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P. O. Bengaluru 560064 Karnataka India
| | - Sourav Samanta
- Bioorganic Chemistry Laboratory New Chemistry Unit and The School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P. O. Bengaluru 560064 Karnataka India
| | - Harshit Arora
- Bioorganic Chemistry Laboratory New Chemistry Unit and The School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P. O. Bengaluru 560064 Karnataka India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory New Chemistry Unit and The School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P. O. Bengaluru 560064 Karnataka India
| |
Collapse
|
30
|
Xu S, Wang W, Dong X, Sun Y. Molecular Insight into Cu 2+-Induced Conformational Transitions of Amyloid β-Protein from Fast Kinetic Analysis and Molecular Dynamics Simulations. ACS Chem Neurosci 2021; 12:300-310. [PMID: 33401892 DOI: 10.1021/acschemneuro.0c00502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cu2+-mediated amyloid β-protein (Aβ) aggregation is implicated in the pathogenesis of Alzheimer's disease, so it is of significance to understand Cu2+-mediated conformational transitions of Aβ. Herein, four Aβ mutants were created by using the environment-sensitive cyanophenylalanine to respectively substitute F4, Y10, F19, and F20 residues of Aβ40. By using stopped-flow fluorescence spectroscopy and molecular dynamics (MD) simulations, the early stage conformational transitions of the mutants mediated by Cu2+ binding were investigated. The fast kinetics unveils that Cu2+ has more significant influence on the conformational changes of N-terminal (F4 and Y10) than on the central hydrophobic core (CHC, F19, and F20) under different pH conditions (pH 6.6-8.0), especially Y10. Interestingly, lag periods of the conformational transitions are observed for the F19 and F20 mutants at pH 8.0, indicating the slow response of the two mutation sites on the conformational transitions. More importantly, significantly longer lag periods for F20 than for F19 indicate the conduction of the transition from F19 to F20. The conduction time (difference in lag period) decreases from 4.5 s at Cu2+ = 0 to undetectable (<1 ms) at Cu2+ = 10 μM. The significant difference in the response time of F19 and F20 and the fast local conformational changes of Y10 imply that the conformational transitions of Aβ start around Y10. MD simulations support the observation of hydrophobicity increase at N-terminal during the conformational transitions of Aβ-Cu2+. It also reveals that Y10 is immediately approached by Cu2+, supporting the speculation that the starting point of conformational transitions of Aβ is near Y10. The work has provided molecular insight into the early stage conformational transitions of Aβ40 mediated by Cu2+.
Collapse
Affiliation(s)
- Shaoying Xu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Wenjuan Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| |
Collapse
|
31
|
Ramesh M, Rajasekhar K, Gupta K, Babagond V, Saini DK, Govindaraju T. A matrix targeted fluorescent probe to monitor mitochondrial dynamics. Org Biomol Chem 2021; 19:801-808. [PMID: 33410855 DOI: 10.1039/d0ob02128h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mitochondria are an indispensable organelle for energy production and regulation of cellular metabolism. The structural and functional alterations to mitochondria instigate pathological conditions of cancer, and aging-associated and neurodegenerative disorders. The normal functioning of mitochondria is maintained by quality control mechanisms involving dynamic fission, fusion, biogenesis and mitophagy. Under conditions of mitophagy and neurodegenerative diseases, mitochondria are exposed to different acidic environments and high levels of reactive oxygen species (ROS). Therefore stable molecular tools and methods are required to monitor the pathways linked to mitochondrial dysfunction and disease conditions. Herein, we report a far-red fluorescent probe (Mito-TG) with excellent biocompatibility, biostability, photostability, chemical stability and turn on emission for selective targeting of the mitochondrial matrix in different live cells. The probe was successfully employed for monitoring dynamic processes of mitophagy and amyloid beta (Aβ) induced mitochondrial structural changes.
Collapse
Affiliation(s)
- Madhu Ramesh
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, 560064 Karnataka, India.
| | - Kolla Rajasekhar
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, 560064 Karnataka, India.
| | - Kavya Gupta
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru 560012, India
| | - Vardhaman Babagond
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, 560064 Karnataka, India.
| | - Deepak Kumar Saini
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru 560012, India
| | - Thimmaiah Govindaraju
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, 560064 Karnataka, India. and VNIR Biotechnologies Pvt. Ltd, Bangalore Bioinnovation Center, Helix Biotech Park, Electronic City Phase I, Bengaluru 560100, Karnataka, India
| |
Collapse
|
32
|
Zhang D, Guo S, Li L, Shang K. H 2O 2/HOCl-based fluorescent probes for dynamically monitoring pathophysiological processes. Analyst 2020; 145:7477-7487. [PMID: 33063081 DOI: 10.1039/d0an01313g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Serving as representative reactive oxygen species (ROS), H2O2 and HOCl play crucial roles in biological metabolism and intercellular oxidation-reduction dynamic equilibrium. The overexpression of H2O2/HOCl may cause a variety of diseases, such as acute and chronic inflammation, cancer and neurodegenerative disorders. A major question in H2O2/HOCl-based pathological diagnosis is knowing how H2O2/HOCl concentrations can be accurately regulated to initiate a diagnosis and subsequently guarantee therapeutic effects in the course of medical advances. Fluorescent probes, with their great spatial and temporal resolutions, have been used in diverse pathophysiological processes and developed rapidly in the last five years. We summarise in this review the optical properties of H2O2/HOCl-responsive fluorescent probes and focus on effective distribution and dynamic monitoring by using pathophysiological models.
Collapse
Affiliation(s)
- Dan Zhang
- Shaanxi Province Key Laboratory of Catalytic Foundation and Application, College of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong 723001, China.
| | | | | | | |
Collapse
|
33
|
Datta LP, Samanta S, Govindaraju T. Polyampholyte-Based Synthetic Chaperone Modulate Amyloid Aggregation and Lithium Delivery. ACS Chem Neurosci 2020; 11:2812-2826. [PMID: 32816457 DOI: 10.1021/acschemneuro.0c00369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Protein misfolding and aggregation is the pathological hallmark of Alzheimer's disease (AD). The etiopathogenesis of AD involves the accumulation of amyloid-β (Aβ) plaques in the brain, which disrupt the neuronal network and communication, causing neuronal death and severe cognitive impairment. Modulation of Aβ aggregation by exogenous therapeutic agents is considered an effective strategy to treat AD. Frequent failure of drug candidates in various phases of clinical trials reiterates the need for alternative therapeutic strategies for AD treatment. Polyampholytes with cationic and anionic segments are considered as artificial protein mimics capable of modulating the protein misfolding and aggregation. We report a diblock copolymer of tryptophan-functionalized methacrylic acid (PTMA) polyampholyte synthesized through reversible addition-fragmentation chain transfer (RAFT) polymerization. Investigation revealed that PTMA acts as a synthetic chaperone to protect the native structure of the lysozyme under heat-induced aggregation conditions. PTMA effectively modulates Aβ aggregation and rescues neuronal cells. Lithium has been shown to exhibit therapeutic efficacy in chronic neurological diseases including AD. PTMA sequesters and releases lithium ions in response to neuropathological pH stimuli, making it a promising candidate for lithium transport and delivery. The detailed studies demonstrate PTMA as aggregation modulator and lithium carrier with implications for combinational therapy to treat AD.
Collapse
Affiliation(s)
- Lakshmi Priya Datta
- Bioorganic Chemistry Laboratory, New Chemistry Unit and The School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P. O., Bengaluru 560064, Karnataka, India
| | - Sourav Samanta
- Bioorganic Chemistry Laboratory, New Chemistry Unit and The School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P. O., Bengaluru 560064, Karnataka, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit and The School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P. O., Bengaluru 560064, Karnataka, India
| |
Collapse
|
34
|
Cai J, Yi P, Miao Y, Liu J, Hu Y, Liu Q, Feng Y, Chen H, Li L. Ultrasmall T1- T2 Magnetic Resonance Multimodal Imaging Nanoprobes for the Detection of β-amyloid Aggregates in Alzheimer's Disease Mice. ACS APPLIED MATERIALS & INTERFACES 2020; 12:26812-26821. [PMID: 32427456 DOI: 10.1021/acsami.0c01597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Alzheimer's disease (AD) is an irreversible brain disorder and imposes a severe burden upon patients and the public health system. Most research efforts have focused on the search for effective therapeutic drugs, but it is time to pursue efficient early diagnosis based on the reasonable assumption that AD may be easier to prevent than reverse. Recent studies have shown that there are several probes for detecting amyloid-β (Aβ) plaques, one of the neuropathological hallmarks found in AD brain. However, it is still a great challenge for nonradioactive, sensitive detection and location of Aβ plaques by brain imaging with high spatial resolution. Herein, phenothiazine derivative (PZD)-conjugated sub-5 nm ultrasmall ferrite nanoprobes (UFNPs@PEG/PZD) are designed and prepared for efficient T1-T2 magnetic resonance multimodal imaging of Aβ plaques. UFNPs@PEG/PZD not only possess high binding affinity to Aβ plaques but also exhibit excellent properties of r1 and r2 relaxivities. This study thus provides a promising ultrasmall nanoplatform as an Aβ-targeting multimodal imaging probe for the application of early diagnosis of AD.
Collapse
Affiliation(s)
- Jing Cai
- Imaging Diagnosis and Interventional Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060 Guangzhou, China
- CNRS, UMR8601, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CBNIT, Université Paris Descartes, PRES Sorbonne Paris Cité, UFR, Biomédicale, 75006 Paris, France
| | - Peiwei Yi
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, 510515 Guangzhou, China
- CNRS, UMR8601, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CBNIT, Université Paris Descartes, PRES Sorbonne Paris Cité, UFR, Biomédicale, 75006 Paris, France
| | - Yuqing Miao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710072 Xi'an, China
| | - Jinbo Liu
- Imaging Diagnosis and Interventional Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060 Guangzhou, China
| | - Yaofang Hu
- Department of Oncology, The Air Force Hospital of Southern Theater Command, 510000 Guangzhou, China
| | - Qicai Liu
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Yanqiu Feng
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, 510515 Guangzhou, China
- CNRS, UMR8601, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CBNIT, Université Paris Descartes, PRES Sorbonne Paris Cité, UFR, Biomédicale, 75006 Paris, France
| | - Huixiong Chen
- CNRS, UMR8601, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CBNIT, Université Paris Descartes, PRES Sorbonne Paris Cité, UFR, Biomédicale, 75006 Paris, France
| | - Li Li
- Imaging Diagnosis and Interventional Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060 Guangzhou, China
| |
Collapse
|
35
|
Arora H, Ramesh M, Rajasekhar K, Govindaraju T. Molecular Tools to Detect Alloforms of Aβ and Tau: Implications for Multiplexing and Multimodal Diagnosis of Alzheimer’s Disease. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190356] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Harshit Arora
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Madhu Ramesh
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Kolla Rajasekhar
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
- VNIR Biotechnologies Pvt. Ltd., Bangalore Bioinnovation Center, Helix Biotech Park, Electronic City Phase I, Bengaluru 560100, Karnataka, India
| |
Collapse
|
36
|
Goeritzer M, Bernhart E, Plastira I, Reicher H, Leopold C, Eichmann TO, Rechberger G, Madreiter-Sokolowski CT, Prasch J, Eller P, Graier WF, Kratky D, Malle E, Sattler W. Myeloperoxidase and Septic Conditions Disrupt Sphingolipid Homeostasis in Murine Brain Capillaries In Vivo and Immortalized Human Brain Endothelial Cells In Vitro. Int J Mol Sci 2020; 21:E1143. [PMID: 32050431 PMCID: PMC7037060 DOI: 10.3390/ijms21031143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/27/2020] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
During inflammation, activated leukocytes release cytotoxic mediators that compromise blood-brain barrier (BBB) function. Under inflammatory conditions, myeloperoxidase (MPO) is critically involved in inflicting BBB damage. We used genetic and pharmacological approaches to investigate whether MPO induces aberrant lipid homeostasis at the BBB in a murine endotoxemia model. To corroborate findings in a human system we studied the impact of sera from sepsis and non-sepsis patients on brain endothelial cells (hCMEC/D3). In response to endotoxin, the fatty acid, ceramide, and sphingomyelin content of isolated mouse brain capillaries dropped and barrier dysfunction occurred. In mice, genetic deficiency or pharmacological inhibition of MPO abolished these alterations. Studies in metabolic cages revealed increased physical activity and less pronounced sickness behavior of MPO-/- compared to wild-type mice in response to sepsis. In hCMEC/D3 cells, exogenous tumor necrosis factor α (TNFα) potently regulated gene expression of pro-inflammatory cytokines and a set of genes involved in sphingolipid (SL) homeostasis. Notably, treatment of hCMEC/D3 cells with sera from septic patients reduced cellular ceramide concentrations and induced barrier and mitochondrial dysfunction. In summary, our in vivo and in vitro data revealed that inflammatory mediators including MPO, TNFα induce dysfunctional SL homeostasis in brain endothelial cells. Genetic and pharmacological inhibition of MPO attenuated endotoxin-induced alterations in SL homeostasis in vivo, highlighting the potential role of MPO as drug target to treat inflammation-induced brain dysfunction.
Collapse
Affiliation(s)
- Madeleine Goeritzer
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz 8010, Austria; (M.G.); (E.B.); (I.P.); (H.R.); (C.L.); (C.T.M.-S.); (J.P.); (W.F.G.); (D.K.); (E.M.)
- BioTechMed-Graz, Graz 8010, Austria; (T.O.E.); (G.R.)
| | - Eva Bernhart
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz 8010, Austria; (M.G.); (E.B.); (I.P.); (H.R.); (C.L.); (C.T.M.-S.); (J.P.); (W.F.G.); (D.K.); (E.M.)
| | - Ioanna Plastira
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz 8010, Austria; (M.G.); (E.B.); (I.P.); (H.R.); (C.L.); (C.T.M.-S.); (J.P.); (W.F.G.); (D.K.); (E.M.)
| | - Helga Reicher
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz 8010, Austria; (M.G.); (E.B.); (I.P.); (H.R.); (C.L.); (C.T.M.-S.); (J.P.); (W.F.G.); (D.K.); (E.M.)
| | - Christina Leopold
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz 8010, Austria; (M.G.); (E.B.); (I.P.); (H.R.); (C.L.); (C.T.M.-S.); (J.P.); (W.F.G.); (D.K.); (E.M.)
| | - Thomas O. Eichmann
- BioTechMed-Graz, Graz 8010, Austria; (T.O.E.); (G.R.)
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria
- Center for Explorative Lipidomics, BioTechMed-Graz, Graz 8010, Austria
| | - Gerald Rechberger
- BioTechMed-Graz, Graz 8010, Austria; (T.O.E.); (G.R.)
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria
- Center for Explorative Lipidomics, BioTechMed-Graz, Graz 8010, Austria
| | - Corina T. Madreiter-Sokolowski
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz 8010, Austria; (M.G.); (E.B.); (I.P.); (H.R.); (C.L.); (C.T.M.-S.); (J.P.); (W.F.G.); (D.K.); (E.M.)
- Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Jürgen Prasch
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz 8010, Austria; (M.G.); (E.B.); (I.P.); (H.R.); (C.L.); (C.T.M.-S.); (J.P.); (W.F.G.); (D.K.); (E.M.)
| | - Philipp Eller
- Department of Internal Medicine, Intensive Care Unit, Medical University of Graz, Graz 8036, Austria;
| | - Wolfgang F. Graier
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz 8010, Austria; (M.G.); (E.B.); (I.P.); (H.R.); (C.L.); (C.T.M.-S.); (J.P.); (W.F.G.); (D.K.); (E.M.)
| | - Dagmar Kratky
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz 8010, Austria; (M.G.); (E.B.); (I.P.); (H.R.); (C.L.); (C.T.M.-S.); (J.P.); (W.F.G.); (D.K.); (E.M.)
- BioTechMed-Graz, Graz 8010, Austria; (T.O.E.); (G.R.)
| | - Ernst Malle
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz 8010, Austria; (M.G.); (E.B.); (I.P.); (H.R.); (C.L.); (C.T.M.-S.); (J.P.); (W.F.G.); (D.K.); (E.M.)
| | - Wolfgang Sattler
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz 8010, Austria; (M.G.); (E.B.); (I.P.); (H.R.); (C.L.); (C.T.M.-S.); (J.P.); (W.F.G.); (D.K.); (E.M.)
- BioTechMed-Graz, Graz 8010, Austria; (T.O.E.); (G.R.)
- Center for Explorative Lipidomics, BioTechMed-Graz, Graz 8010, Austria
| |
Collapse
|