1
|
Rong Y, Liu JQ, Wang XS. Access to Spiro-Quinazolines via an Acid-Catalyzed Ring-Opening of Isatins with N-Alkylureas. J Org Chem 2025. [PMID: 39998435 DOI: 10.1021/acs.joc.4c03157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Herein, we report novel p-TSA·H2O-catalyzed ring-opening reactions of isatins with N-alkylureas, allowing access to spiro-quinazolines with excellent substrate scope and good yields. Introducing N,N-dialkylureas, 2,4-thiazolidinedione, or rhodamine into the reactions leads to a distinct set of three-component reactions, yielding innovative spiro-quinazolines incorporating sulfur atoms. Notably, the protocol achieves a superior level of atomic economy, with water as the sole byproduct.
Collapse
Affiliation(s)
- Yuchen Rong
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Jian-Quan Liu
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Xiang-Shan Wang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| |
Collapse
|
2
|
Manna S, Das K, Halder S. Hydrogen Bond Donor-Catalyzed One-Pot Transformations of 2,2-Disubstituted Epoxides: Synthesis of Functionalized Nitrile-Rich Derivatives. J Org Chem 2025; 90:167-182. [PMID: 39686886 DOI: 10.1021/acs.joc.4c02111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
A practically intriguing catalytic domino methodology has been developed for the synthesis of highly functionalized pyran and ethene-1,1,2-tricarbonitrile derivatives in a single-pot operation. The gem-dicyano olefins and the corresponding epoxide were taken as the reactive partners in the presence of a hydrogen bond donor (HBD)-catalyzed condition. The reaction was found to be highly efficient in terms of the formation of sequential C-C and O-C bonds along with an exceptional CSp2-CSp coupling step through a metal-free organocatalytic pathway. This strategy has been further utilized on ester-substituted epoxides, although the results differ from those with gem-dicyano epoxides. The process remains versatile and effective across a wide range of substrates. This catalytic protocol has been proven to be very generalized with varieties of substrate scope. A low catalyst loading, ambient reaction conditions, and satisfactory yields of all of the products are the vital features of this approach. Moreover, the overall atom-economic outcome along with the synergistic reactivity pattern between the activated epoxide and the malononitrile derivatives is also very significant to address the originality of this process. Spectroscopic analysis is utilized to validate the mechanistic interpretation.
Collapse
Affiliation(s)
- Sibasish Manna
- Laboratory of Organo Catalysis and Synthesis, Department of Chemistry, Visvesvaraya National Institute of Technology (VNIT), Nagpur, Maharashtra 440010, India
| | - Koushik Das
- Laboratory of Organo Catalysis and Synthesis, Department of Chemistry, Visvesvaraya National Institute of Technology (VNIT), Nagpur, Maharashtra 440010, India
| | - Sandipan Halder
- Laboratory of Organo Catalysis and Synthesis, Department of Chemistry, Visvesvaraya National Institute of Technology (VNIT), Nagpur, Maharashtra 440010, India
| |
Collapse
|
3
|
Maurya MR, Maurya SK, Kumar N, Avecilla F. Nonoxidovanadium(IV) Complex-Catalyzed Synthesis of 2-Amino-3-cyano-4 H-pyrans/4 H-chromenes, Biscoumarins, and Xanthenes under Green Conditions. J Org Chem 2024; 89:12143-12158. [PMID: 39177312 DOI: 10.1021/acs.joc.4c01029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Reaction of [VIVO(acac)2] (Hacac = acetylacetone) with a Mannich base, N,N,N',N'-tetrakis(2-hydroxy-3,5-di-tert-butyl benzyl)-1,2-diaminoethane (H4L, I) in a 1:1 molar ratio in MeOH, leads to the formation of the nonoxidovanadium(IV) complex [VIVL] (1). Air stable complex 1 has been characterized using various spectroscopic techniques, DFT calculations, and single-crystal X-ray studies. 1 adopts distorted octahedral geometry where ligand coordinates through all coordination functionalities available. This complex has been used as a catalyst in the one-pot, three-component synthesis of 2-amino-3-cyano-4H-pyrans using 1,3-dicarbonyls (1,3-cyclohexanedione, dimedone, barbituric acid, and 4-hydroxycoumarin), malononitrile, and various substituted aromatic aldehydes in equimolar amounts employing ethanol as a green solvent. The catalytic reaction revealed that the multicomponent synthesis of 4H-pyrans and chromenes is greatly influenced by both types of 1,3-dicarbonyl compound employed and the nature of the substituent on the aromatic ring of the aldehyde. Synthesized catalyst has also been used in the synthesis of pharmacologically relevant oxygen-containing heterocycles, specifically, 1,8-dioxo-octahydro-1H-xanthenes and biscoumarins. The possible mechanism for the synthesized one-pot, multicomponent product has been proposed by isolating intermediate(s) generated during synthesis.
Collapse
Affiliation(s)
- Mannar R Maurya
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Shailendra K Maurya
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Naveen Kumar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Fernando Avecilla
- Grupo NanoToxGen, Centro Interdisciplinar de Química y Biología (CICA), Departamento de Química, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruna, A Coruna 15071, Spain
| |
Collapse
|
4
|
Meng X, Zhang Q, Lang X, Zhang E, Liu Y, Cao Z. Tandem Four-Component Reaction to Access Fused Polycycles Exhibiting Aggregation-Enhanced Through-Space Charge Transfer Emission. Chemistry 2024; 30:e202400998. [PMID: 38780029 DOI: 10.1002/chem.202400998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/23/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
Rapid construction of new fluorescence emitters is essential in advancing synthetic luminescent materials. This study illustrated a piperidine-promoted reaction of chiral dialdehyde with benzoylacetonitrile and malonitrile, leading to the formation of the 6/6/7 fused cyclic product in good yield. The proposed reaction mechanism involves a dual condensation/cyclization process, achieving the formation of up to six bonds for fused polycycles. The single crystal structure analysis revealed that the fused cyclic skeleton contains face-to-face naphthyl and cyanoalkenyl motifs, which act as the electronic donor and acceptor, respectively, potentially resulting in through-space charge transfer (TSCT) emission. While the TSCT emissions were weak in solution, a notable increase in luminescence intensity was observed upon aggregation, indicating bright fluorescent light. A series of theoretical analyses further supported the possibility of spatial electronic communication based on frontier molecular orbitals, the distance of charge transfer, and reduced density gradient analysis. This work not only provides guidance for the one-step synthesis of complex polycycles, but also offers valuable insights into the design of aggregation-enhanced TSCT emission materials.
Collapse
Affiliation(s)
- Xin Meng
- Shandong Key Laboratory of Life-Organic Analysis and School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, P. R. China
| | - Qing Zhang
- Shandong Key Laboratory of Life-Organic Analysis and School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, P. R. China
| | - Xuteng Lang
- Shandong Key Laboratory of Life-Organic Analysis and School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, P. R. China
| | - Ensheng Zhang
- Shandong Key Laboratory of Life-Organic Analysis and School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, P. R. China
| | - Yilin Liu
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, Institute of Organic Synthesis, Huaihua University, Huaihua, Hunan, 418000, P. R. China
| | - Ziping Cao
- Shandong Key Laboratory of Life-Organic Analysis and School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, P. R. China
| |
Collapse
|
5
|
Gotgi NM, Jain JS, Pal R, Ghosh D. Electrochemical and photochemical reaction of isatins: a decade update. Org Biomol Chem 2024; 22:3352-3375. [PMID: 38607323 DOI: 10.1039/d4ob00202d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
This review presents the latest progress in photochemical and electrochemical reactions involving isatins. Isatin and its functionalized scaffolds e.g., oxindoles, spirooxindoles, and quinolines are privileged heterocycles as they are largely present in several agrochemical, natural products, and pharmaceuticals. Thus, the functionalization of isatins using sustainable approaches, i.e., electro- and photochemical methods is of recent research interest worldwide. In this review, we have discussed most of the important reactions of isatins based on types of bond formation involved under electro- and photochemical conditions over the last decade. The reaction mechanism for each reaction has been discussed in detail to offer an inclusive guide to readers. Lastly, a summary of current challenges and the future outlook toward the development of effective electrochemical and photochemical methods for the reaction of isatins is also presented.
Collapse
Affiliation(s)
- Nandini M Gotgi
- Department of Chemistry, St Joseph's University, 36 Lalbagh Road, Shanthinagar, Bengaluru-560027, Karnataka, India.
| | - J Saurab Jain
- Department of Chemistry, St Joseph's University, 36 Lalbagh Road, Shanthinagar, Bengaluru-560027, Karnataka, India.
| | - Rita Pal
- Department of Chemistry, St Joseph's University, 36 Lalbagh Road, Shanthinagar, Bengaluru-560027, Karnataka, India.
| | - Debashis Ghosh
- Department of Chemistry, St Joseph's University, 36 Lalbagh Road, Shanthinagar, Bengaluru-560027, Karnataka, India.
- Department of Chemistry, St. Joseph's College (Autonomous), 36 Lalbagh Road, Shanthinagar, Bengaluru-560027, Karnataka, India
| |
Collapse
|
6
|
Lu HL, Jin JH, Liang SC, Feng CW, Li ZM, Zhao FG, Liu X, Shen YM. Photocatalytic Three-Component Reaction for the Synthesis of Multifunctional Diaryl Sulfides. J Org Chem 2023; 88:16547-16555. [PMID: 37971809 DOI: 10.1021/acs.joc.3c02048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
A photocatalytic three-component reaction of a nitroarene, a thiophenol, and a ketone for the synthesis of multifunctional diaryl sulfides was reported using a nitro group as the nitrogen source and thiophenol as the sulfur source. Thiophenol also serves as a proton donor to reduce nitroarene to arylamine as a key intermediate for the formation of C-N and C-S bonds. Good functional group tolerance and mild reaction conditions make this method have practical synthetic value for diversified multifunctional diaryl sulfides.
Collapse
Affiliation(s)
- Hui-Ling Lu
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China
| | - Jia-Hui Jin
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China
| | - Shang-Chuang Liang
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China
| | - Chuan-Wei Feng
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China
| | - Zhi-Ming Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China
| | - Fu-Gang Zhao
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China
- Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, PR China
| | - Xunshan Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China
- Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, PR China
| | - Yong-Miao Shen
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China
- Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, PR China
| |
Collapse
|
7
|
Das A, Thomas KRJ. Tuning Selectivity in the Visible-Light-Promoted Coupling of Thiols with Alkenes by EDA vs TOCO Complex Formation. ACS OMEGA 2023; 8:18275-18289. [PMID: 37251145 PMCID: PMC10210280 DOI: 10.1021/acsomega.3c02070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023]
Abstract
The visible-light-promoted catalyst-free condition has been demonstrated for self- and cross-coupling reactions of thiols in an ambient atmosphere. Further, synthesis of β-hydroxysulfides is accomplished under very mild conditions involving the formation of an electron donor-acceptor (EDA) complex between a disulfide and an alkene. However, the direct reaction of thiol with alkene via the formation of a thiol-oxygen co-oxidation (TOCO) complex failed to produce the desired compounds in high yields. The protocol was successful with several aryl and alkyl thiols for the formation of disulfides. However, the formation of β-hydroxysulfides required an aromatic unit on the disulfide fragment, which supports the formation of the EDA complex during the course of the reaction. The approaches presented in this paper for the coupling reaction of thiols and the synthesis of β-hydroxysulfides are unique and do not require toxic organic or metal catalysts.
Collapse
|
8
|
Yin YY, Liu XR, Jin JH, Li ZM, Shen YM, Zhou J, Peng X. Visible-light induced three-component reaction for α-aminobutyronitrile synthesis by C-C bond formation using quantum dots as photocatalysts. Org Biomol Chem 2023; 21:359-364. [PMID: 36503936 DOI: 10.1039/d2ob01797k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We describe a three-component reaction of malononitrile, benzaldehyde and N,N-dimethylaniline using aluminium doped CdSeS/CdZnSeS(Al)/ZnS quantum dots (QDs) as visible light catalysts to synthesize α-aminobutyrilitriles at room temperature and under mild conditions. The reactions exhibit high functional group tolerance, and the well dispersed quantum dot catalysts are highly efficient with a turnover number (TON) greater than 1.1 × 103 and can be recycled at least three times without significant loss of catalytic activity.
Collapse
Affiliation(s)
- Yu-Yun Yin
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China.
| | - Xiao-Rui Liu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China.
| | - Jia-Hui Jin
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China.
| | - Zhi-Ming Li
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China.
| | - Yong-Miao Shen
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China. .,Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou 310027, PR China
| | - Jianhai Zhou
- Najing Technology Corporation Ltd, 428 Qiuyi Road Building No. 3, Binjiang District, Hangzhou, Zhejiang, 310052, People's Republic of China.
| | - Xiaogang Peng
- Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou 310027, PR China
| |
Collapse
|
9
|
Nagasundaram N, Peroli U, Venkatesh R, Vinoth N, Lalitha A. Eosin Y as a direct HAT photocatalyst for the synthesis of tetrahydrodipyrazolopyridines under white LED irradiation. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
10
|
Mohamadpour F. The development of knoevenagel-michael cyclocondensation through a single-electron transfer (SET)/energy transfer (EnT) pathway in the use of methylene blue (MB+) as a photo-redox catalyst. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Sun W, Zhang SZ, Xue YJ, Mo LP, Zhang ZH. Perovskite as recyclable heterogeneous photocatalyst for synthesis of bis-1,3-dicarbonyl compounds. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Di JQ, Chen MN, Zhao AD, Zhang ZH. Visible Light Mediated, Catalyst Free, One-Pot Convenient Synthesis of
Dihydropyridines. LETT ORG CHEM 2022. [DOI: 10.2174/1570178618666210125162342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
A simple, efficient and green protocol has been developed for the synthesis of polysubstituted dihydropyridines
via one-pot, four-component reaction of aldehydes, arylamines, dialkyl acetylenedicarboxylate, and malononitrile. The reaction was proceeded at room temperature in the absence of catalyst in aqueous ethyl lactate under visible light irradiation.
The main advantages of the present approach are mild reaction condition, high yield, no column chromatography, clean
reaction profile, environmentally friendly and sustainable from the economic point of view
Collapse
Affiliation(s)
- Jia-Qi Di
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional
Molecules, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Meng-Nan Chen
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional
Molecules, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Ai-Dong Zhao
- Analysis and Testing Center, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Zhan-Hui Zhang
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional
Molecules, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, P. R. China
| |
Collapse
|
13
|
Yadav MB, Vagh SS, Jeong YT. Divergent Annulation of Spiro Indoline‐Pyran and Fused Epoxyetheno Indeno‐Furan from 1,2‐diketone and 1‐Cyanoketone. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Maruti B. Yadav
- Pukyong National University - Daeyeon Campus: Pukyong National University Chemistry KOREA, REPUBLIC OF
| | - Sandip S. Vagh
- NCL: National Chemical Laboratory CSIR Organic Chemistry INDIA
| | - Yeon Tae Jeong
- Pukyong National University Division of Image Science and Information Engineering San 100, Yongdang-Dong, Nam-Gu 608-739 Busan KOREA, REPUBLIC OF
| |
Collapse
|
14
|
Dutta A, Goswami M, Rabha J, Das S, Jha DK, Nongkhlaw R. Fe
3
O
4
@RB@LDH: Efficient and Recyclable Photocatalyst Visible‐Light Mediated Synthesis of Pyran and Pyrrolidinone Derivatives and Their Anti‐Microbial Activities. ChemistrySelect 2022. [DOI: 10.1002/slct.202104075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Arup Dutta
- Centre for Advanced Studies in Chemistry Department of Chemistry North-Eastern Hill University Shillong 793022 India
| | - Munmee Goswami
- Centre for Advanced Studies in Chemistry Department of Chemistry North-Eastern Hill University Shillong 793022 India
| | - Jintu Rabha
- Department of Botany Gauhati University Guwahati 781014 Assam India
| | - Sukanya Das
- Department of Botany Gauhati University Guwahati 781014 Assam India
| | - Dhruva K. Jha
- Department of Botany Gauhati University Guwahati 781014 Assam India
| | - Rishanlang Nongkhlaw
- Centre for Advanced Studies in Chemistry Department of Chemistry North-Eastern Hill University Shillong 793022 India
| |
Collapse
|
15
|
Govindaraju S, Tabassum S. Visible Light Mediated Organophotoredox-Catalyzed One-Pot Domino Synthesis of Novel 6,7 Disubstituted 1H-Pyrroles. Top Catal 2022. [DOI: 10.1007/s11244-022-01580-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Agarwal S, Sethiya A, Soni J, Sahiba N, Teli P. An Overview of Recent Advances in the Catalytic Synthesis of Substituted Pyrans. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shikha Agarwal
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU Udaipur
| | - Ayushi Sethiya
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU Udaipur
| | - Jay Soni
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU Udaipur
| | - Nusrat Sahiba
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU Udaipur
| | - Pankaj Teli
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU Udaipur
| |
Collapse
|
17
|
Hartwig D, Soares LK, Dapper LH, Nascimento JER, Lenardão EJ. Dicarbonyl compounds in the synthesis of heterocycles under green conditions. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Carbon–carbon and carbon-heteroatom bond forming reactions are strategically employed for the generation of a variety of heterocyclic systems. This class of compounds represents the most general structural unit, present in many natural compounds. They are recognized for their valuable biologically properties and wide range of applications in medicinal, pharmaceutical, and other related fields of chemistry. This is an updated review on the use of dicarbonyl compounds under environmentally friendly conditions to access a series of heterocyclic structures, e.g., quinoxaline, quinazolinones, benzochalcogenazoles, indoles, among others. Synthetic protocols involving copper-catalyzed, multicomponent and cascade reactions, decarboxylative cyclization, recycling of CO2, and electrochemical approaches are presented and discussed.
Collapse
Affiliation(s)
- Daniela Hartwig
- Laboratório de Síntese Orgânica Limpa – LASOL, CCQFA, Universidade Federal de Pelotas - UFPel , P.O. Box 354, 96010-900 Pelotas , RS , Brazil
| | - Liane K. Soares
- Laboratório de Síntese Orgânica Limpa – LASOL, CCQFA, Universidade Federal de Pelotas - UFPel , P.O. Box 354, 96010-900 Pelotas , RS , Brazil
| | - Luiz H. Dapper
- Laboratório de Síntese Orgânica Limpa – LASOL, CCQFA, Universidade Federal de Pelotas - UFPel , P.O. Box 354, 96010-900 Pelotas , RS , Brazil
| | - José E. R. Nascimento
- Laboratório de Síntese Orgânica Limpa – LASOL, CCQFA, Universidade Federal de Pelotas - UFPel , P.O. Box 354, 96010-900 Pelotas , RS , Brazil
| | - Eder João Lenardão
- Laboratório de Síntese Orgânica Limpa – LASOL, CCQFA, Universidade Federal de Pelotas - UFPel , P.O. Box 354, 96010-900 Pelotas , RS , Brazil
| |
Collapse
|
18
|
Goswami M, Dutta A, Paul P, Nongkhlaw R. Recent Developments on Catalyst‐Free, Visible‐Light‐Triggered Synthesis of Heterocyclic Scaffolds and Their Mechanistic Study. ChemistrySelect 2021. [DOI: 10.1002/slct.202102696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Munmee Goswami
- Centre for Advanced Studies in Chemistry Department of Chemistry North-Eastern Hill University Shillong 793022 INDIA
| | - Arup Dutta
- Centre for Advanced Studies in Chemistry Department of Chemistry North-Eastern Hill University Shillong 793022 INDIA
| | - Pooja Paul
- Centre for Advanced Studies in Chemistry Department of Chemistry North-Eastern Hill University Shillong 793022 INDIA
| | - Rishanlang Nongkhlaw
- Centre for Advanced Studies in Chemistry Department of Chemistry North-Eastern Hill University Shillong 793022 INDIA
| |
Collapse
|
19
|
Gan J, Luo N, Wu C, Wan X, Wang C. Efficient Synthesis of Chromeno[4,3,2‐
de
] [1,6]naphthyridine Derivatives via Pseudo Four‐Component Reaction. ChemistrySelect 2021. [DOI: 10.1002/slct.202101962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jianbo Gan
- School of Chemistry and Chemical Engineering Yangzhou University 180 Siwangting Street Yangzhou 225002 P. R. China
| | - Naili Luo
- School of Chemistry and Chemical Engineering Yangzhou University 180 Siwangting Street Yangzhou 225002 P. R. China
| | - Chengjun Wu
- School of Chemistry and Chemical Engineering Yangzhou University 180 Siwangting Street Yangzhou 225002 P. R. China
| | - Xinyi Wan
- School of Chemistry and Chemical Engineering Yangzhou University 180 Siwangting Street Yangzhou 225002 P. R. China
| | - Cunde Wang
- School of Chemistry and Chemical Engineering Yangzhou University 180 Siwangting Street Yangzhou 225002 P. R. China
| |
Collapse
|
20
|
Di JQ, Wang HJ, Cui ZS, Hu JY, Zhang ZH. Catalyst-free Synthesis of Aminomethylphenol Derivatives in Cyclopentyl Methyl Ether via Petasis Borono-Mannich Reaction. Curr Org Synth 2021; 18:294-300. [PMID: 33327919 DOI: 10.2174/1570179417666201216161143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/21/2020] [Accepted: 10/29/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Aminomethylphenol molecules have wider applications in pharmaceuticals, agrochemicals, plant protection and promising functional materials. The development of an efficient and practical method to prepare this class of compound is highly desirable from both environmental and economical points of view. MATERIALS AND METHODS In order to establish an effective synthetic method for preparing aminomethylphenol derivatives, the Petasis borono-Mannich reaction of salicylaldehyde, phenylboronic acid and 1,2,3,4- tetrahydroisoquinoline was selected as a model reaction. A variety of reaction conditions are investigated, including solvent and temperature. The generality and limitation of the established method were also evaluated. RESULTS AND DISCUSSION It was found that model reaction can be carried out in cyclopentyl methyl ether at 80 oC under catalyst-free conditions. This protocol, with broad substrate applicability, the reaction of various arylboronic acid, secondary amine and salicylaldehyde proceeded smoothly under optimal reaction conditions to afford various aminomethylphenol derivatives in high yields. A practical, scalable, and high-yielding synthesis of aminomethylphenol derivatives was successfully accomplished. CONCLUSION A catalyst-free practical method for the synthesis of minomethylphenol derivatives based on Petasis borono-Mannich (PBM) reaction of various arylboronic acid, secondary amine and salicylaldehyde in cyclopentyl methyl ether has been developed. The salient features of this protocol are avoidance of any additive/catalyst and toxic organic solvents, use of cyclopentyl methyl ether as the reaction medium, clean reaction profiles, easy operation, and high to excellent yield.
Collapse
Affiliation(s)
- Jia-Qi Di
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Hao-Jie Wang
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhen-Shui Cui
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Jin-Yong Hu
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhan-Hui Zhang
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
21
|
Brandão P, Marques CS, Carreiro EP, Pineiro M, Burke AJ. Engaging Isatins in Multicomponent Reactions (MCRs) - Easy Access to Structural Diversity. CHEM REC 2021; 21:924-1037. [PMID: 33599390 DOI: 10.1002/tcr.202000167] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/25/2021] [Indexed: 12/15/2022]
Abstract
Multicomponent reactions (MCRs) are a valuable tool in diversity-oriented synthesis. Its application to privileged structures is gaining relevance in the fields of organic and medicinal chemistry. Isatin, due to its unique reactivity, can undergo different MCRs, affording multiple interesting scaffolds, namely oxindole-derivatives (including spirooxindoles, bis-oxindoles and 3,3-disubstituted oxindoles) and even, under certain conditions, ring-opening reactions occur that leads to other heterocyclic compounds. Over the past few years, new methodologies have been described for the application of this important and easily available starting material in MCRs. In this review, we explore these novelties, displaying them according to the structure of the final products obtained.
Collapse
Affiliation(s)
- Pedro Brandão
- University of Coimbra, CQC and Department of Chemistry, 3004-535, Coimbra, Portugal.,LAQV-REQUIMTE, University of Évora, Rua Romão Ramalho, 59, 7000, Évora, Portugal
| | - Carolina S Marques
- LAQV-REQUIMTE, University of Évora, Rua Romão Ramalho, 59, 7000, Évora, Portugal
| | - Elisabete P Carreiro
- LAQV-REQUIMTE, University of Évora, Rua Romão Ramalho, 59, 7000, Évora, Portugal
| | - M Pineiro
- University of Coimbra, CQC and Department of Chemistry, 3004-535, Coimbra, Portugal
| | - Anthony J Burke
- LAQV-REQUIMTE, University of Évora, Rua Romão Ramalho, 59, 7000, Évora, Portugal.,University of Evora, Department of Chemistry, Rua Romão Ramalho, 59, 7000, Évora, Portugal
| |
Collapse
|
22
|
Xu L, Zhang WH, Cui ZS, Zhang ZH. Choline Chloride/Glycerol Promoted Synthesis of 3,3-Disubstituted Indol-2-ones. CURRENT ORGANOCATALYSIS 2021. [DOI: 10.2174/2213337207999210104223005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Objective:
3,3-Disubstituted indol-2-one derivatives have wider applications in pharmaceuticals and they are key intermediates for the synthesis of many kinds of drug candidates. The development of an efficient and practical method to prepare this class of compound is highly desirable from both environmental and economical points of views.
Methods:
In order to establish an effective synthetic method for preparing 3,3-disubstituted indol-2-one derivatives, the bis-condensation reaction of isatin and 1H-indene-1,3(2H)-dione was selected as a model reaction. A variety of natural deep eutectic solvent (NADES) were prepared and used for this reaction. The generality and limitation of the established method were also investigated.
Results:
It was found that model reaction can be carried out in natural deep eutectic solvent (NADES) based on choline chloride (ChCl) at 80 oC under microwave irradiation. This protocol with a broad substrate applicability afforded various 2,2'-(2-oxoindoline-3,3-diyl)bis(1H-indene-1,3(2H)-dione) derivatives in high yields.
Conclusion:
simple and efficient procedure has been developed for synthesis of 2,2'-(2-oxoindoline-3,3-diyl)bis(1H-indene-1,3(2H)-dione), spiro[indoline-3,7'-pyrano[5,6-c:5,6-c']dichromene]-2,6',8'-trione, and spiro[indoline-3,9'-xan-thene] trione via bis-condensation between isatin with 1,3-indandione, 4-hydroxycoumarin or 1,3-cyclohexanedione in nat-ural deep eutectic solvent (NADES) based on choline chloride (ChCl) and glycerol (Gl) under microwave irradiation. The salient features of this protocol are avoidance of any additive/catalyst and toxic organic solvent, clean reaction profiles, non-chromatographic purification procedure, and high to excellent yield. Furthermore, the use of NADES as green reaction medium reduces burden on environment and makes the present method environmentally sustainable.
Collapse
Affiliation(s)
- Ling Xu
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024,, China
| | - Wei-Hong Zhang
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024,, China
| | - Zhen-Shui Cui
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024,, China
| | - Zhan-Hui Zhang
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024,, China
| |
Collapse
|
23
|
Dutta A, Rohman MA, Nongrum R, Thongni A, Mitra S, Nongkhlaw R. Visible light-promoted synthesis of pyrrolidinone derivatives via Rose Bengal as a photoredox catalyst and their photophysical studies. NEW J CHEM 2021. [DOI: 10.1039/d1nj00343g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This protocol demonstrates the eco-friendly and sustainable synthesis of pyrrolidinone derivatives using a photocatalyst under irradiation from blue LEDs and their photophysical studies.
Collapse
Affiliation(s)
- Arup Dutta
- Centre for Advanced Studies in Chemistry
- Department of Chemistry
- North Eastern Hill University
- Shillong 793022
- India
| | - Mostofa A. Rohman
- Centre for Advanced Studies in Chemistry
- Department of Chemistry
- North Eastern Hill University
- Shillong 793022
- India
| | | | - Aiborlang Thongni
- Centre for Advanced Studies in Chemistry
- Department of Chemistry
- North Eastern Hill University
- Shillong 793022
- India
| | - Sivaprasad Mitra
- Centre for Advanced Studies in Chemistry
- Department of Chemistry
- North Eastern Hill University
- Shillong 793022
- India
| | - Rishanlang Nongkhlaw
- Centre for Advanced Studies in Chemistry
- Department of Chemistry
- North Eastern Hill University
- Shillong 793022
- India
| |
Collapse
|
24
|
Dutta A, Rahman N, Kumar JE, Rabha J, Phukan T, Nongkhlaw R. Catalyst-free UV365-assisted synthesis of pyran annulated heterocyclic scaffolds and evaluation of their antibacterial activities. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1825741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Arup Dutta
- Department of Chemistry, North-Eastern Hill University, Shillong, Meghalaya, India
| | - Noimur Rahman
- Department of Chemistry, North-Eastern Hill University, Shillong, Meghalaya, India
| | - John Elisa Kumar
- Photocatalysis Lab, North-Eastern Hill University, Shillong, Meghalaya, India
| | - Jintu Rabha
- Department of Botany, Gauhati University, Guwahati, Assam, India
| | - Tridip Phukan
- Department of Botany, Gauhati University, Guwahati, Assam, India
| | - Rishanlang Nongkhlaw
- Department of Chemistry, North-Eastern Hill University, Shillong, Meghalaya, India
| |
Collapse
|
25
|
Yang ZJ, Gong QT, Wang Y, Yu Y, Liu YH, Wang N, Yu XQ. Biocatalytic tandem multicomponent reactions for one-pot synthesis of 2-Amino-4H-Pyran library and in vitro biological evaluation. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110983] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Aghahosseini H, Ranjbar MR, Ramazani A. Simple and Efficient Synthesis of Guanidine‐Based Magnetic Nanocatalyst for the One‐Pot, Four‐Component Synthesis of Polyhydroquinolines in Water. ChemistrySelect 2020. [DOI: 10.1002/slct.202001903] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hamideh Aghahosseini
- Department of ChemistryUniversity of Zanjan P O Box 45195-313 Zanjan Iran
- Research Institute of Modern Biological Techniques (RIMBT)University of Zanjan Zanjan Iran
| | | | - Ali Ramazani
- Department of ChemistryUniversity of Zanjan P O Box 45195-313 Zanjan Iran
- Research Institute of Modern Biological Techniques (RIMBT)University of Zanjan Zanjan Iran
| |
Collapse
|
27
|
He WB, Gao LQ, Chen XJ, Wu ZL, Huang Y, Cao Z, Xu XH, He WM. Visible-light-initiated malic acid-promoted cascade coupling/cyclization of aromatic amines and KSCN to 2-aminobenzothiazoles without photocatalyst. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.02.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Preparation and characterization of Ca-modified Co/Al2O3 and its catalytic application in the one-pot synthesis of 4H-pyrans. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04139-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
29
|
Du J, Wu J, Zhu L, Ren X, Jiang C, Wang T. Bifunctional Phosphonium Salt‐catalyzed Enantioselective [4+2] Annulation of Isoindigos with Allenes: Access to Complex Heterocycles with Centerpiece of 4
H
‐Pyrans. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000150] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Juan Du
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of ChemistrySichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Jia‐Hong Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of ChemistrySichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Lixiang Zhu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of ChemistrySichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Xiaoyu Ren
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of ChemistrySichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Chunhui Jiang
- School of Environmental and Chemical EngineeringJiangsu University of Science and Technology 2 Mengxi Road Zhenjiang 212003 People's Republic of China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of ChemistrySichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| |
Collapse
|
30
|
Eosin Y-catalyzed one-pot synthesis of spiro[4H-pyran-oxindole] under visible light irradiation. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131059] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Li M, Wang T, Wang C. Multicomponent Reaction of Pyridinium Salts,
β
‐Nitrostyrenes and Ammonium Acetate under the DBU/Acetic Acid System: Access to 2,4,6‐Triarylpyridine Derivatives. ChemistrySelect 2020. [DOI: 10.1002/slct.202000387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mingshuang Li
- School of Chemistry and Chemical EngineeringYangzhou University 180 Siwangting Street Yangzhou 225002 P. R. China
| | - Ting Wang
- School of Chemistry and Chemical EngineeringYangzhou University 180 Siwangting Street Yangzhou 225002 P. R. China
| | - Cunde Wang
- School of Chemistry and Chemical EngineeringYangzhou University 180 Siwangting Street Yangzhou 225002 P. R. China
| |
Collapse
|
32
|
Nazeef M, Shivhare KN, Ali S, Ansari K, Ansari MD, Tiwari SK, Yadav V, Siddiqui I. Visible-light-promoted C N and C S bonds formation: A catalyst and solvent-free photochemical approach for the synthesis of 1,3-thiazolidin-4-ones. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112347] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
Xu J, Zhang H, Zhao J, Ni Z, Zhang P, Shi BF, Li W. Photocatalyst-, metal- and additive-free, direct C–H arylation of quinoxalin-2(1H)-ones with aryl acyl peroxides induced by visible light. Org Chem Front 2020. [DOI: 10.1039/d0qo00872a] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A visible light-mediated direct C–H arylation of quinoxalin-2(1H)-ones with aryl acyl peroxides has been developed.
Collapse
Affiliation(s)
- Jun Xu
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Hongdou Zhang
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Jianming Zhao
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Zhigang Ni
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Pengfei Zhang
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Bing-Feng Shi
- Department of Chemistry
- Zhejiang University
- Hangzhou
- China
| | - Wanmei Li
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| |
Collapse
|
34
|
Xie LY, Chen YL, Qin L, Wen Y, Xie JW, Tan JX, Huang Y, Cao Z, He WM. Visible-light-promoted direct C–H/S–H cross-coupling of quinoxalin-2(1H)-ones with thiols leading to 3-sulfenylated quinoxalin-2(1H)-ones in air. Org Chem Front 2019. [DOI: 10.1039/c9qo01240k] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A new and efficient visible-light-mediated strategy has been developed for the synthesis of 3-sulfenylated quinoxalin-2(1H)-ones via rhodamine B catalyzed C–H/S–H cross-coupling of quinoxalin-2(1H)-ones with thiols in air at room temperature.
Collapse
Affiliation(s)
- Long-Yong Xie
- Department of Chemistry
- Hunan University of Science and Engineering
- Yongzhou 425100
- China
| | - Yan-Ling Chen
- Department of Chemistry
- Hunan University of Science and Engineering
- Yongzhou 425100
- China
| | - Li Qin
- Department of Chemistry
- Hunan University of Science and Engineering
- Yongzhou 425100
- China
| | - Yuan Wen
- Department of Chemistry
- Hunan University of Science and Engineering
- Yongzhou 425100
- China
| | - Jian-Wei Xie
- Department of Chemistry
- Hunan University of Science and Engineering
- Yongzhou 425100
- China
| | - Jia-Xi Tan
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
- Xiangtan 411201
- China
| | - Ying Huang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation
- Changsha University of Science and Technology
- Changsha
- China
| | - Zhong Cao
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation
- Changsha University of Science and Technology
- Changsha
- China
| | - Wei-Min He
- Department of Chemistry
- Hunan University of Science and Engineering
- Yongzhou 425100
- China
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation
| |
Collapse
|