1
|
Pang N, Li Y, Wang C, Tong X, Wang M, Shi H, Wu D, Xiong D, Xu S, Sorokin PB, Wang L, Jiang L, Chu PK. Facilitating the Hydrogen Evolution Reaction on Basal-Plane S Sites on MoS 2@Ni 3S 2 by Dual Ti and N Plasma Treatment. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39066693 DOI: 10.1021/acsami.4c05758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Atomic engineering of the basal plane active sites in MoS2 holds great promise to boost the electrocatalytic activity for hydrogen evolution reactions (HER), yet the performance optimization and mechanism exploration are still not satisfactory. Herein, we proposed a dual-plasma engineering strategy to implant Ti and N heteroatoms into the basal plane of MoS2 supported by Ni3S2 nanorods on nickel foam (MSNF) for efficient electrocatalysis of HER. Owing to the low formation energy of Ti dopants in MoS2 and the extra charge carriers introduced by N dopants, the optimally codoped samples N1.0@Ti500-MSNF demonstrate significant morphology changes from nanorods to urchin-like nanospheres with the surface active areas increased by seven-fold, as well as enhanced electrical conductivity in comparison with the nondoped counterparts. The HER performance of N1.0@Ti500-MSNF is comparable with the Pt-based catalyst: overpotential of 26 mV at 20 mA cm-2, Tafel slope of 35.6 mV dec-1, and long-term stability over 50 h. First-principles calculation reveals that N doping accelerates the dissociation of water molecules while Ti doping activates the adjacent S sites for hydrogen adsorption by lowering the Gibbs free energy, resulting in excellent HER activity. This work thus provides an effective strategy for basal plane engineering of MoS2 heterostructures toward high-performance HER and sustainable energy supply at reasonable costs.
Collapse
Affiliation(s)
- Ning Pang
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, P. R. China
| | - Yun Li
- School of Physics and Electronic Engineering, Hanshan Normal University, Chaozhou 521041, P. R. China
| | - Chang Wang
- School of Microelectronics, Shanghai University, 20 Chengzhong Road, Shanghai 201800, P. R. China
| | - Xin Tong
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, P. R. China
- Jiangsu Laboratory of Advanced Functional Materials, School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu 215500, P. R. China
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Mengqiu Wang
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, P. R. China
| | - Huiyun Shi
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, P. R. China
| | - Dajun Wu
- Jiangsu Laboratory of Advanced Functional Materials, School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu 215500, P. R. China
| | - Dayuan Xiong
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, P. R. China
| | - Shaohui Xu
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, P. R. China
| | - Pavel B Sorokin
- National University of Science and Technology "MISIS", Leninsky prospect 4, Moscow 119049, Russian Federation
- Technological Institute for Superhard and Novel Carbon Materials, Troitsk, Moscow 142190, Russia
| | - Lianwei Wang
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, P. R. China
| | - Lin Jiang
- School of Microelectronics, Shanghai University, 20 Chengzhong Road, Shanghai 201800, P. R. China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
2
|
Zhang K, Zhang T, You J, Zheng X, Zhao M, Zhang L, Kong J, Luo Z, Huang S. Low-Temperature Vapor-Phase Growth of 2D Metal Chalcogenides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307587. [PMID: 38084456 DOI: 10.1002/smll.202307587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/07/2023] [Indexed: 05/12/2024]
Abstract
2D metal chalcogenides (MCs) have garnered significant attention from both scientific and industrial communities due to their potential in developing next-generation functional devices. Vapor-phase deposition methods have proven highly effective in fabricating high-quality 2D MCs. Nevertheless, the conventionally high thermal budgets required for synthesizing 2D MCs pose limitations, particularly in the integration of multiple components and in specialized applications (such as flexible electronics). To overcome these challenges, it is desirable to reduce the thermal energy requirements, thus facilitating the growth of various 2D MCs at lower temperatures. Numerous endeavors have been undertaken to develop low-temperature vapor-phase growth techniques for 2D MCs, and this review aims to provide an overview of the latest advances in low-temperature vapor-phase growth of 2D MCs. Initially, the review highlights the latest progress in achieving high-quality 2D MCs through various low-temperature vapor-phase techniques, including chemical vapor deposition (CVD), metal-organic CVD, plasma-enhanced CVD, atomic layer deposition (ALD), etc. The strengths and current limitations of these methods are also evaluated. Subsequently, the review consolidates the diverse applications of 2D MCs grown at low temperatures, covering fields such as electronics, optoelectronics, flexible devices, and catalysis. Finally, current challenges and future research directions are briefly discussed, considering the most recent progress in the field.
Collapse
Affiliation(s)
- Kenan Zhang
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, 999077, China
| | - Tianyi Zhang
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jiawen You
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, 999077, China
| | - Xudong Zheng
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Mei Zhao
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Lijie Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Jing Kong
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Zhengtang Luo
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, 999077, China
- Hong Kong University of Science and Technology-Shenzhen Research Institute, Nanshan, Shenzhen, 518057, China
| | - Shaoming Huang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
3
|
Yu Y, Zhu Z, Huang H. Surface Engineered Single-atom Systems for Energy Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311148. [PMID: 38197471 DOI: 10.1002/adma.202311148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/17/2023] [Indexed: 01/11/2024]
Abstract
Single-atom catalysts (SACs) are demonstrated to show exceptional reactivity and selectivity in catalytic reactions by effectively utilizing metal species, making them a favorable choice among the different active materials for energy conversion. However, SACs are still in the early stages of energy conversion, and problems like agglomeration and low energy conversion efficiency are hampering their practical applications. Substantial research focus on support modifications, which are vital for SAC reactivity and stability due to the intimate relationship between metal atoms and support. In this review, a category of supports and a variety of surface engineering strategies employed in SA systems are summarized, including surface site engineering (heteroatom doping, vacancy introducing, surface groups grafting, and coordination tunning) and surface structure engineering (size/morphology control, cocatalyst deposition, facet engineering, and crystallinity control). Also, the merits of support surface engineering in single-atom systems are systematically introduced. Highlights are the comprehensive summary and discussions on the utilization of surface-engineered SACs in diversified energy conversion applications including photocatalysis, electrocatalysis, thermocatalysis, and energy conversion devices. At the end of this review, the potential and obstacles of using surface-engineered SACs in the field of energy conversion are discussed. This review aims to guide the rational design and manipulation of SACs for target-specific applications by capitalizing on the characteristic benefits of support surface engineering.
Collapse
Affiliation(s)
- Yutang Yu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Zijian Zhu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Hongwei Huang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| |
Collapse
|
4
|
Ray P, Pal S, Sarkar A, Sultana F, Basu A, Show B. Oyster Pearl-Shaped Ternary Iron Chalcogenide, FeSe 0.5Te 0.5, Films on FTO through Electrochemical Growth from the Exchange of Chalcogens Boosted the Enzyme-Free Urea-Sensing Ability toward Real Analytes. ACS APPLIED BIO MATERIALS 2024; 7:1621-1642. [PMID: 38430188 DOI: 10.1021/acsabm.3c01086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Here, iron chalcogenide thin films were developed for the first time by using the less hazardous electrodeposition technique at optimized conditions on an FTO glass substrate. The chalcogenides have different surface, morphological, structural, and optical properties, as well as an enzyme-free sensing behavior toward urea. Numerous small crystallites of about ∼20 to 25 nm for FeSe, ∼18 to 25 nm for FeTe, and ∼18 to 22 nm in diameter for FeSeTe are observed with partial agglomeration under an electron microscope, having a mixed phase of tetragonal and orthorhombic structures of FeSe, FeTe, and, FeSeTe, respectively. Profilometry, XRD, FE-SEM, HR-TEM, XPS, EDX, UV-vis spectroscopy, and FT-IR spectroscopy were used for the analysis of binary and ternary composite semiconductors, FeSe, FeTe, and FeSeTe, respectively. Electrochemical experiments were conducted with the chalcogenide thin films and urea as the analyte in phosphate-buffered media at a pH of ∼ 7.4 in the concentration range of 3-413 μM. Cyclic voltammetry was performed to determine the sensitivity of the prepared electrode at an optimized scan rate of 50 mV s-1. The electrodeposited chalcogenide films appeared with a low detection limit and satisfactory sensitivity, of which the ternary chalcogenide film has the lowest LOD of 1.16 μM and the maximum sensitivity of 74.22 μA μM-1 cm-2. The transition metal electrode has a very wide range of detection limit of 1.25-2400 μM with a short response time of 4 s. This fabricated biosensor is capable of exhibiting almost 75% of its starting activity after 2 weeks of storage in the freezer at 4 °C. Simple methods of preparation, a cost-effective process, and adequate electrochemical sensing of urea confirm that the prepared sensor is suitable as an enzyme-free urea sensor and can be utilized for future studies.
Collapse
Affiliation(s)
- Purbali Ray
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Sunanda Pal
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Abhimanyu Sarkar
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Farhin Sultana
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Arghyadeep Basu
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | | |
Collapse
|
5
|
Kumar P, Singh G, Guan X, Lee J, Bahadur R, Ramadass K, Kumar P, Kibria MG, Vidyasagar D, Yi J, Vinu A. Multifunctional carbon nitride nanoarchitectures for catalysis. Chem Soc Rev 2023; 52:7602-7664. [PMID: 37830178 DOI: 10.1039/d3cs00213f] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Catalysis is at the heart of modern-day chemical and pharmaceutical industries, and there is an urgent demand to develop metal-free, high surface area, and efficient catalysts in a scalable, reproducible and economic manner. Amongst the ever-expanding two-dimensional materials family, carbon nitride (CN) has emerged as the most researched material for catalytic applications due to its unique molecular structure with tunable visible range band gap, surface defects, basic sites, and nitrogen functionalities. These properties also endow it with anchoring capability with a large number of catalytically active sites and provide opportunities for doping, hybridization, sensitization, etc. To make considerable progress in the use of CN as a highly effective catalyst for various applications, it is critical to have an in-depth understanding of its synthesis, structure and surface sites. The present review provides an overview of the recent advances in synthetic approaches of CN, its physicochemical properties, and band gap engineering, with a focus on its exclusive usage in a variety of catalytic reactions, including hydrogen evolution reactions, overall water splitting, water oxidation, CO2 reduction, nitrogen reduction reactions, pollutant degradation, and organocatalysis. While the structural design and band gap engineering of catalysts are elaborated, the surface chemistry is dealt with in detail to demonstrate efficient catalytic performances. Burning challenges in catalytic design and future outlook are elucidated.
Collapse
Affiliation(s)
- Prashant Kumar
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Gurwinder Singh
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Xinwei Guan
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Jangmee Lee
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Rohan Bahadur
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Kavitha Ramadass
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Pawan Kumar
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Devthade Vidyasagar
- School of Material Science and Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jiabao Yi
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| |
Collapse
|
6
|
Xie Z, Wu Y, Zhao Y, Wei M, Jiang Q, Yang X, Xun W. Activating MoS
2
Basal Plane via Non‐noble Metal Doping For Enhanced Hydrogen Production. ChemistrySelect 2023. [DOI: 10.1002/slct.202204608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Zhongqi Xie
- Faculty of Electronic Information Engineering Huaiyin Institute of Technology Meicheng road No. 1 Huaian 223003 China
| | - Yue Wu
- Faculty of Electronic Information Engineering Huaiyin Institute of Technology Meicheng road No. 1 Huaian 223003 China
| | - Ya Zhao
- Faculty of Electronic Information Engineering Huaiyin Institute of Technology Meicheng road No. 1 Huaian 223003 China
| | - Mengyuan Wei
- Faculty of Electronic Information Engineering Huaiyin Institute of Technology Meicheng road No. 1 Huaian 223003 China
| | - Qing‐Song Jiang
- Faculty of Electronic Information Engineering Huaiyin Institute of Technology Meicheng road No. 1 Huaian 223003 China
- Jiangsu Engineering Laboratory for Lake Environment Remote Sensing Technologies Huaiyin Institute of Technology Meicheng road No. 1 Huaian 223003 China
| | - Xiao Yang
- Faculty of Electronic Information Engineering Huaiyin Institute of Technology Meicheng road No. 1 Huaian 223003 China
- Jiangsu Engineering Laboratory for Lake Environment Remote Sensing Technologies Huaiyin Institute of Technology Meicheng road No. 1 Huaian 223003 China
| | - Wei Xun
- Faculty of Electronic Information Engineering Huaiyin Institute of Technology Meicheng road No. 1 Huaian 223003 China
- Jiangsu Engineering Laboratory for Lake Environment Remote Sensing Technologies Huaiyin Institute of Technology Meicheng road No. 1 Huaian 223003 China
| |
Collapse
|
7
|
Senthamil C, Hemalatha J, Nandhabala S, Nivetha A, Sakthivel C, Prabha I. Multifunctionalized Metal Chalcogenides and Their Roles in Catalysis and Biomedical Applications. ChemistrySelect 2022. [DOI: 10.1002/slct.202203394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | | | | | | | | | - Inbaraj Prabha
- Department of Chemistry Bharathiar University Coimbatore 641 046 India
| |
Collapse
|
8
|
Advanced Strategies for Stabilizing Single-Atom Catalysts for Energy Storage and Conversion. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00169-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AbstractWell-defined atomically dispersed metal catalysts (or single-atom catalysts) have been widely studied to fundamentally understand their catalytic mechanisms, improve the catalytic efficiency, increase the abundance of active components, enhance the catalyst utilization, and develop cost-effective catalysts to effectively reduce the usage of noble metals. Such single-atom catalysts have relatively higher selectivity and catalytic activity with maximum atom utilization due to their unique characteristics of high metal dispersion and a low-coordination environment. However, freestanding single atoms are thermodynamically unstable, such that during synthesis and catalytic reactions, they inevitably tend to agglomerate to reduce the system energy associated with their large surface areas. Therefore, developing innovative strategies to stabilize single-atom catalysts, including mass-separated soft landing, one-pot pyrolysis, co-precipitation, impregnation, atomic layer deposition, and organometallic complexation, is critically needed. Many types of supporting materials, including polymers, have been commonly used to stabilize single atoms in these fabrication techniques. Herein, we review the stabilization strategies of single-atom catalyst, including different synthesis methods, specific metals and carriers, specific catalytic reactions, and their advantages and disadvantages. In particular, this review focuses on the application of polymers in the synthesis and stabilization of single-atom catalysts, including their functions as carriers for metal single atoms, synthetic templates, encapsulation agents, and protection agents during the fabrication process. The technical challenges that are currently faced by single-atom catalysts are summarized, and perspectives related to future research directions including catalytic mechanisms, enhancement of the catalyst loading content, and large-scale implementation are proposed to realize their practical applications.
Graphical Abstract
Single-atom catalysts are characterized by high metal dispersibility, weak coordination environments, high catalytic activity and selectivity, and the highest atom utilization. However, due to the free energy of the large surface area, individual atoms are usually unstable and are prone to agglomeration during synthesis and catalytic reactions. Therefore, researchers have developed innovative strategies, such as soft sedimentation, one-pot pyrolysis, coprecipitation, impregnation, step reduction, atomic layer precipitation, and organometallic complexation, to stabilize single-atom catalysts in practical applications. This article summarizes the stabilization strategies for single-atom catalysts from the aspects of their synthesis methods, metal and support types, catalytic reaction types, and its advantages and disadvantages. The focus is on the application of polymers in the preparation and stabilization of single-atom catalysts, including metal single-atom carriers, synthetic templates, encapsulation agents, and the role of polymers as protection agents in the manufacturing process. The main feature of polymers and polymer-derived materials is that they usually contain abundant heteroatoms, such as N, that possess lone-pair electrons. These lone-pair electrons can anchor the single metal atom through strong coordination interactions. The coordination environment of the lone-pair electrons can facilitate the formation of single-atom catalysts because they can enlarge the average distance of a single precursor adsorbed on the polymer matrix. Polymers with nitrogen groups are favorable candidates for dispersing active single atoms by weakening the tendency of metal aggregation and redistributing the charge densities around single atoms to enhance the catalytic performance. This review provides a summary and analysis of the current technical challenges faced by single-atom catalysts and future research directions, such as the catalytic mechanism of single-atom catalysts, sufficiently high loading, and large-scale implementation.
Collapse
|
9
|
Jaiswal K, Girish YR, Behera P, De M. Dual Role of MoS 2 Quantum Dots in a Cross-Dehydrogenative Coupling Reaction. ACS ORGANIC & INORGANIC AU 2022; 2:205-213. [PMID: 36855472 PMCID: PMC9955124 DOI: 10.1021/acsorginorgau.1c00040] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Modern day research focuses on the development of greener and eco-friendlier protocols to fabricate biologically relevant targets with minimal waste generation. C-C bond formation reactions are of prime importance in this regard. In a typical photocatalytic hydrogen evolution reaction, three components are used, viz, catalyst, photosensitizer, and sacrificial amine donor. Among these, the photosensitizer and sacrificial amine donors are wasted at the end of the reaction. Considering these drawbacks, in this work, we have developed a methodology targeted at the utilization of sacrificial amine donors for C-H functionalization with MoS2 quantum dots (QDs) as the catalyst as well as the photosensitizer. QDs indeed emerged to be an active participant in the heterogeneous electron transfer process. This concept opens up new possibilities in the field of nanomaterial-based photomediated organic transformations without the aid of any external photosensitizers via a clean and sustainable protocol with no side product.
Collapse
Affiliation(s)
- Komal Jaiswal
- Department
of Organic Chemistry, Indian Institute of
Science, Bangalore, Karnataka 560 012, India
| | - Yarabahally R. Girish
- Centre
for Research and Innovation, School of Natural Sciences, Adichunchanagiri University, BGSIT Campus, B.G. Nagara, Mandya 571448, India
| | - Pradipta Behera
- Department
of Organic Chemistry, Indian Institute of
Science, Bangalore, Karnataka 560 012, India
| | - Mrinmoy De
- Department
of Organic Chemistry, Indian Institute of
Science, Bangalore, Karnataka 560 012, India
| |
Collapse
|
10
|
Cho J, Kim M, Seok H, Choi GH, Yoo SS, Sagaya Selvam NC, Yoo PJ, Kim T. Patchwork-Structured Heterointerface of 1T-WS 2/a-WO 3 with Sustained Hydrogen Spillover as a Highly Efficient Hydrogen Evolution Reaction Electrocatalyst. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24008-24019. [PMID: 35549071 DOI: 10.1021/acsami.2c03584] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Using tungsten disulfide (WS2) as a hydrogen evolution reaction (HER) electrocatalyst brought on several ways to surpass its intrinsic catalytic activity. This study introduces a nanodomain tungsten oxide (WO3) interface to 1T-WS2, opening a new route for facilitating the transfer of a proton to active sites, thereby enhancing the HER performance. After H2S plasma sulfurization on the W layer to realize nanocrystalline 1T-WS2, subsequent O2 plasma treatment led to the formation of amorphous WO3 (a-WO3), resulting in a patchwork-structured heterointerface of 1T-WS2/a-WO3 (WSO). Addition of a hydrophilic interface (WO3) facilitates the hydrogen spillover effect, which represents the transfer of absorbed protons from a-WO3 to 1T-WS2. Moreover, the faster response of the cathodic current peak (proton insertion) in cyclic voltammetry is confirmed by the higher degree of oxidation. The rationale behind the faster proton insertion is that the introduced a-WO3 works as a proton channel. As a result, WSO-1.2 (the ratio of 1T-WS2 to a-WO3) exhibits a remarkable HER activity in that 1T-WS2 consumes more protons provided by the channel, showing an overpotential of 212 mV at 10 mA/cm2. Density functional theory calculations also show that the WO3 phase gives higher binding energies for initial proton adsorption, while the 1T-WS2 phase shows reduced HER overpotential. This improved catalytic performance demonstrates a novel strategy for water splitting to actively elicit the related reaction via efficient proton transport.
Collapse
Affiliation(s)
- Jinill Cho
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Minjun Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyunho Seok
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gwan Hyun Choi
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seong Soo Yoo
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | | - Pil J Yoo
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Taesung Kim
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
11
|
Tomboc GM, Kim T, Jung S, Yoon HJ, Lee K. Modulating the Local Coordination Environment of Single-Atom Catalysts for Enhanced Catalytic Performance in Hydrogen/Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105680. [PMID: 35102698 DOI: 10.1002/smll.202105680] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Single-atom catalysts (SACs) hold the promise of utilizing 100% of the participating atoms in a reaction as active catalytic sites, achieving a remarkable boost in catalytic efficiency. Thus, they present great potential for noble metal-based electrochemical application systems, such as water electrolyzers and fuel cells. However, their practical applications are severely hindered by intrinsic complications, namely atom agglomeration and relocation, originating from the uncontrollably high surface energy of isolated single-atoms (SAs) during postsynthetic treatment processes or catalytic reactions. Extensive efforts have been made to develop new methodologies for strengthening the interactions between SAs and supports, which could ensure the desired stability of the active catalytic sites and their full utilization by SACs. This review covers the recent progress in SACs development while emphasizing the association between the regulation of coordination environments (e.g., coordination atoms, numbers, sites, structures) and the electrocatalytic performance of the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The crucial role of coordination chemistry in modifying the intrinsic properties of SACs and manipulating their metal-loading, stability, and catalytic properties is elucidated. Finally, the future challenges of SACS development and the industrial outlook of this field are discussed.
Collapse
Affiliation(s)
- Gracita M Tomboc
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Taekyung Kim
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Sangmin Jung
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Hyo Jae Yoon
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
12
|
Qiao Z, Ding C. Recent Progress on Polyvinyl Alcohol-Based Materials for Energy Conversion. NEW J CHEM 2022. [DOI: 10.1039/d1nj04344g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrocatalytic energy conversion shows a promising “bridge” to mitigate energy shortage issues and minimizes the ecological implications by synergy with the sustainable energy sources, which calls for low-cost, highly active,...
Collapse
|
13
|
Abstract
As a sustainable and clean energy source, hydrogen can be generated by electrolytic water splitting (i.e., a hydrogen evolution reaction, HER). Compared with conventional noble metal catalysts (e.g., Pt), Mo based materials have been deemed as a promising alternative, with a relatively low cost and comparable catalytic performances. In this review, we demonstrate a comprehensive summary of various Mo based materials, such as MoO2, MoS2 and Mo2C. Moreover, state of the art designs of the catalyst structures are presented, to improve the activity and stability for hydrogen evolution, including Mo based carbon composites, heteroatom doping and heterostructure construction. The structure–performance relationships relating to the number of active sites, electron/ion conductivity, H/H2O binding and activation energy, as well as hydrophilicity, are discussed in depth. Finally, conclusive remarks and future works are proposed.
Collapse
|
14
|
Wang X, Zhang Y, Wu J, Zhang Z, Liao Q, Kang Z, Zhang Y. Single-Atom Engineering to Ignite 2D Transition Metal Dichalcogenide Based Catalysis: Fundamentals, Progress, and Beyond. Chem Rev 2021; 122:1273-1348. [PMID: 34788542 DOI: 10.1021/acs.chemrev.1c00505] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Single-atom catalysis has been recognized as a pivotal milestone in the development history of heterogeneous catalysis by virtue of its superior catalytic performance, ultrahigh atomic utilization, and well-defined structure. Beyond single-atom protrusions, two more motifs of single-atom substitutions and single-atom vacancies along with synergistic single-atom motif assemblies have been progressively developed to enrich the single-atom family. On the other hand, besides traditional carbon material based substrates, a wide variety of 2D transitional metal dichalcogenides (TMDs) have been emerging as a promising platform for single-atom catalysis owing to their diverse elemental compositions, variable crystal structures, flexible electronic structures, and intrinsic activities toward many catalytic reactions. Such substantial expansion of both single-atom motifs and substrates provides an enriched toolbox to further optimize the geometric and electronic structures for pushing the performance limit. Concomitantly, higher requirements have been put forward for synthetic and characterization techniques with related technical bottlenecks being continuously conquered. Furthermore, this burgeoning single-atom catalyst (SAC) system has triggered serial scientific issues about their changeable single atom-2D substrate interaction, ambiguous synergistic effects of various atomic assemblies, as well as dynamic structure-performance correlations, all of which necessitate further clarification and comprehensive summary. In this context, this Review aims to summarize and critically discuss the single-atom engineering development in the whole field of 2D TMD based catalysis covering their evolution history, synthetic methodologies, characterization techniques, catalytic applications, and dynamic structure-performance correlations. In situ characterization techniques are highlighted regarding their critical roles in real-time detection of SAC reconstruction and reaction pathway evolution, thus shedding light on lifetime dynamic structure-performance correlations which lay a solid theoretical foundation for the whole catalytic field, especially for SACs.
Collapse
Affiliation(s)
- Xin Wang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, P. R. China.,State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Yuwei Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, P. R. China.,State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Jing Wu
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, P. R. China.,State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Zheng Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, P. R. China.,State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Qingliang Liao
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, P. R. China.,State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Zhuo Kang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, P. R. China.,State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Yue Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, P. R. China.,State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| |
Collapse
|
15
|
Wang Y, Wang M, Lu Z, Ma D, Jia Y. Enabling multifunctional electrocatalysts by modifying the basal plane of unifunctional 1T'-MoS 2 with anchored transition metal single atoms. NANOSCALE 2021; 13:13390-13400. [PMID: 34477744 DOI: 10.1039/d1nr02251b] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Multifunctional electrocatalysts for hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR) are attractive for overall water-splitting, rechargeable metal-air batteries, and unitized regenerative fuel cells. A single-atom catalyst (SAC) may exhibit additional advantages over its nanoparticle counterpart, and already there have been significant advances in the development of bifunctional and trifunctional SACs for HER, ORR, and OER, but great challenges remain for their rational design. Herein, we propose a strategy to realize multifunctional SACs, i.e., modifying unifunctional materials to introduce new active sites on the surface. Specifically, by virtue of the intrinsic excellent HER performance of 1T'-MoS2, we theoretically design multifunctional SACs by anchoring appropriate transition-metal single atoms. Intriguingly, 1T'-MoS2 with supported Co single atoms (Co@MoS2) are demonstrated to be highly active for both OER and ORR with ultralow overpotentials of less than 0.3 V, ascribed to the moderate chemical activity and unique electronic structure of the Co atomic center. Consequently, combining the intrinsic HER activity of 1T'-MoS2, Co@MoS2 is proposed to be promising efficient trifunctional SACs. Further, the phase engineering on SACs is unrevealed and elucidated by comparing the properties of the Co atomic center-supported on 1T'-MoS2 and 1H-MoS2. This work provides a feasible strategy for the design of multifunctional SACs for the renewable and sustainable energy technology and provides an insight into the phase engineering on SACs.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| | | | | | | | | |
Collapse
|
16
|
Zheng W, Li Y, Liu M, Lee LYS. Few-Layer Tellurium: Cathodic Exfoliation and Doping for Collaborative Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007768. [PMID: 33738956 DOI: 10.1002/smll.202007768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/05/2021] [Indexed: 06/12/2023]
Abstract
2D tellurium is a suitable electrocatalyst support that can assist electron transport while hosting active sites, yet its production remains challenging. Herein, a cathodic exfoliation method that can exfoliate Te crystal directly to Te nanosheets at low potential, also enabling simultaneous transition metal doping on Te nanosheet surface is presented. In situ Raman spectra and ex situ characterizations reveal that the cathodic exfoliation relies on the electrostatic repulsion between Te flakes covered with in situ generated ditelluride (Te2 2- ) anions. The Te2 2- anions can anchor metal ions to the surface, and the doping concentration can be tuned by adjusting the concentration of metal ion in the electrolyte. The metal-doped Te nanosheets exhibit highly improved hydrogen evolution activities. In particular, Pt-doped Te outperforms polycrystalline Pt at high overpotential. A collaborative hydrogen production mechanism via Volmer-Heyrovsky pathway is suggested: Te2 2- adsorbs protons and assists the mass transfer to adjacent Pt atoms where the protons are reduced and released as hydrogen.
Collapse
Affiliation(s)
- Weiran Zheng
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Yong Li
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Mengjie Liu
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Lawrence Yoon Suk Lee
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
- Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| |
Collapse
|
17
|
Abstract
Abstract
Scanning tunneling microscopy (STM) has gained increasing attention in the field of electrocatalysis due to its ability to reveal electrocatalyst surface structures down to the atomic level in either ultra-high-vacuum (UHV) or harsh electrochemical conditions. The detailed knowledge of surface structures, surface electronic structures, surface active sites as well as the interaction between surface adsorbates and electrocatalysts is highly beneficial in the study of electrocatalytic mechanisms and for the rational design of electrocatalysts. Based on this, this review will discuss the application of STM in the characterization of electrocatalyst surfaces and the investigation of electrochemical interfaces between electrocatalyst surfaces and reactants. Based on different operating conditions, UHV-STM and STM in electrochemical environments (EC-STM) are discussed separately. This review will also present emerging techniques including high-speed EC-STM, scanning noise microscopy and tip-enhanced Raman spectroscopy.
Graphic Abstract
Collapse
|
18
|
Zhang Q, Zhang X, Wang J, Wang C. Graphene-supported single-atom catalysts and applications in electrocatalysis. NANOTECHNOLOGY 2021; 32:032001. [PMID: 33002887 DOI: 10.1088/1361-6528/abbd70] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Supported metal nanostructures are the most extensively studied heterogeneous catalysts, benefiting from easy separation, regeneration and affordable cost. The size of the supported metal species is one of the decisive factors in determining the activity of heterogeneous catalysts. Particularly, the unsaturated coordination environment of metal atoms preferably act as the active centers, minimizing these metal species can significantly boost the specific activity of every single metal atom. Single-atom catalysts/catalysis (SACs), containing isolated metals atomically dispersed on or coordinated with the surface of a support material, represent the ultimate utilization of supported metals and maximize metal usage efficiency. Graphene, a two-dimensional star material, exhibiting extraordinary physical and chemical properties, has been approved as an excellent platform for constructing SACs. When atomically dispersed metal atoms are strongly anchored on the graphene surface, featuring ultra-high surface area and excellent electronic properties, SACs offer a great potential to significantly innovate the conventional heterogeneous catalysis, especially in the field of electrocatalysis. In this review, a detailed discussion of graphene-supported SACs, including preparation approaches, characterization techniques and applications on typical electrocatalytic reactions is provided. The advantages and unique features of graphene-supported SACs as efficient electrocatalysts and the upcoming challenges for improving their performance and further practical applications are also highlighted.
Collapse
Affiliation(s)
- Qin Zhang
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, People's Republic of China
| | - Xiaoxiang Zhang
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, People's Republic of China
| | - Junzhong Wang
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, People's Republic of China
| | - Congwei Wang
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, People's Republic of China
| |
Collapse
|
19
|
Huang X, Wang J, Bing Tao H, Tian H, Zhang Z, Xu H. Unraveling the oxide layer on Mo2C as the active center for hydrogen evolution reaction. J Catal 2020. [DOI: 10.1016/j.jcat.2020.06.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Gan G, Li X, Wang L, Fan S, Mu J, Wang P, Chen G. Active Sites in Single-Atom Fe-N x-C Nanosheets for Selective Electrochemical Dechlorination of 1,2-Dichloroethane to Ethylene. ACS NANO 2020; 14:9929-9937. [PMID: 32672440 DOI: 10.1021/acsnano.0c02783] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Electrochemical dechlorination of 1,2-dichloroethane (DCE) is one of the prospective and economic strategies for the preparation of high-value ethylene. However, the exploration of advanced electrocatalysts with high reactivity and selectivity and the identification of their active sites are still a challenge. Herein, a single-atom (SA) Fe-Nx-C nanosheet with the presence of a highly efficient Fe-N4 coordination pattern is reported. The as-prepared single-atom electrocatalyst exhibits a higher reactivity and ethylene selectivity for DCE dechlorination reaction than those of the commercially adopted 20% Pt-C catalyst. By a combination of experiments and theoretical calculations, the atomically dispersed Fe center in the Fe-N4 structure was unveiled to be the dominating active site for electrochemical production of ethylene. Our work would offer an approach for the rational development of SA materials and supply crucial insight into the mechanism of ethylene production through the DCE dechlorination reaction.
Collapse
Affiliation(s)
- Guoqiang Gan
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xinyong Li
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Liang Wang
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shiying Fan
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jincheng Mu
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Penglei Wang
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Guohua Chen
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| |
Collapse
|
21
|
Meza E, Diaz RE, Li CW. Solution-Phase Activation and Functionalization of Colloidal WS 2 Nanosheets with Ni Single Atoms. ACS NANO 2020; 14:2238-2247. [PMID: 31994865 DOI: 10.1021/acsnano.9b09245] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Single-atom functionalization of transition-metal dichalcogenide (TMD) nanosheets is a powerful strategy to tune the optical, magnetic, and catalytic properties of two-dimensional materials. In this work, we demonstrate a simple solution-phase method to generate nucleophilic sulfide sites on colloidal WS2 nanosheets that subsequently serve as ligands for Ni single atoms. These materials can be controllably functionalized with varying amounts of Ni on the surface ranging from 9% to 47% coverage with respect to W. High-resolution scanning transmission electron microscopy coupled to electron energy loss spectroscopy and X-ray absorption spectroscopy indicate that adsorbed Ni species bind as single atoms at low coverage and a mixture of single atoms and multimetallic clusters at high coverage. The Ni single atoms adsorbed on WS2 show altered electronic properties, and both the electronic perturbation and isolated atom geometry play a role in enhancing the intrinsic catalytic activity of Ni-WS2 samples for the electrochemical oxygen evolution reaction.
Collapse
Affiliation(s)
- Erika Meza
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Rosa E Diaz
- Birck Nanotechnology Center , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Christina W Li
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
22
|
Wang Z, Wu H, Li Q, Besenbacher F, Li Y, Zeng XC, Dong M. Reversing Interfacial Catalysis of Ambipolar WSe 2 Single Crystal. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901382. [PMID: 32042552 PMCID: PMC7001631 DOI: 10.1002/advs.201901382] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/10/2019] [Indexed: 05/26/2023]
Abstract
An improved understanding of the origin of the electrocatalytic activity is of importance to the rational design of highly efficient electrocatalysts for the hydrogen evolution reaction. Here, an ambipolar single-crystal tungsten diselenide (WSe2) semiconductor is employed as a model system where the conductance and carrier of WSe2 can be individually tuned by external electric fields. The field-tuned electrochemical microcell is fabricated based on the single-crystal WSe2 and the catalytic activity of the WSe2 microcell is measured versus the external electric field. Results show that WSe2 with electrons serving as the dominant carrier yields much higher activity than WSe2 with holes serving as the dominant carrier even both systems exhibit similar conductance. The catalytic activity enhancement can be characterized by the Tafel slope decrease from 138 to 104 mV per decade, while the electron area concentration increases from 0.64 × 1012 to 1.72 × 1012 cm-2. To further understand the underlying mechanism, the Gibbs free energy and charge distribution for adsorbed hydrogen on WSe2 versus the area charge concentration is systematically computed, which is in line with experiments. This comprehensive study not only sheds light on the mechanism underlying the electrocatalysis processes, but also offers a strategy to achieve higher electrocatalytic activity.
Collapse
Affiliation(s)
- Zegao Wang
- College of Materials Science and EngineeringSichuan UniversityChengdu610065China
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityDK‐8000Aarhus CDenmark
| | - Hong‐Hui Wu
- Department of ChemistryUniversity of Nebraska‐LincolnNE68588LincolnUSA
- Beijing Advanced Innovation Center for Materials Genome EngineeringState Key Laboratory for Advanced Metals and MaterialsUniversity of Science and Technology BeijingBeijing100083China
| | - Qiang Li
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityDK‐8000Aarhus CDenmark
- Key Laboratory of Colloid and Interface ChemistryMinistry of EducationShandong UniversityJinan250100China
| | - Flemming Besenbacher
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityDK‐8000Aarhus CDenmark
| | - Yanrong Li
- State Key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Xiao Cheng Zeng
- Department of ChemistryUniversity of Nebraska‐LincolnNE68588LincolnUSA
- Department of Chemical and Biomolecular Engineering and Department of Mechanical and Materials EngineeringUniversity of Nebraska‐LincolnNE68588LincolnUSA
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityDK‐8000Aarhus CDenmark
| |
Collapse
|