1
|
Chen Z, Yang M, Li Y, Gong W, Wang J, Liu T, Zhang C, Hou S, Yang G, Li H, Jin Y, Zhang C, Tian Z, Meng F, Cui Y. Termination-acidity tailoring of molybdenum carbides for alkaline hydrogen evolution reaction. Nat Commun 2025; 16:418. [PMID: 39762329 PMCID: PMC11704302 DOI: 10.1038/s41467-025-55854-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025] Open
Abstract
Transition-metal carbides have been advocated as the promising alternatives to noble-metal platinum-based catalysts in electrocatalytic hydrogen evolution reaction over half a century. However, the effectiveness of transition-metal carbides catalyzing hydrogen evolution in high-pH electrolyte is severely compromised due to the lowered proton activity and intractable alkaline-leaching issue of transition-metal centers. Herein, on the basis of validation of molybdenum-carbide model-catalyst system by taking advantage of surface science techniques, Mo2C micro-size spheres terminated by Al3+ doped MoO2 layer exhibit a notable performance of alkaline hydrogen evolution with a near-zero onset-potential, a low overpotential (40 mV) at a typical current density of 10 mA/cm2, and a small Tafel slope (45 mV/dec), as well as a long-term stability for continuous hydrogen production over 200 h. Advanced morphology and spectroscopy characterizations demonstrate that the local -Al-OH-Mo- structures within Al-MoO2 terminations serve as strong Brønsted acid sites that accelerate the deprotonation kinetics in alkaline HER process. Our work paves an interesting termination-acidity-tailoring strategy to explore cost-effective catalysts towards water electrolysis and beyond.
Collapse
Affiliation(s)
- Zhigang Chen
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, China
- i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Minghao Yang
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, China
- i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Yifan Li
- i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Wenbin Gong
- School of Physics and Energy, Xuzhou University of Technology, Xuzhou, China
| | - Juan Wang
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Tong Liu
- i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Chunyu Zhang
- i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Shuang Hou
- i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Guang Yang
- i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Hao Li
- i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Ye Jin
- College of Science, Chongqing University of Technology, Chongqing, China
| | - Chunyan Zhang
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, China
| | - Zhongqing Tian
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, China
| | - Fancheng Meng
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, China
| | - Yi Cui
- i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China.
| |
Collapse
|
2
|
Zhou C, Shi S, Zhang X, Sun Y, Peng G, Yuan W. Mechanism insight into the N-C polar bond and Pd-Co heterojunction for improved hydrogen evolution activity. iScience 2024; 27:109620. [PMID: 38628965 PMCID: PMC11019276 DOI: 10.1016/j.isci.2024.109620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/04/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
Constructing platinum-like materials with excellent catalytic activity and low cost has great significance for hydrogen evolution reaction (HER) during electrolysis of water. Herein, palladium nanoparticles (NPs) deposition on the surface of Co NPs using nitrogen-doped carbon (NC) as substrate, denoted as N-ZIFC/CoPd-30, are manufactured and served as HER electrocatalysts. Characterization results and density functional theory calculations validate that Pd-Co heterojunctions with NC acting as "electron donators" promote the Pd species transiting to the electron-rich state based on an efficient electron transfer mechanism, namely the N-C polar bonds induced strong metal-support interaction effect. The electron-rich Pd sites are beneficial to HER. Satisfactorily, N-ZIFC/CoPd-30 have only low overpotentials of 16, 162, and 13 mV@-10 mA cm-2 with the small Tafel slopes of 98 mV/decade, 126 mV/decade, and 72 mV/decade in pH of 13, 7, and 0, respectively. The success in fabricating N-ZIFC/CoPd opens a promising path to constructing other platinum-like electrocatalysts with high HER activity.
Collapse
Affiliation(s)
- Chenliang Zhou
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, People’s Republic of China
- School of Rare Earths, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Shaoyuan Shi
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, People’s Republic of China
- School of Rare Earths, University of Science and Technology of China, Hefei 230026, People’s Republic of China
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou 341119, People’s Republic of China
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Xingyu Zhang
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, People’s Republic of China
- School of Rare Earths, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Yuting Sun
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, People’s Republic of China
- School of Rare Earths, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Guan Peng
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, People’s Republic of China
| | - Wenjing Yuan
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, People’s Republic of China
- School of Rare Earths, University of Science and Technology of China, Hefei 230026, People’s Republic of China
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou 341119, People’s Republic of China
| |
Collapse
|
3
|
Zhang Y, Tutt F, Evans GN, Sharma P, Haugstad G, Kaiser B, Ramberger J, Bayliff S, Tao Y, Manno M, Garcia-Barriocanal J, Chaturvedi V, Fernandes RM, Birol T, Seyfried WE, Leighton C. Crystal-chemical origins of the ultrahigh conductivity of metallic delafossites. Nat Commun 2024; 15:1399. [PMID: 38360692 PMCID: PMC10869826 DOI: 10.1038/s41467-024-45239-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
Despite their highly anisotropic complex-oxidic nature, certain delafossite compounds (e.g., PdCoO2, PtCoO2) are the most conductive oxides known, for reasons that remain poorly understood. Their room-temperature conductivity can exceed that of Au, while their low-temperature electronic mean-free-paths reach an astonishing 20 μm. It is widely accepted that these materials must be ultrapure to achieve this, although the methods for their growth (which produce only small crystals) are not typically capable of such. Here, we report a different approach to PdCoO2 crystal growth, using chemical vapor transport methods to achieve order-of-magnitude gains in size, the highest structural qualities yet reported, and record residual resistivity ratios ( > 440). Nevertheless, detailed mass spectrometry measurements on these materials reveal that they are not ultrapure in a general sense, typically harboring 100s-of-parts-per-million impurity levels. Through quantitative crystal-chemical analyses, we resolve this apparent dichotomy, showing that the vast majority of impurities are forced to reside in the Co-O octahedral layers, leaving the conductive Pd sheets highly pure (∼1 ppm impurity concentrations). These purities are shown to be in quantitative agreement with measured residual resistivities. We thus conclude that a sublattice purification mechanism is essential to the ultrahigh low-temperature conductivity and mean-free-path of metallic delafossites.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Fred Tutt
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Guy N Evans
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Prachi Sharma
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Greg Haugstad
- Characterization Facility, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ben Kaiser
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Justin Ramberger
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Samuel Bayliff
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Yu Tao
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mike Manno
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | | | - Vipul Chaturvedi
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Rafael M Fernandes
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Turan Birol
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - William E Seyfried
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Chris Leighton
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
4
|
Chen J, He W, Guo Y, Xiao Y, Tan X, Cui H, Wang C. In situ formed nickel tungsten oxide amorphous layer on metal-organic framework derived Zn xNi 1-xWO 4 surface by self-reconstruction for acid hydrogen evolution reaction. J Colloid Interface Sci 2023; 652:1347-1355. [PMID: 37666189 DOI: 10.1016/j.jcis.2023.08.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023]
Abstract
Noble metal free electrocatalysts for hydrogen evolution reaction (HER) in acid play an important role in proton exchange membrane-based electrolysis. Here, we develop an in situ surface self-reconstruction strategy to construct excellent acidic HER catalysts. Firstly, free-standing zinc nickel tungstate nanosheets inlaid with nickel tungsten alloy nanoparticles were synthesized on carbon cloth as pre-catalyst via metal-organic framework derived method. Amorphous nickel tungsten oxide (Ni-W-O) layer is in situ formed on surface of nanosheet as actual HER active site with the dissolution of NiW alloy nanoparticles and the leaching of cations. While the morphology of the free-standing structure remains the same, keeping the maximized exposure of active sites and serving as the electron transportation framework. As a result, benefiting from disordered arrangement of atoms and the synergistic effect between Ni and W atoms, the amorphous Ni-W-O layer exhibits an excellent acidic HER activity with only an overpotential of 46 mV to drive a current density of 10 mA cm-2 and a quite good Tafel slope of 36.4 mV dec-1 as well as an excellent durability. This work enlightens the exploration of surface evolution of catalysts during HER in acidic solution and employs it as a strategy for designing acidic HER catalysts.
Collapse
Affiliation(s)
- Jianpo Chen
- School of Materials Science and Engineering, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Guangzhou 510275, China
| | - Weidong He
- School of Materials Science and Engineering, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Guangzhou 510275, China
| | - Yingying Guo
- School of Materials Science and Engineering, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuhang Xiao
- School of Materials Science and Engineering, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaohong Tan
- School of Materials Science and Engineering, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Guangzhou 510275, China
| | - Hao Cui
- School of Materials Science and Engineering, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Guangzhou 510275, China.
| | - Chengxin Wang
- School of Materials Science and Engineering, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
5
|
Zhang Y, Arpino KE, Yang Q, Kikugawa N, Sokolov DA, Hicks CW, Liu J, Felser C, Li G. Observation of a robust and active catalyst for hydrogen evolution under high current densities. Nat Commun 2022; 13:7784. [PMID: 36526636 PMCID: PMC9758214 DOI: 10.1038/s41467-022-35464-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Despite the fruitful achievements in the development of hydrogen production catalysts with record-breaking performances, there is still a lack of durable catalysts that could work under large current densities (>1000 mA cm-2). Here, we investigated the catalytic behaviors of Sr2RuO4 bulk single crystals. This crystal has demonstrated remarkable activities under the current density of 1000 mA cm-2, which require overpotentials of 182 and 278 mV in 0.5 M H2SO4 and 1 M KOH electrolytes, respectively. These materials are stable for 56 days of continuous testing at a high current density of above 1000 mA cm-2 and then under operating temperatures of 70 °C. The in-situ formation of ferromagnetic Ru clusters at the crystal surface is observed, endowing the single-crystal catalyst with low charge transfer resistance and high wettability for rapid gas bubble removal. These experiments exemplify the potential of designing HER catalysts that work under industrial-scale current density.
Collapse
Affiliation(s)
- Yudi Zhang
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, 19A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Kathryn E Arpino
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Strasse 40, 01187, Dresden, Germany
| | - Qun Yang
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Strasse 40, 01187, Dresden, Germany
| | - Naoki Kikugawa
- National Institute for Materials Science (NIMS), Tsukuba, 305-0003, Japan
| | - Dmitry A Sokolov
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Strasse 40, 01187, Dresden, Germany
| | - Clifford W Hicks
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Strasse 40, 01187, Dresden, Germany
| | - Jian Liu
- University of Chinese Academy of Sciences, 19A Yuquan Rd, Shijingshan District, Beijing, 100049, China.
- Center for Advanced Solidification Technology, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China.
| | - Claudia Felser
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Strasse 40, 01187, Dresden, Germany.
| | - Guowei Li
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
- University of Chinese Academy of Sciences, 19A Yuquan Rd, Shijingshan District, Beijing, 100049, China.
| |
Collapse
|
6
|
Wang W, Duan J, Liu Y, Zhai T. Structural Reconstruction of Catalysts in Electroreduction Reaction: Identifying, Understanding, and Manipulating. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110699. [PMID: 35460124 DOI: 10.1002/adma.202110699] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Electroreduction transformation of small molecules (CO2 , N2 , and H2 O) into chemical feedstocks offers a promising approach to eliminate carbon emissions and harness renewable energy. Most cathodic catalysts often undergo structural transformation under operating electroreduction conditions. These structural reconstructions are reflected in changes in their catalytic activity. In-depth understanding of the change of active sites and influence parameters of reconstruction behaviors is an essential precondition for the design of highly efficient catalysts. Despite the previous achievements, comprehensive insight toward the structural evolution mechanism in cathodic catalysts, compared to anode ones, under reaction conditions is still lacking. Herein, an overview of structural reconstruction for cathodic catalysts in terms of fundamental mechanisms, reconstruction process, advanced characterizations, and influencing parameters is provided. On this basis, the typical strategies for manipulating the structural reconfiguration of catalysts are also explicitly discussed from the catalyst structure and working environment. By delivering the mechanism, strategies, insights, and techniques, this review will provide a comprehensive understanding of the structural reconstruction of cathodic catalysts in electroreduction reactions and future guidelines for their rational development.
Collapse
Affiliation(s)
- Wenbin Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Junyuan Duan
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Youwen Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| |
Collapse
|
7
|
Li G, Xu Y, Song Z, Yang Q, Zhang Y, Liu J, Gupta U, Süβ V, Sun Y, Sessi P, Parkin SSP, Bernevig BA, Felser C. Obstructed Surface States as the Descriptor for Predicting Catalytic Active Sites in Inorganic Crystalline Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201328. [PMID: 35460114 DOI: 10.1002/adma.202201328] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/09/2022] [Indexed: 06/14/2023]
Abstract
The discovery of new catalysts that are efficient and sustainable is a major research endeavor for many industrial chemical processes. This requires an understanding and determination of the catalytic origins, which remains a challenge. Here, a novel method to identify the position of active sites based on searching for crystalline symmetry-protected obstructed atomic insulators (OAIs) that have metallic surface states is described. The obstructed Wannier charge centers (OWCCs) in OAIs are pinned by symmetries at some empty Wyckoff positions so that surfaces that accommodate these sites are guaranteed to have metallic obstructed surface states (OSSs). It is proposed and confirmed that the OSSs are the catalytic activity origins for crystalline materials. The theory on 2H-MoTe2 , 1T'-MoTe2 , and NiPS3 bulk single crystals is verified, whose active sites are consistent with the calculations. Most importantly, several high-efficiency catalysts are successfully identified just by considering the number of OWCCs and the symmetry. Using the real-space-invariant theory applied to a database of 34 013 topologically trivial insulators, 1788 unique OAIs are identified, of which 465 are potential high-performance catalysts. The new methodology will facilitate and accelerate the discovery of new catalysts for a wide range of heterogeneous redox reactions.
Collapse
Affiliation(s)
- Guowei Li
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing, 100049, China
- Max Planck Institute for Chemical Physics of Solids, 01069, Dresden, Germany
| | - Yuanfeng Xu
- Max Planck Institute of Microstructure Physics, 06120, Halle (Saale), Germany
| | - Zhida Song
- Department of Physics, Princeton University, Princeton, NJ, 08544, USA
| | - Qun Yang
- Max Planck Institute for Chemical Physics of Solids, 01069, Dresden, Germany
| | - Yudi Zhang
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing, 100049, China
| | - Jian Liu
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing, 100049, China
| | - Uttam Gupta
- Max Planck Institute for Chemical Physics of Solids, 01069, Dresden, Germany
| | - Vicky Süβ
- Max Planck Institute for Chemical Physics of Solids, 01069, Dresden, Germany
| | - Yan Sun
- Max Planck Institute for Chemical Physics of Solids, 01069, Dresden, Germany
| | - Paolo Sessi
- Max Planck Institute of Microstructure Physics, 06120, Halle (Saale), Germany
| | - Stuart S P Parkin
- Max Planck Institute of Microstructure Physics, 06120, Halle (Saale), Germany
| | - B Andrei Bernevig
- Max Planck Institute of Microstructure Physics, 06120, Halle (Saale), Germany
- Department of Physics, Princeton University, Princeton, NJ, 08544, USA
- Donostia International Physics Center, P. Manuel de Lardizabal 4, Donostia-San Sebastian, 20018, Spain
| | - Claudia Felser
- Max Planck Institute for Chemical Physics of Solids, 01069, Dresden, Germany
| |
Collapse
|
8
|
Kang Y, He Y, Pohl D, Rellinghaus B, Chen D, Schmidt M, Süß V, Mu Q, Li F, Yang Q, Chen H, Ma Y, Auffermann G, Li G, Felser C. Identification of Interface Structure for a Topological CoS 2 Single Crystal in Oxygen Evolution Reaction with High Intrinsic Reactivity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19324-19331. [PMID: 35468289 PMCID: PMC9073842 DOI: 10.1021/acsami.1c24966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Transition metal chalcogenides such as CoS2 have been reported as competitive catalysts for oxygen evolution reaction. It has been well confirmed that surface modification is inevitable in such a process, with the formation of different re-constructed oxide layers. However, which oxide species should be responsible for the optimized catalytic efficiencies and the detailed interface structure between the modified layer and precatalyst remain controversial. Here, a topological CoS2 single crystal with a well-defined exposed surface is used as a model catalyst, which makes the direct investigation of the interface structure possible. Cross-sectional transmission electron microscopy of the sample reveals the formation of a 2 nm thickness Co3O4 layer that grows epitaxially on the CoS2 surface. Thick CoO pieces are also observed and are loosely attached to the bulk crystal. The compact Co3O4 interface structure can result in the fast electron transfer from adsorbed O species to the bulk crystal compared with CoO pieces as evidenced by the electrochemical impedance measurements. This leads to the competitive apparent and intrinsic reactivity of the crystal despite the low surface geometric area. These findings are helpful for the understanding of catalytic origins of transition metal chalcogenides and the designing of high-performance catalysts with interface-phase engineering.
Collapse
Affiliation(s)
- Yu Kang
- Max
Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden, Germany
| | - Yangkun He
- Max
Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden, Germany
| | - Darius Pohl
- Dresden
Center for Nanoanalysis, cfaed, Technische
Universität Dresden, Helmholtzstraße 18, 01069 Dresden, Germany
| | - Bernd Rellinghaus
- Dresden
Center for Nanoanalysis, cfaed, Technische
Universität Dresden, Helmholtzstraße 18, 01069 Dresden, Germany
| | - Dong Chen
- Max
Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden, Germany
| | - Marcus Schmidt
- Max
Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden, Germany
| | - Vicky Süß
- Max
Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden, Germany
| | - Qingge Mu
- Max
Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden, Germany
| | - Fan Li
- Max
Planck Institute for Microstructure Physics, Weinberg 2, D-06120 Halle, Sachsen-Anhalt, Germany
| | - Qun Yang
- Max
Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden, Germany
| | - Hedong Chen
- Max
Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden, Germany
| | - Yufei Ma
- Max
Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden, Germany
| | - Gudrun Auffermann
- Max
Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden, Germany
| | - Guowei Li
- CAS
Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province
Key Laboratory of Magnetic Materials and Application Technology, Ningbo
Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University
of Chinese Academy of Sciences, Shijingshan
District, Beijing 100049, China
| | - Claudia Felser
- Max
Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden, Germany
| |
Collapse
|
9
|
Gao G, Yu H, Wang XL, Yao YF. Enhanced hydrogen evolution reaction activity of FeM (M = Pt, Pd, Ru, Rh) nanoparticles with N-doped carbon coatings over a wide-pH environment. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Yao D, Gu L, Zuo B, Weng S, Deng S, Hao W. A strategy for preparing high-efficiency and economical catalytic electrodes toward overall water splitting. NANOSCALE 2021; 13:10624-10648. [PMID: 34132310 DOI: 10.1039/d1nr02307a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Electrolyzing water technology to prepare high-purity hydrogen is currently an important field in energy development. However, the preparation of efficient, stable, and inexpensive hydrogen production technology from electrolyzed water is a major problem in hydrogen energy production. The key technology for hydrogen production from water electrolysis is to prepare highly efficient catalytic, stable and durable electrodes, which are used to reduce the overpotential of the hydrogen evolution reaction and the oxygen evolution reaction of electrolyzed water. The main strategies for preparing catalytic electrodes include: (i) choosing cheap, large specific surface area and stable base materials, (ii) modulating the intrinsic activity of the catalytic material through elemental doping and lattice changes, and (iii) adjusting the morphology and structure to increase the catalytic activity. Based on these findings, herein, we review the recent work in the field of hydrogen production by water electrolysis, introduce the preparation of catalytic electrodes based on nickel foam, carbon cloth and new flexible materials, and summarize the catalytic performance of metal oxides, phosphides, sulfides and nitrides in the hydrogen evolution and oxygen evolution reactions. Secondly, parameters such as the overpotential, Tafel slope, active site, turnover frequency, and stability are used as indicators to measure the performance of catalytic electrode materials. Finally, taking the material cost of the catalytic electrode as a reference, the successful preparations are comprehensively compared. The overall aim is to shed some light on the exploration of high-efficiency and economical electrodes in energy chemistry and also demonstrate that there is still room for discovering new combinations of electrodes including base materials, composition lattice changes and morphologies.
Collapse
Affiliation(s)
- Dongxue Yao
- University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| | | | | | | | | | | |
Collapse
|
11
|
Unveiling the In Situ Dissolution and Polymerization of Mo in Ni
4
Mo Alloy for Promoting the Hydrogen Evolution Reaction. Angew Chem Int Ed Engl 2021; 60:7051-7055. [DOI: 10.1002/anie.202015723] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/26/2020] [Indexed: 11/07/2022]
|
12
|
Du W, Shi Y, Zhou W, Yu Y, Zhang B. Unveiling the In Situ Dissolution and Polymerization of Mo in Ni
4
Mo Alloy for Promoting the Hydrogen Evolution Reaction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015723] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Wei Du
- School of Science Institute of Molecular Plus Tianjin University Tianjin 300072 China
| | - Yanmei Shi
- School of Science Institute of Molecular Plus Tianjin University Tianjin 300072 China
| | - Wei Zhou
- School of Science Institute of Molecular Plus Tianjin University Tianjin 300072 China
| | - Yifu Yu
- School of Science Institute of Molecular Plus Tianjin University Tianjin 300072 China
| | - Bin Zhang
- School of Science Institute of Molecular Plus Tianjin University Tianjin 300072 China
- Tianjin Key Laboratory of Molecular Optoelectronic Science Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin 300072 China
| |
Collapse
|
13
|
Podjaski F, Weber D, Zhang S, Diehl L, Eger R, Duppel V, Alarcón-Lladó E, Richter G, Haase F, Fontcuberta i Morral A, Scheu C, Lotsch BV. Rational strain engineering in delafossite oxides for highly efficient hydrogen evolution catalysis in acidic media. Nat Catal 2019. [DOI: 10.1038/s41929-019-0400-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|