1
|
Jeong N, Park S, Mahajan S, Zhou J, Blotevogel J, Li Y, Tong T, Chen Y. Elucidating governing factors of PFAS removal by polyamide membranes using machine learning and molecular simulations. Nat Commun 2024; 15:10918. [PMID: 39738140 DOI: 10.1038/s41467-024-55320-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 12/09/2024] [Indexed: 01/01/2025] Open
Abstract
Per- and polyfluoroalkyl substances (PFASs) have recently garnered considerable concerns regarding their impacts on human and ecological health. Despite the important roles of polyamide membranes in remediating PFASs-contaminated water, the governing factors influencing PFAS transport across these membranes remain elusive. In this study, we investigate PFAS rejection by polyamide membranes using two machine learning (ML) models, namely XGBoost and multimodal transformer models. Utilizing the Shapley additive explanation method for XGBoost model interpretation unveils the impacts of both PFAS characteristics and membrane properties on model predictions. The examination of the impacts of chemical structure involves interpreting the multimodal transformer model incorporated with simplified molecular input line entry system strings through heat maps, providing a visual representation of the attention score assigned to each atom of PFAS molecules. Both ML interpretation methods highlight the dominance of electrostatic interaction in governing PFAS transport across polyamide membranes. The roles of functional groups in altering PFAS transport across membranes are further revealed by molecular simulations. The combination of ML with computer simulations not only advances our knowledge of PFAS removal by polyamide membranes, but also provides an innovative approach to facilitate data-driven feature selection for the development of high-performance membranes with improved PFAS removal efficiency.
Collapse
Affiliation(s)
- Nohyeong Jeong
- School of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Shinyun Park
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO, 80523, USA
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287, USA
| | - Subhamoy Mahajan
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ji Zhou
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jens Blotevogel
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO, 80523, USA
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Environment, Waite Campus, Urrbrae, 5064, Australia
| | - Ying Li
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Tiezheng Tong
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO, 80523, USA.
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287, USA.
| | - Yongsheng Chen
- School of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
2
|
Fu K, Huang J, Luo F, Fang Z, Yu D, Zhang X, Wang D, Xing M, Luo J. Understanding the Selective Removal of Perfluoroalkyl and Polyfluoroalkyl Substances via Fluorine-Fluorine Interactions: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39264176 DOI: 10.1021/acs.est.4c06519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
As regulatory standards for per- and polyfluoroalkyl substances (PFAS) become increasingly stringent, innovative water treatment technologies are urgently demanded for effective PFAS removal. Reported sorbents often exhibit limited affinity for PFAS and are frequently hindered by competitive background substances. Recently, fluorinated sorbents (abbreviated as fluorosorbents) have emerged as a potent solution by leveraging fluorine-fluorine (F···F) interactions to enhance selectivity and efficiency in PFAS removal. This review delves into the designs and applications of fluorosorbents, emphasizing how F···F interactions improve PFAS binding affinity. Specifically, the existence of F···F interactions results in removal efficiencies orders of magnitude higher than other counterpart sorbents, particularly under competitive conditions. Furthermore, we provide a detailed analysis of the fundamental principles underlying F···F interactions and elucidate their synergistic effects with other sorption forces, which contribute to the enhanced efficacy and selectivity. Subsequently, we examine various fluorosorbents and their synthesis and fluorination techniques, underscore the importance of accurately characterizing F···F interactions through advanced analytical methods, and emphasize the significance of this interaction in developing selective sorbents. Finally, we discuss challenges and opportunities associated with employing advanced techniques to guide the design of selective sorbents and advocate for further research in the development of sustainable and cost-effective treatment technologies leveraging F···F interactions.
Collapse
Affiliation(s)
- Kaixing Fu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jinjing Huang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Fang Luo
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhuoya Fang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Deyou Yu
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles (Ministry of Education), Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Xiaolin Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Dawei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, P. R. China
| | - Mingyang Xing
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jinming Luo
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
3
|
Léniz-Pizarro F, Rudel HE, Briot NJ, Zimmerman JB, Bhattacharyya D. Membrane Functionalization Approaches toward Per- and Polyfluoroalkyl Substances and Selected Metal Ion Separations. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44224-44237. [PMID: 37688548 DOI: 10.1021/acsami.3c08478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
Abstract
Adsorption and ion exchange technologies are two of the most widely used approaches to separate pollutants from water; however, their intrinsic diffusion limitations continue to be a challenge. Pore functionalized membranes are a promising technology that can help overcome these challenges, but the extents of their competitive benefits and broad applicability have not been systematically evaluated. Herein, three types of adsorptive/ion exchange (IX) polymers containing strong/weak acid, strong base, and iron-chitosan complex groups were synthesized in the pores and partially on the surface of microfiltration (MF) membranes and tested for the removal of organic and inorganic cations and anions from water, including arsenic, per- and polyfluoroalkyl substances (PFAS), and calcium (hardness). When directly compared with beads (0.5-6 mm) and crushed resins (0.05 mm), adsorptive/IX pore-functionalized membranes demonstrated an increased relative sorption capacity, up to 2 orders of magnitude faster kinetics and the ability to regenerate up to 70-100% of their capacity while concentrating the initial solution concentration up to 12 times. The simple and versatile synthesis approach used to functionalize membranes, notably independent of the polymer type of the MF membrane, utilized pores throughout the entire cross section of the membrane to immobilize the polymers that contain the functional groups. Utilizing the pore volume of commercial membranes (6-112 mL/m2), the scientific weight capacity of the polymer (3.1-11.5 mequiv/g), and the synthesis conditions (e.g., monomer concentration), the theoretical adsorption/IX capacities per area of the membranes were calculated to be as high as 550 mequiv/m2, substantially higher than the 175 mequiv/m2 value needed to compete with commercially available IX resins. This work therefore shows that pore functionalized membranes are a promising path to tackle water contamination challenges, lowering separation diffusion limitations.
Collapse
Affiliation(s)
- Francisco Léniz-Pizarro
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
- Center of Membrane Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Holly E Rudel
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
- Center for Green Chemistry and Green Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Nicolas J Briot
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
- Electron Microscopy Center, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Julie B Zimmerman
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
- Center for Green Chemistry and Green Engineering, Yale University, New Haven, Connecticut 06511, United States
- School of the Environment, Yale University, New Haven, Connecticut 06511, United States
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
- Center of Membrane Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
4
|
Mills R, Baldridge KC, Bernard M, Bhattacharyya D. Recent Advances in Responsive Membrane Functionalization Approaches and Applications. SEP SCI TECHNOL 2022; 58:1202-1236. [PMID: 37063489 PMCID: PMC10103845 DOI: 10.1080/01496395.2022.2145222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/28/2022] [Indexed: 11/25/2022]
Abstract
In recent years, significant advances have been made in the field of functionalized membranes. With the functionalization using various materials, such as polymers and enzymes, membranes can exhibit property changes in response to an environmental stimulation, such as heat, light, ionic strength, or pH. The resulting responsive nature allows for an increased breadth of membrane uses, due to the developed functionalization properties, such as smart-gating filtration for size-selective water contaminant removal, self-cleaning antifouling surfaces, increased scalability options, and highly sensitive molecular detection. In this review, new advances in both fabrication and applications of functionalized membranes are reported and summarized, including temperature-responsive, pH-responsive, light-responsive, enzyme-functionalized, and two-dimensional material-functionalized membranes. Specific emphasis was given to the most recent technological improvements, current limitations, advances in characterization techniques, and future directions for the field of functionalized membranes.
Collapse
Affiliation(s)
- Rollie Mills
- Department of Chemical and Materials Engineering, University of Kentucky; Lexington, KY 40506, USA
| | - Kevin C. Baldridge
- Department of Chemical and Materials Engineering, University of Kentucky; Lexington, KY 40506, USA
| | - Matthew Bernard
- Department of Chemical and Materials Engineering, University of Kentucky; Lexington, KY 40506, USA
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky; Lexington, KY 40506, USA
| |
Collapse
|