1
|
Biswas P, Roy R, Ghosh K, Nath D, Samadder A, Nandi S. To quest new targets of Plasmodium parasite and their potential inhibitors to combat antimalarial drug resistance. J Parasit Dis 2024; 48:671-722. [PMID: 39493470 PMCID: PMC11527868 DOI: 10.1007/s12639-024-01687-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/08/2024] [Indexed: 11/05/2024] Open
Abstract
Malaria remains a global health challenge with significant mortality and morbidity annually, with resistant parasite strains complicating treatment efforts. There is an acute need for novel antimalarial drugs that can put a stop to the future public health crisis caused by the multi-drug resistance strains of the Plasmodium parasite. However, the discovery of these new components is very challenging in the context of the generation of multi-drug resistance properties of malaria. The novel drugs also need to have several properties involving enhanced therapeutic prospects, successful treatment capabilities, and novel mechanisms of action that will forestall the resistance. To successfully achieve this aim researchers are trying to focus on exploring promising malaria targets. Various approaches have been made for the development of drugs for malaria including the remodelling of existing drugs and the development of novel inhibitors which acts on new targets. Advancement in the study provides more information on the biology of parasites and the new targets which help in the development of novel drugs. The present review focuses on the study of novel targets of malaria parasites and subsequent inhibitors of those particular targets. Some of these targets include malarial protease, various transporter proteins, enzymes involved in the synthesis of DNA, and nucleic acids like dihydroorotate dehydrogenase, dihydrofolate reductase, apicoplast and dihydropteroate synthase. Other potential targets are also included in this review such as isoprenoid biosynthesis, farnesyl transferase of parasite, P. falciparum translational elongation factor 2, and phosphatidyl inositol 4 kinase. These promising targets have also been summed up along with their corresponding inhibitors for combating multi-drug resistance malaria.
Collapse
Affiliation(s)
- Pratyusa Biswas
- Department of Zoology, University of Kalyani, Kalyani, Nadia 741235 India
| | - Rini Roy
- Department of Zoology, University of Kalyani, Kalyani, Nadia 741235 India
| | - Kuldip Ghosh
- Department of Zoology, University of Kalyani, Kalyani, Nadia 741235 India
| | - Debjani Nath
- Department of Zoology, University of Kalyani, Kalyani, Nadia 741235 India
| | - Asmita Samadder
- Department of Zoology, University of Kalyani, Kalyani, Nadia 741235 India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research (Affiliated to Veer Madho Singh Bhandari Uttarakhand Technical University), Kashipur, 244713 India
| |
Collapse
|
2
|
Dupouy B, Donzel M, Roignant M, Charital S, Keumoe R, Yamaryo-Botté Y, Feckler A, Bundschuh M, Bordat Y, Rottmann M, Mäser P, Botté CY, Blandin SA, Besteiro S, Davioud-Charvet E. 3-Benzylmenadiones and their Heteroaromatic Analogues Target the Apicoplast of Apicomplexa Parasites: Synthesis and Bioimaging Studies. ACS Infect Dis 2024; 10:3553-3576. [PMID: 39327729 DOI: 10.1021/acsinfecdis.4c00304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The apicoplast is an essential organelle for the viability of apicomplexan parasites Plasmodium falciparum or Toxoplasma gondii, which has been proposed as a suitable drug target for the development of new antiplasmodial drug-candidates. Plasmodione, an antimalarial redox-active lead drug is active at low nM concentrations on several blood stages of Plasmodiumsuch as early rings and gametocytes. Nevertheless, its precise biological targets remain unknown. Here, we described the synthesis and the evaluation of new heteroaromatic analogues of plasmodione, active on asexual blood P. falciparum stages and T. gondii tachyzoites. Using a bioimaging-based analysis, we followed the morphological alterations of T. gondii tachyzoites and revealed a specific loss of the apicoplast upon drug treatment. Lipidomic and fluxomic analyses determined that drug treatment severely impacts apicoplast-hosted FASII activity in T. gondii tachyzoites, further supporting that the apicoplast is a primary target of plasmodione analogues. To follow the drug localization, "clickable" analogues of plasmodione were designed as tools for fluorescence imaging through a Cu(I)-catalyzed azide-alkyne cycloaddition reaction. Short-time incubation of two probes with P. falciparum trophozoites and T. gondii tachyzoites showed that the clicked products localize within, or in the vicinity of, the apicoplast of both Apicomplexa parasites. In P. falciparum, the fluorescence signal was also associated with the mitochondrion, suggesting that bioactivation and activity of plasmodione and related analogues are potentially associated with these two organelles in malaria parasites.
Collapse
Affiliation(s)
- Baptiste Dupouy
- UMR7042 CNRS-Unistra-UHA, Laboratoire d'Innovation Moléculaire et Applications (LIMA), Bio(in)organic & Medicinal Chemistry Team, European School of Chemistry, Polymers and Materials (ECPM), 25, Rue Becquerel, Strasbourg F-67087, France
| | - Maxime Donzel
- UMR7042 CNRS-Unistra-UHA, Laboratoire d'Innovation Moléculaire et Applications (LIMA), Bio(in)organic & Medicinal Chemistry Team, European School of Chemistry, Polymers and Materials (ECPM), 25, Rue Becquerel, Strasbourg F-67087, France
| | - Matthieu Roignant
- UMR7042 CNRS-Unistra-UHA, Laboratoire d'Innovation Moléculaire et Applications (LIMA), Bio(in)organic & Medicinal Chemistry Team, European School of Chemistry, Polymers and Materials (ECPM), 25, Rue Becquerel, Strasbourg F-67087, France
| | - Sarah Charital
- Apicolipid Team, Institut pour l'Avancée des Biosciences, CNRS UMR5309,INSERM U1209, Université Grenoble Alpes, Bat. Jean Roget, Domaine de la Merci, La Tronche F-38700, France
| | - Rodrigue Keumoe
- INSERM, CNRS, Université de Strasbourg, U1257/UPR9022, Mosquito Immune Responses IBMC, 2 Allée Konrad Roentgen, Strasbourg F-67000, France
| | - Yoshiki Yamaryo-Botté
- Apicolipid Team, Institut pour l'Avancée des Biosciences, CNRS UMR5309,INSERM U1209, Université Grenoble Alpes, Bat. Jean Roget, Domaine de la Merci, La Tronche F-38700, France
| | - Alexander Feckler
- Functional Aquatic Ecotoxicology, Institute for Environmental Sciences (iES), RPTU Kaiserslautern-Landau, Fortstrasse 7, Landau D-76829, Germany
| | - Mirco Bundschuh
- Functional Aquatic Ecotoxicology, Institute for Environmental Sciences (iES), RPTU Kaiserslautern-Landau, Fortstrasse 7, Landau D-76829, Germany
| | - Yann Bordat
- UMR5294 CNRS-Université de Montpellier, Laboratory of Pathogens and Host Immunity (LPHI), Place Eugène Bataillon, Bâtiment 24, CC 107, Montpellier cedex 5 F-34095, France
| | - Matthias Rottmann
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, Allschwil CH-4123, Switzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, Allschwil CH-4123, Switzerland
- University of Basel, Petersgraben 1, Basel CH-4001, Switzerland
| | - Cyrille Y Botté
- Apicolipid Team, Institut pour l'Avancée des Biosciences, CNRS UMR5309,INSERM U1209, Université Grenoble Alpes, Bat. Jean Roget, Domaine de la Merci, La Tronche F-38700, France
| | - Stéphanie A Blandin
- INSERM, CNRS, Université de Strasbourg, U1257/UPR9022, Mosquito Immune Responses IBMC, 2 Allée Konrad Roentgen, Strasbourg F-67000, France
| | - Sébastien Besteiro
- UMR5294 CNRS-Université de Montpellier, Laboratory of Pathogens and Host Immunity (LPHI), Place Eugène Bataillon, Bâtiment 24, CC 107, Montpellier cedex 5 F-34095, France
| | - Elisabeth Davioud-Charvet
- UMR7042 CNRS-Unistra-UHA, Laboratoire d'Innovation Moléculaire et Applications (LIMA), Bio(in)organic & Medicinal Chemistry Team, European School of Chemistry, Polymers and Materials (ECPM), 25, Rue Becquerel, Strasbourg F-67087, France
| |
Collapse
|
3
|
Woodland JG, Horatscheck A, Soares de Melo C, Dziwornu GA, Taylor D. Another decade of antimalarial drug discovery: New targets, tools and molecules. PROGRESS IN MEDICINAL CHEMISTRY 2024; 63:161-234. [PMID: 39370241 DOI: 10.1016/bs.pmch.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Malaria remains a devastating but preventable infectious disease that disproportionately affects the African continent. Emerging resistance to current frontline therapies means that not only are new treatments urgently required, but also novel validated antimalarial targets to circumvent cross-resistance. Fortunately, tremendous efforts have been made by the global drug discovery community over the past decade. In this chapter, we will highlight some of the antimalarial drug discovery and development programmes currently underway across the globe, charting progress in the identification of new targets and the development of new classes of drugs to prosecute them. These efforts have been complemented by the development of valuable tools to accelerate target validation such as the NOD scid gamma (NSG) humanized mouse efficacy model and progress in predictive modelling and open-source software. Among the medicinal chemistry programmes that have been conducted over the past decade are those targeting Plasmodium falciparum ATPase4 (ATP4) and acetyl-CoA synthetase (AcAS) as well as proteins disrupting parasite protein translation such as the aminoacyl-tRNA synthetases (aaRSs) and eukaryotic elongation factor 2 (eEF2). The benefits and challenges of targeting Plasmodium kinases will be examined, with a focus on Plasmodium cyclic GMP-dependent protein kinase (PKG), cyclin-dependent-like protein kinase 3 (CLK3) and phosphatidylinositol 4-kinase (PI4K). The chapter concludes with a survey of incipient drug discovery centres in Africa and acknowledges the value of recent international meetings in galvanizing and uniting the antimalarial drug discovery community.
Collapse
Affiliation(s)
- John G Woodland
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa; South African Medical Research Council Drug Discovery and Development Research Unit, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - André Horatscheck
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Candice Soares de Melo
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Godwin A Dziwornu
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Dale Taylor
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa.
| |
Collapse
|
4
|
Dziwornu GA, Seanego D, Fienberg S, Clements M, Ferreira J, Sypu VS, Samanta S, Bhana AD, Korkor CM, Garnie LF, Teixeira N, Wicht KJ, Taylor D, Olckers R, Njoroge M, Gibhard L, Salomane N, Wittlin S, Mahato R, Chakraborty A, Sevilleno N, Coyle R, Lee MCS, Godoy LC, Pasaje CF, Niles JC, Reader J, van der Watt M, Birkholtz LM, Bolscher JM, de Bruijni MHC, Coulson LB, Basarab GS, Ghorpade SR, Chibale K. 2,8-Disubstituted-1,5-naphthyridines as Dual Inhibitors of Plasmodium falciparum Phosphatidylinositol-4-kinase and Hemozoin Formation with In Vivo Efficacy. J Med Chem 2024; 67:11401-11420. [PMID: 38918002 PMCID: PMC11247499 DOI: 10.1021/acs.jmedchem.4c01154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Structure-activity relationship studies of 2,8-disubstituted-1,5-naphthyridines, previously reported as potent inhibitors of Plasmodium falciparum (Pf) phosphatidylinositol-4-kinase β (PI4K), identified 1,5-naphthyridines with basic groups at 8-position, which retained Plasmodium PI4K inhibitory activity but switched primary mode of action to the host hemoglobin degradation pathway through inhibition of hemozoin formation. These compounds showed minimal off-target inhibitory activity against the human phosphoinositide kinases and MINK1 and MAP4K kinases, which were associated with the teratogenicity and testicular toxicity observed in rats for the PfPI4K inhibitor clinical candidate MMV390048. A representative compound from the series retained activity against field isolates and lab-raised drug-resistant strains of Pf. It was efficacious in the humanized NSG mouse malaria infection model at a single oral dose of 32 mg/kg. This compound was nonteratogenic in the zebrafish embryo model of teratogenicity and has a low predicted human dose, indicating that this series has the potential to deliver a preclinical candidate for malaria.
Collapse
Affiliation(s)
- Godwin Akpeko Dziwornu
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Donald Seanego
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Stephen Fienberg
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Monica Clements
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Jasmin Ferreira
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Venkata S Sypu
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Sauvik Samanta
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Ashlyn D Bhana
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Constance M Korkor
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Larnelle F Garnie
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Nicole Teixeira
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Kathryn J Wicht
- Drug Discovery and Development Centre (H3D), Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Dale Taylor
- Drug Discovery and Development Centre (H3D), Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Ronald Olckers
- Drug Discovery and Development Centre (H3D), Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Mathew Njoroge
- Drug Discovery and Development Centre (H3D), Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Liezl Gibhard
- Drug Discovery and Development Centre (H3D), Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Nicolaas Salomane
- Drug Discovery and Development Centre (H3D), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town 7925, South Africa
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
- University of Basel, 4001 Basel, Switzerland
| | | | | | - Nicole Sevilleno
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, U.K
| | - Rachael Coyle
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, U.K
| | - Marcus C S Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, U.K
| | - Luiz C Godoy
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Charisse Flerida Pasaje
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jacquin C Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Mariette van der Watt
- Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Lyn-Marié Birkholtz
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Judith M Bolscher
- TropIQ Health Sciences, Transistorweg 5, 6534 AT Nijmegen, The Netherlands
| | | | - Lauren B Coulson
- Drug Discovery and Development Centre (H3D), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town 7925, South Africa
| | - Gregory S Basarab
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- Drug Discovery and Development Centre (H3D), Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Sandeep R Ghorpade
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Kelly Chibale
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
5
|
Mogwera KSP, Chibale K, Arendse LB. Developing kinase inhibitors for malaria: an opportunity or liability? Trends Parasitol 2023; 39:720-731. [PMID: 37385921 DOI: 10.1016/j.pt.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 07/01/2023]
Abstract
Highly druggable and essential to almost all aspects of cellular life, the protein and phosphoinositide kinase gene families offer a wealth of potential targets for pharmacological modulation for both noncommunicable and infectious diseases. Despite the success of kinase inhibitors in oncology and other disease indications, targeting kinases comes with significant challenges. Key hurdles for kinase drug discovery include selectivity and acquired resistance. The phosphatidylinositol 4-kinase beta inhibitor MMV390048 showed good efficacy in Phase 2a clinical trials, demonstrating the potential of kinase inhibitors for malaria treatment. Here we argue that the potential benefits of Plasmodium kinase inhibitors outweigh the risks, and we highlight the opportunity for designed polypharmacology to reduce the risk of resistance.
Collapse
Affiliation(s)
- Koketso S P Mogwera
- Drug Discovery and Development Centre (H3D), South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Kelly Chibale
- Drug Discovery and Development Centre (H3D), South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Lauren B Arendse
- Drug Discovery and Development Centre (H3D), South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa.
| |
Collapse
|
6
|
Burke JE, Triscott J, Emerling BM, Hammond GRV. Beyond PI3Ks: targeting phosphoinositide kinases in disease. Nat Rev Drug Discov 2023; 22:357-386. [PMID: 36376561 PMCID: PMC9663198 DOI: 10.1038/s41573-022-00582-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2022] [Indexed: 11/16/2022]
Abstract
Lipid phosphoinositides are master regulators of almost all aspects of a cell's life and death and are generated by the tightly regulated activity of phosphoinositide kinases. Although extensive efforts have focused on drugging class I phosphoinositide 3-kinases (PI3Ks), recent years have revealed opportunities for targeting almost all phosphoinositide kinases in human diseases, including cancer, immunodeficiencies, viral infection and neurodegenerative disease. This has led to widespread efforts in the clinical development of potent and selective inhibitors of phosphoinositide kinases. This Review summarizes our current understanding of the molecular basis for the involvement of phosphoinositide kinases in disease and assesses the preclinical and clinical development of phosphoinositide kinase inhibitors.
Collapse
Affiliation(s)
- John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada.
| | - Joanna Triscott
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Gerald R V Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Ong HW, Adderley J, Tobin AB, Drewry DH, Doerig C. Parasite and host kinases as targets for antimalarials. Expert Opin Ther Targets 2023; 27:151-169. [PMID: 36942408 DOI: 10.1080/14728222.2023.2185511] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
INTRODUCTION The deployment of Artemisinin-based combination therapies and transmission control measures led to a decrease in the global malaria burden over the recent decades. Unfortunately, this trend is now reversing, in part due to resistance against available treatments, calling for the development of new drugs against untapped targets to prevent cross-resistance. AREAS COVERED In view of their demonstrated druggability in noninfectious diseases, protein kinases represent attractive targets. Kinase-focussed antimalarial drug discovery is facilitated by the availability of kinase-targeting scaffolds and large libraries of inhibitors, as well as high-throughput phenotypic and biochemical assays. We present an overview of validated Plasmodium kinase targets and their inhibitors, and briefly discuss the potential of host cell kinases as targets for host-directed therapy. EXPERT OPINION We propose priority research areas, including (i) diversification of Plasmodium kinase targets (at present most efforts focus on a very small number of targets); (ii) polypharmacology as an avenue to limit resistance (kinase inhibitors are highly suitable in this respect); and (iii) preemptive limitation of resistance through host-directed therapy (targeting host cell kinases that are required for parasite survival) and transmission-blocking through targeting sexual stage-specific kinases as a strategy to protect curative drugs from the spread of resistance.
Collapse
Affiliation(s)
- Han Wee Ong
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC USA
| | - Jack Adderley
- Department of Laboratory Medicine, School of Health and Biomedical Sciences, Rmit University, Bundoora VIC Australia
| | - Andrew B Tobin
- Advanced Research Centre, University of Glasgow, Glasgow, UK
| | - David H Drewry
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC USA
| | - Christian Doerig
- Department of Laboratory Medicine, School of Health and Biomedical Sciences, Rmit University, Bundoora VIC Australia
| |
Collapse
|
8
|
McPhail JA, Burke JE. Molecular mechanisms of PI4K regulation and their involvement in viral replication. Traffic 2023; 24:131-145. [PMID: 35579216 DOI: 10.1111/tra.12841] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/07/2022] [Accepted: 03/30/2022] [Indexed: 11/28/2022]
Abstract
Lipid phosphoinositides are master signaling molecules in eukaryotic cells and key markers of organelle identity. Because of these important roles, the kinases and phosphatases that generate phosphoinositides must be tightly regulated. Viruses can manipulate this regulation, with the Type III phosphatidylinositol 4-kinases (PI4KA and PI4KB) being hijacked by many RNA viruses to mediate their intracellular replication through the formation of phosphatidylinositol 4-phosphate (PI4P)-enriched replication organelles (ROs). Different viruses have evolved unique approaches toward activating PI4K enzymes to form ROs, through both direct binding of PI4Ks and modulation of PI4K accessory proteins. This review will focus on PI4KA and PI4KB and discuss their roles in signaling, functions in membrane trafficking and manipulation by viruses. Our focus will be the molecular basis for how PI4KA and PI4KB are activated by both protein-binding partners and post-translational modifications, with an emphasis on understanding the different molecular mechanisms viruses have evolved to usurp PI4Ks. We will also discuss the chemical tools available to study the role of PI4Ks in viral infection.
Collapse
Affiliation(s)
- Jacob A McPhail
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.,Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
9
|
Kundu M, Dutta A, Roy KK, Mal SK, Karmakar S, Mandal A, Mondal SK, Kumar S, Saha S, Pradhan S, Sarkar R, Chakrabarti M, Malik PK, Banerjee M. Identification of 5-(3-(methylsulfonyl)phenyl)-3-(4-(methylsulfonyl)phenyl)-3H-imidazo[4,5-b]pyridine as novel orally bioavailable and metabolically stable antimalarial compound for further exploration. Chem Biol Drug Des 2023; 101:690-695. [PMID: 36322010 DOI: 10.1111/cbdd.14170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 10/09/2022] [Accepted: 10/29/2022] [Indexed: 11/05/2022]
Abstract
Malaria continues to be a significant public health problem threatened by the emergence and spread of resistance to artemisinin-based combination therapies and marked half a million deaths in 2016. A new imidazopyridine chemotype has been envisaged through scaffold-hopping approach combined with docking studies for putative-binding interactions with Plasmodium falciparum phosphatidylinositol-4-kinase (PfPI4K) target. The docking results steered to the synthesis of compound 1 [5-(3-(methylsulfonyl)phenyl)-3-(4-(methylsulfonyl)phenyl)-3H-imidazo[4,5-b]pyridine] followed by the in vitro screening for antiplasmodial activity and ADME-PK studies. Combined with potent antimalarial activity of compound 1 (Pf3D7 IC50 = 29 nM) with meager in vitro intrinsic clearance, moderate plasma-protein binding, and acceptable permeability, compound 1 displayed sustained exposure and high oral bioavailability in mice and can thus have the potential as next generation PI4K inhibitor for in vivo studies.
Collapse
Affiliation(s)
| | - Aditi Dutta
- TCG Lifesciences Pvt. Ltd., Salt Lake, Kolkata, India
| | - Kuldeep K Roy
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES University, Dehradun, Uttarakhand, India
| | - Sajal K Mal
- TCG Lifesciences Pvt. Ltd., Salt Lake, Kolkata, India
| | | | - Aritra Mandal
- TCG Lifesciences Pvt. Ltd., Salt Lake, Kolkata, India
| | | | - Sanjay Kumar
- TCG Lifesciences Pvt. Ltd., Salt Lake, Kolkata, India
| | - Soumya Saha
- TCG Lifesciences Pvt. Ltd., Salt Lake, Kolkata, India
| | | | - Ratul Sarkar
- TCG Lifesciences Pvt. Ltd., Salt Lake, Kolkata, India
| | | | | | | |
Collapse
|
10
|
Arendse LB, Murithi JM, Qahash T, Pasaje CFA, Godoy LC, Dey S, Gibhard L, Ghidelli-Disse S, Drewes G, Bantscheff M, Lafuente-Monasterio MJ, Fienberg S, Wambua L, Gachuhi S, Coertzen D, van der Watt M, Reader J, Aswat AS, Erlank E, Venter N, Mittal N, Luth MR, Ottilie S, Winzeler EA, Koekemoer LL, Birkholtz LM, Niles JC, Llinás M, Fidock DA, Chibale K. The anticancer human mTOR inhibitor sapanisertib potently inhibits multiple Plasmodium kinases and life cycle stages. Sci Transl Med 2022; 14:eabo7219. [PMID: 36260689 PMCID: PMC9951552 DOI: 10.1126/scitranslmed.abo7219] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Compounds acting on multiple targets are critical to combating antimalarial drug resistance. Here, we report that the human "mammalian target of rapamycin" (mTOR) inhibitor sapanisertib has potent prophylactic liver stage activity, in vitro and in vivo asexual blood stage (ABS) activity, and transmission-blocking activity against the protozoan parasite Plasmodium spp. Chemoproteomics studies revealed multiple potential Plasmodium kinase targets, and potent inhibition of Plasmodium phosphatidylinositol 4-kinase type III beta (PI4Kβ) and cyclic guanosine monophosphate-dependent protein kinase (PKG) was confirmed in vitro. Conditional knockdown of PI4Kβ in ABS cultures modulated parasite sensitivity to sapanisertib, and laboratory-generated P. falciparum sapanisertib resistance was mediated by mutations in PI4Kβ. Parasite metabolomic perturbation profiles associated with sapanisertib and other known PI4Kβ and/or PKG inhibitors revealed similarities and differences between chemotypes, potentially caused by sapanisertib targeting multiple parasite kinases. The multistage activity of sapanisertib and its in vivo antimalarial efficacy, coupled with potent inhibition of at least two promising drug targets, provides an opportunity to reposition this pyrazolopyrimidine for malaria.
Collapse
Affiliation(s)
- Lauren B. Arendse
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, Cape Town 7701, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town 7925, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - James M. Murithi
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Tarrick Qahash
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Huck Center for Malaria Research, Pennsylvania State University, University Park, PA 16802, USA
| | | | - Luiz C. Godoy
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sumanta Dey
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Liezl Gibhard
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | | | - Gerard Drewes
- Cellzome GmbH, a GSK Company, Heidelberg 69117, Germany
| | | | - Maria J. Lafuente-Monasterio
- Tres Cantos Medicines Development Campus-Diseases of the Developing World, GlaxoSmithKline, Tres Cantos, Madrid 28760, Spain
| | - Stephen Fienberg
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, Cape Town 7701, South Africa
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Lynn Wambua
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town 7925, South Africa
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Samuel Gachuhi
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Dina Coertzen
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield 0028, South Africa
| | - Mariëtte van der Watt
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield 0028, South Africa
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield 0028, South Africa
| | - Ayesha S. Aswat
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Erica Erlank
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Nelius Venter
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Nimisha Mittal
- School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Madeline R. Luth
- School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sabine Ottilie
- School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Lizette L. Koekemoer
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Lyn-Marie Birkholtz
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield 0028, South Africa
| | - Jacquin C. Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Huck Center for Malaria Research, Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kelly Chibale
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, Cape Town 7701, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town 7925, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| |
Collapse
|
11
|
Recent metabolomic developments for antimalarial drug discovery. Parasitol Res 2022; 121:3351-3380. [PMID: 36194273 DOI: 10.1007/s00436-022-07673-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/14/2022] [Indexed: 10/10/2022]
Abstract
Malaria is a parasitic disease that remains a global health issue, responsible for a significant death and morbidity toll. Various factors have impacted the use and delayed the development of antimalarial therapies, such as the associated financial cost and parasitic resistance. In order to discover new drugs and validate parasitic targets, a powerful omics tool, metabolomics, emerged as a reliable approach. However, as a fairly recent method in malaria, new findings are timely and original practices emerge frequently. This review aims to discuss recent research towards the development of new metabolomic methods in the context of uncovering antiplasmodial mechanisms of action in vitro and to point out innovative metabolic pathways that can revitalize the antimalarial pipeline.
Collapse
|
12
|
Efficacy of the Antimalarial MMV390048 against Babesia Infection Reveals Phosphatidylinositol 4-Kinase as a Druggable Target for Babesiosis. Antimicrob Agents Chemother 2022; 66:e0057422. [PMID: 35924942 PMCID: PMC9487540 DOI: 10.1128/aac.00574-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The present study aimed to evaluate the anti-Babesia effect of MMV390048, a drug that inhibits Plasmodium by targeting the phosphatidylinositol 4-kinase (PI4K). The half inhibitory concentration (IC50) of MMV390048 against the in vitro growth of Babesia gibsoni was 6.9 ± 0.9 μM. In immunocompetent mice, oral treatment with MMV390048 at a concentration of 20 mg/kg effectively inhibited the growth of B. microti (Peabody mjr strain). The peak parasitemia in the control group was 30.5%, whereas the peak parasitemia in the MMV390048-treated group was 3.4%. Meanwhile, MMV390048 also showed inhibition on the growth of B. rodhaini (Australia strain), a highly pathogenic rodent Babesia species. All MMV390048-treated mice survived, whereas the mice in control group died within 10 days postinfection (DPI). The first 7-day administration of MMV390048 in B. microti-infected, severe combined immunodeficiency (SCID) mice delayed the rise of parasitemia by 26 days. Subsequently, a second 7-day administration was given upon recurrence. At 52 DPI, a parasite relapse (in 1 out of 5 mice) and a mutation in the B. microti PI4K L746S, a MMV390048 resistance-related gene, were detected. Although the radical cure of B. microti infection in immunocompromised host SCID mice was not achieved, results from this study showed that MMV390048 has excellent inhibitory effects on Babesia parasites, revealing a new treatment strategy for babesiosis: targeting the B. microti PI4K.
Collapse
|
13
|
Borba JVVB, Silva ADCE, do Nascimento MN, Ferreira LT, Rimoldi A, Starling L, Ramos PIP, Costa FTM, Andrade CH. Update and elucidation of Plasmodium kinomes: Prioritization of kinases as potential drug targets for malaria. Comput Struct Biotechnol J 2022; 20:3708-3717. [PMID: 35891792 PMCID: PMC9293725 DOI: 10.1016/j.csbj.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 12/05/2022] Open
Abstract
Malaria is a tropical disease caused by Plasmodium spp. and transmitted by the bite of infected Anopheles mosquitoes. Protein kinases (PKs) play key roles in the life cycle of the etiological agent of malaria, turning these proteins attractive targets for antimalarial drug discovery campaigns. As part of an effort to understand parasite signaling functions, we report the results of a bioinformatics pipeline analysis of PKs of eight Plasmodium species. To date, no P. malariae and P. ovale kinome assemble has been conducted. We classified, curated and annotated predicted kinases to update P. falciparum, P. vivax, P. yoelii, P. berghei, P. chabaudi, and P. knowlesi kinomes published to date, as well as report for the first time the kinomes of P. malariae and P. ovale. Overall, from 76 to 97 PKs were identified among all Plasmodium spp. kinomes. Most of the kinases were assigned to seven of nine major kinase groups: AGC, CAMK, CMGC, CK1, STE, TKL, OTHER; and the Plasmodium-specific group FIKK. About 30% of kinases have been deeply classified into group, family and subfamily levels and only about 10% remained unclassified. Furthermore, updating and comparing the kinomes of P. vivax and P. falciparum allowed for the prioritization and selection of kinases as potential drug targets that could be explored for discovering new drugs against malaria. This integrated approach resulted in the selection of 37 protein kinases as potential targets and the identification of investigational compounds with moderate in vitro activity against asexual P. falciparum (3D7 and Dd2 strains) stages that could serve as starting points for the search of potent antimalarial leads in the future.
Collapse
Affiliation(s)
- Joyce Villa Verde Bastos Borba
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás (UFG), Goiânia, Brazil.,Laboratory of Tropical Diseases - Prof. Dr. Luiz Jacintho da Silva, Department of Genetics Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Arthur de Carvalho E Silva
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás (UFG), Goiânia, Brazil
| | - Marília Nunes do Nascimento
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás (UFG), Goiânia, Brazil
| | - Letícia Tiburcio Ferreira
- Laboratory of Tropical Diseases - Prof. Dr. Luiz Jacintho da Silva, Department of Genetics Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Aline Rimoldi
- Laboratory of Tropical Diseases - Prof. Dr. Luiz Jacintho da Silva, Department of Genetics Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Luísa Starling
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás (UFG), Goiânia, Brazil
| | | | - Fabio Trindade Maranhão Costa
- Laboratory of Tropical Diseases - Prof. Dr. Luiz Jacintho da Silva, Department of Genetics Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Carolina Horta Andrade
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás (UFG), Goiânia, Brazil.,Laboratory of Tropical Diseases - Prof. Dr. Luiz Jacintho da Silva, Department of Genetics Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
14
|
Fragment-based virtual screening discovers potential new Plasmodium PI4KIIIβ ligands. BMC Chem 2022; 16:19. [PMID: 35331319 PMCID: PMC8944149 DOI: 10.1186/s13065-022-00812-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/07/2022] [Indexed: 12/17/2022] Open
Abstract
Type III beta phosphatidylinositol 4-kinase (PI4KIIIβ) is the only clinically validated drug target in Plasmodium kinases and therefore a critical target in developing novel drugs for malaria. Current PI4KIIIβ inhibitors have solubility and off-target problems. Here we set out to identify new Plasmodium PI4K ligands that could serve as leads for the development of new antimalarial drugs by building a PPI4K homology model since there was no available three-dimensional structure of PfPI4K and virtually screened a small library of ~ 22 000 fragments against it. Sixteen compounds from the fragment-based virtual screening (FBVS) were selected based on ≤ − 9.0 kcal/mol binding free energy cut-off value. These were subjected to similarity and sub-structure searching after they had passed PAINS screening and the obtained derivatives showed improved binding affinity for PfPI4K (− 10.00 to − 13.80 kcal/mol). Moreover, binding hypothesis of the top-scoring compound (31) was confirmed in a 100 ns molecular dynamics simulation and its binding pose retrieved after the system had converged at about 10 ns into the evolution was described to lay foundation for a rationale chemical-modification to optimize binding to PfPI4K. Overall, compound 31 appears to be a viable starting point for the development of PPI4K inhibitors with antimalarial activity.
Collapse
|
15
|
Adebayo J, Ceravolo I, Gyebi G, Olorundare E, Babatunde A, Penna-Coutinho J, Koketsu M, Krettli A. Iloneoside, an antimalarial pregnane glycoside isolated from Gongronema latifolium leaf, potentiates the activity of chloroquine against multidrug resistant Plasmodium falciparum. Mol Biochem Parasitol 2022; 249:111474. [DOI: 10.1016/j.molbiopara.2022.111474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/09/2022] [Accepted: 03/13/2022] [Indexed: 10/18/2022]
|
16
|
Arendse LB, Wyllie S, Chibale K, Gilbert IH. Plasmodium Kinases as Potential Drug Targets for Malaria: Challenges and Opportunities. ACS Infect Dis 2021; 7:518-534. [PMID: 33590753 PMCID: PMC7961706 DOI: 10.1021/acsinfecdis.0c00724] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Indexed: 12/30/2022]
Abstract
Protein and phosphoinositide kinases have been successfully exploited as drug targets in various disease areas, principally in oncology. In malaria, several protein kinases are under investigation as potential drug targets, and an inhibitor of Plasmodium phosphatidylinositol 4-kinase type III beta (PI4KIIIβ) is currently in phase 2 clinical studies. In this Perspective, we review the potential of kinases as drug targets for the treatment of malaria. Kinases are known to be readily druggable, and many are essential for parasite survival. A key challenge in the design of Plasmodium kinase inhibitors is obtaining selectivity over the corresponding human orthologue(s) and other human kinases due to the highly conserved nature of the shared ATP binding site. Notwithstanding this, there are some notable differences between the Plasmodium and human kinome that may be exploitable. There is also the potential for designed polypharmacology, where several Plasmodium kinases are inhibited by the same drug. Prior to starting the drug discovery process, it is important to carefully assess potential kinase targets to ensure that the inhibition of the desired kinase will kill the parasites in the required life-cycle stages with a sufficiently fast rate of kill. Here, we highlight key target attributes and experimental approaches to consider and summarize the progress that has been made targeting Plasmodium PI4KIIIβ, cGMP-dependent protein kinase, and cyclin-dependent-like kinase 3.
Collapse
Affiliation(s)
- Lauren B. Arendse
- Drug
Discovery and Development Centre (H3D), South African Medical Research
Council Drug Discovery and Development Research Unit, Department of
Chemistry, and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, Cape Town, Western Cape 7701, South Africa
| | - Susan Wyllie
- Wellcome
Centre for Anti-Infectives Research, Division of Biological Chemistry
and Drug Discovery, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Kelly Chibale
- Drug
Discovery and Development Centre (H3D), South African Medical Research
Council Drug Discovery and Development Research Unit, Department of
Chemistry, and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, Cape Town, Western Cape 7701, South Africa
| | - Ian H. Gilbert
- Wellcome
Centre for Anti-Infectives Research, Division of Biological Chemistry
and Drug Discovery, University of Dundee, Dundee DD1 5EH, United Kingdom
| |
Collapse
|
17
|
Cheuka PM, Centani L, Arendse LB, Fienberg S, Wambua L, Renga SS, Dziwornu GA, Kumar M, Lawrence N, Taylor D, Wittlin S, Coertzen D, Reader J, van der Watt M, Birkholtz LM, Chibale K. New Amidated 3,6-Diphenylated Imidazopyridazines with Potent Antiplasmodium Activity Are Dual Inhibitors of Plasmodium Phosphatidylinositol-4-kinase and cGMP-Dependent Protein Kinase. ACS Infect Dis 2021; 7:34-46. [PMID: 33319990 DOI: 10.1021/acsinfecdis.0c00481] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent studies on 3,6-diphenylated imidazopyridazines have demonstrated impressive in vitro activity and in vivo efficacy in mouse models of malaria infection. Herein, we report the synthesis and antiplasmodium evaluation of a new series of amidated analogues and demonstrate that these compounds potently inhibit Plasmodium phosphatidylinositol-4-kinase (PI4K) type IIIβ while moderately inhibiting cyclic guanidine monophosphate (cGMP)-dependent protein kinase (PKG) activity in vitro. Using in silico docking, we predict key binding interactions for these analogues within the adenosine triphosphate (ATP)-binding site of PI4K and PKG, paving the way for structure-based optimization of imidazopyridazines targeting both Plasmodium PI4K and PKG. While several derivatives showed low nanomolar antiplasmodium activity (IC50 < 100 nM), some compounds, including piperazine analogue 28, resulted in strong dual PI4K and PKG inhibition. The compounds also demonstrated transmission-blocking potential, evident from their potent inhibition of early- and late-stage gametocytes. Finally, the current compounds generally showed improved aqueous solubility and reduced hERG (human ether-a-go-go-related gene) channel inhibition.
Collapse
Affiliation(s)
- Peter Mubanga Cheuka
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
- Department of Chemistry, University of Zambia, Great East Road Campus, P.O Box 32379, Lusaka, Zambia
| | - Luyanda Centani
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Lauren B. Arendse
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
- Drug Discovery and Development Centre (H3D) and South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Stephen Fienberg
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
- Drug Discovery and Development Centre (H3D) and South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Lynn Wambua
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Shoneeze S. Renga
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Godwin Akpeko Dziwornu
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Malkeet Kumar
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Nina Lawrence
- Drug Discovery and Development Centre (H3D), Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, Cape Town 7925, South Africa
| | - Dale Taylor
- Drug Discovery and Development Centre (H3D), Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, Cape Town 7925, South Africa
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland
- University of Basel, 4003 Basel, Switzerland
| | - Dina Coertzen
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Mariette van der Watt
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Lyn-Marie Birkholtz
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
- Drug Discovery and Development Centre (H3D) and South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| |
Collapse
|