1
|
Crilly NP, Zita MD, Beaver AK, Sysa-Shah P, Bhalodia A, Gabrielson K, Adamo L, Mugnier MR. A murine model of Trypanosoma brucei-induced myocarditis and cardiac dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.05.560950. [PMID: 37873308 PMCID: PMC10592974 DOI: 10.1101/2023.10.05.560950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Trypanosoma brucei is a protozoan parasite that causes human and animal African trypanosomiases (HAT and AAT). Cardiac symptoms are commonly reported in HAT patients, and intracardiac parasites with accompanying myocarditis have been observed in both natural hosts and animal models of T. brucei infection. Despite the importance of T. brucei as a cause of cardiac dysfunction and the dramatic socioeconomic impact of African trypanosomiases in sub-Saharan Africa, there are currently no reproducible murine models of T. brucei-associated cardiomyopathy. We present the first clinically relevant, reproducible murine model of cardiac dysfunction in chronic T. brucei infection. Similar to humans, mice showed histological evidence of myocarditis and elevation of serum NT-proBNP with electrocardiographic abnormalities. Serum NT-proBNP levels were elevated prior to the development of severe ventricular dysfunction. On flow cytometry, myocarditis was associated with an increase of most myocardial immune cell populations, including multiple T cell and macrophage subsets, corroborating the notion that T. brucei-associated cardiac damage is an immune-mediated event. This novel mouse model represents a powerful and practical tool to investigate the pathogenesis of T. brucei-mediated heart damage and supports the development of therapeutic options for T. brucei-associated cardiac disease.
Collapse
Affiliation(s)
- Nathan P. Crilly
- Department of Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Marcelle Dina Zita
- Division of Cardiology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Alexander K. Beaver
- Department of Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Polina Sysa-Shah
- Department of Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Molecular Imaging Service Center and Cancer Functional Imaging Core, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Aashik Bhalodia
- Division of Cardiology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kathy Gabrielson
- Department of Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Luigi Adamo
- Division of Cardiology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Monica R. Mugnier
- Department of Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Liu Z, Vucetich S, DeToy K, Duran Saucedo G, Verastegui M, Carballo-Jimenez P, Mercado-Saavedra BN, Tinajeros F, Malaga-Machaca ES, Marcus R, Gilman RH, Bowman NM, McCall LI. Small molecule biomarkers predictive of Chagas disease progression. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.13.24307310. [PMID: 38798659 PMCID: PMC11118624 DOI: 10.1101/2024.05.13.24307310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Chagas disease (CD) is a neglected tropical disease caused by the parasitic protozoan Trypanosoma cruzi. However, only 20% to 30% of infected individuals will progress to severe symptomatic cardiac manifestations. Current treatments are benznidazole and nifurtimox, which are poorly tolerated regimens. Developing a biomarker to determine the likelihood of patient progression would be helpful for doctors to optimize patient treatment strategies. Such a biomarker would also benefit drug discovery efforts and clinical trials. In this study, we combined untargeted and targeted metabolomics to compare serum samples from T. cruzi-infected individuals who progressed to severe cardiac disease, versus infected individuals who remained at the same disease stage (non-progressors). We identified four unannotated biomarker candidates, which were validated in an independent cohort using both untargeted and targeted analysis techniques. Overall, our findings demonstrate that serum small molecules can predict CD progression, offering potential for clinical monitoring.
Collapse
|
3
|
Ewald S, Nasuhidehnavi A, Feng TY, Lesani M, McCall LI. The intersection of host in vivo metabolism and immune responses to infection with kinetoplastid and apicomplexan parasites. Microbiol Mol Biol Rev 2024; 88:e0016422. [PMID: 38299836 PMCID: PMC10966954 DOI: 10.1128/mmbr.00164-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
SUMMARYProtozoan parasite infection dramatically alters host metabolism, driven by immunological demand and parasite manipulation strategies. Immunometabolic checkpoints are often exploited by kinetoplastid and protozoan parasites to establish chronic infection, which can significantly impair host metabolic homeostasis. The recent growth of tools to analyze metabolism is expanding our understanding of these questions. Here, we review and contrast host metabolic alterations that occur in vivo during infection with Leishmania, trypanosomes, Toxoplasma, Plasmodium, and Cryptosporidium. Although genetically divergent, there are commonalities among these pathogens in terms of metabolic needs, induction of the type I immune responses required for clearance, and the potential for sustained host metabolic dysbiosis. Comparing these pathogens provides an opportunity to explore how transmission strategy, nutritional demand, and host cell and tissue tropism drive similarities and unique aspects in host response and infection outcome and to design new strategies to treat disease.
Collapse
Affiliation(s)
- Sarah Ewald
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Azadeh Nasuhidehnavi
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Tzu-Yu Feng
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Mahbobeh Lesani
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, Oklahoma, USA
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, USA
| |
Collapse
|
4
|
Kwakye-Nuako G, Middleton CE, McCall LI. Small molecule mediators of host-T. cruzi-environment interactions in Chagas disease. PLoS Pathog 2024; 20:e1012012. [PMID: 38457443 PMCID: PMC10923493 DOI: 10.1371/journal.ppat.1012012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024] Open
Abstract
Small molecules (less than 1,500 Da) include major biological signals that mediate host-pathogen-microbiome communication. They also include key intermediates of metabolism and critical cellular building blocks. Pathogens present with unique nutritional needs that restrict pathogen colonization or promote tissue damage. In parallel, parts of host metabolism are responsive to immune signaling and regulated by immune cascades. These interactions can trigger both adaptive and maladaptive metabolic changes in the host, with microbiome-derived signals also contributing to disease progression. In turn, targeting pathogen metabolic needs or maladaptive host metabolic changes is an important strategy to develop new treatments for infectious diseases. Trypanosoma cruzi is a single-celled eukaryotic pathogen and the causative agent of Chagas disease, a neglected tropical disease associated with cardiac and intestinal dysfunction. Here, we discuss the role of small molecules during T. cruzi infection in its vector and in the mammalian host. We integrate these findings to build a theoretical interpretation of how maladaptive metabolic changes drive Chagas disease and extrapolate on how these findings can guide drug development.
Collapse
Affiliation(s)
- Godwin Kwakye-Nuako
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Caitlyn E. Middleton
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, United States of America
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, United States of America
| |
Collapse
|
5
|
Dean DA, Roach J, Ulrich vonBargen R, Xiong Y, Kane SS, Klechka L, Wheeler K, Jimenez Sandoval M, Lesani M, Hossain E, Katemauswa M, Schaefer M, Harris M, Barron S, Liu Z, Pan C, McCall LI. Persistent Biofluid Small-Molecule Alterations Induced by Trypanosoma cruzi Infection Are Not Restored by Parasite Elimination. ACS Infect Dis 2023; 9:2173-2189. [PMID: 37883691 PMCID: PMC10842590 DOI: 10.1021/acsinfecdis.3c00261] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Chagas disease (CD), caused by Trypanosoma cruzi (T. cruzi) protozoa, is a complicated parasitic illness with inadequate medical measures for diagnosing infection and monitoring treatment success. To address this gap, we analyzed changes in the metabolome of T. cruzi-infected mice via liquid chromatography tandem mass spectrometry of clinically accessible biofluids: saliva, urine, and plasma. Urine was the most indicative of infection status across mouse and parasite genotypes. Metabolites perturbed by infection in urine include kynurenate, acylcarnitines, and threonylcarbamoyladenosine. Based on these results, we sought to implement urine as a tool for the assessment of CD treatment success. Strikingly, it was found that mice with parasite clearance following benznidazole antiparasitic treatment had an overall urine metabolome comparable to that of mice that failed to clear parasites. These results provide a complementary hypothesis to explain clinical trial data in which benznidazole treatment did not improve patient outcomes in late-stage disease, even in patients with successful parasite clearance. Overall, this study provides insights into new small-molecule-based CD diagnostic methods and a new approach to assess functional responses to treatment.
Collapse
Affiliation(s)
- Danya A. Dean
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, 73019, USA
| | - Jarrod Roach
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | | | - Yi Xiong
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Shelley S. Kane
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, 73019, USA
| | - London Klechka
- Department of Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Kate Wheeler
- Department of Biology, University of Oklahoma, Norman, OK, 73019, USA
| | | | - Mahbobeh Lesani
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Ekram Hossain
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, 73019, USA
| | - Mitchelle Katemauswa
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, 73019, USA
| | - Miranda Schaefer
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Morgan Harris
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Sayre Barron
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Zongyuan Liu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, 73019, USA
| | - Chongle Pan
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, 73019, USA
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| |
Collapse
|
6
|
Liu Z, Ulrich vonBargen R, Kendricks AL, Wheeler K, Leão AC, Sankaranarayanan K, Dean DA, Kane SS, Hossain E, Pollet J, Bottazzi ME, Hotez PJ, Jones KM, McCall LI. Localized cardiac small molecule trajectories and persistent chemical sequelae in experimental Chagas disease. Nat Commun 2023; 14:6769. [PMID: 37880260 PMCID: PMC10600178 DOI: 10.1038/s41467-023-42247-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 10/04/2023] [Indexed: 10/27/2023] Open
Abstract
Post-infectious conditions present major health burdens but remain poorly understood. In Chagas disease (CD), caused by Trypanosoma cruzi parasites, antiparasitic agents that successfully clear T. cruzi do not always improve clinical outcomes. In this study, we reveal differential small molecule trajectories between cardiac regions during chronic T. cruzi infection, matching with characteristic CD apical aneurysm sites. Incomplete, region-specific, cardiac small molecule restoration is observed in animals treated with the antiparasitic benznidazole. In contrast, superior restoration of the cardiac small molecule profile is observed for a combination treatment of reduced-dose benznidazole plus an immunotherapy, even with less parasite burden reduction. Overall, these results reveal molecular mechanisms of CD treatment based on simultaneous effects on the pathogen and on host small molecule responses, and expand our understanding of clinical treatment failure in CD. This link between infection and subsequent persistent small molecule perturbation broadens our understanding of infectious disease sequelae.
Collapse
Affiliation(s)
- Zongyuan Liu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, USA
| | - Rebecca Ulrich vonBargen
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, USA
- Department of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
| | | | - Kate Wheeler
- Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Ana Carolina Leão
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Krithivasan Sankaranarayanan
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, USA
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Danya A Dean
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, USA
| | - Shelley S Kane
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, USA
| | - Ekram Hossain
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, USA
| | - Jeroen Pollet
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Maria Elena Bottazzi
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Peter J Hotez
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Kathryn M Jones
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA.
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, USA.
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA.
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA, USA.
| |
Collapse
|
7
|
Ness M, Holmes AL, Wu C, Hossain E, Ibberson CB, McCall LI. Metabolomic Analysis of Polymicrobial Wound Infections and an Associated Adhesive Bandage. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1847-1857. [PMID: 37289200 PMCID: PMC10524476 DOI: 10.1021/jasms.3c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Concerns about ion suppression, spectral contamination, or interference have led to avoidance of polymers in mass spectrometry (MS)-based metabolomics. This avoidance, however, has left many biochemical fields underexplored, including wounds, which are often treated with adhesive bandages. Here, we found that despite previous concerns, the addition of an adhesive bandage can still result in biologically informative MS data. Initially, a test LC-MS analysis was performed on a mixture of known chemical standards and a polymer bandage extract. Results demonstrated successful removal of many polymer-associated features through a data processing step. Furthermore, the bandage presence did not interfere with metabolite annotation. This method was then implemented in the context of murine surgical wound infections covered with an adhesive bandage and inoculated with Staphylococcus aureus, Pseudomonas aeruginosa, or a 1:1 mix of these pathogens. Metabolites were extracted and analyzed by LC-MS. On the bandage side, we observed a greater impact of infection on the metabolome. Distance analysis showed significant differences between all conditions and demonstrated that coinfected samples were more similar to S. aureus-infected samples compared to P. aeruginosa-infected samples. We also found that coinfection was not merely a summative effect of each monoinfection. Overall, these results represent an expansion of LC-MS-based metabolomics to a novel, previously under-investigated class of samples, leading to actionable biological information.
Collapse
Affiliation(s)
- Monica Ness
- University of Oklahoma, Department of Chemistry and Biochemistry, Norman, OK, USA, 73019
| | - Avery L. Holmes
- University of Oklahoma, Department of Microbiology and Plant Biology, Norman, OK, USA, 73019
| | - Chaoyi Wu
- University of Oklahoma, Department of Chemistry and Biochemistry, Norman, OK, USA, 73019
| | - Ekram Hossain
- University of Oklahoma, Department of Chemistry and Biochemistry, Norman, OK, USA, 73019
| | - Carolyn B. Ibberson
- University of Oklahoma, Department of Microbiology and Plant Biology, Norman, OK, USA, 73019
| | - Laura-Isobel McCall
- University of Oklahoma, Department of Chemistry and Biochemistry, Norman, OK, USA, 73019
- University of Oklahoma, Department of Microbiology and Plant Biology, Norman, OK, USA, 73019
- University of Oklahoma, Laboratories of Molecular Anthropology and Microbiome Research, Norman, OK, USA, 73019
| |
Collapse
|
8
|
Dean DA, Roach J, vonBargen RU, Xiong Y, Kane SS, Klechka L, Wheeler K, Sandoval MJ, Lesani M, Hossain E, Katemauswa M, Schaefer M, Harris M, Barron S, Liu Z, Pan C, McCall LI. Persistent biofluid small molecule alterations induced by Trypanosoma cruzi infection are not restored by antiparasitic treatment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.03.543565. [PMID: 37425694 PMCID: PMC10326868 DOI: 10.1101/2023.06.03.543565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Chagas Disease (CD), caused by Trypanosoma cruzi (T. cruzi) protozoa, is a complicated parasitic illness with inadequate medical measures for diagnosing infection and monitoring treatment success. To address this gap, we analyzed changes in the metabolome of T. cruzi-infected mice via liquid chromatography tandem mass spectrometry analysis of clinically-accessible biofluids: saliva, urine, and plasma. Urine was the most indicative of infection status, across mouse and parasite genotypes. Metabolites perturbed by infection in the urine include kynurenate, acylcarnitines, and threonylcarbamoyladenosine. Based on these results, we sought to implement urine as a tool for assessment of CD treatment success. Strikingly, it was found that mice with parasite clearance following benznidazole antiparasitic treatment had comparable overall urine metabolome to mice that failed to clear parasites. These results match with clinical trial data in which benznidazole treatment did not improve patient outcomes in late-stage disease. Overall, this study provides insights into new small molecule-based CD diagnostic methods and a new approach to assess functional treatment response.
Collapse
Affiliation(s)
- Danya A. Dean
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, 73019; USA
| | - Jarrod Roach
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | | | - Yi Xiong
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Shelley S. Kane
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, 73019; USA
| | - London Klechka
- Department of Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Kate Wheeler
- Department of Biology, University of Oklahoma, Norman, OK, 73019, USA
| | | | - Mahbobeh Lesani
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Ekram Hossain
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, 73019; USA
| | - Mitchelle Katemauswa
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, 73019; USA
| | - Miranda Schaefer
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Morgan Harris
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Sayre Barron
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Zongyuan Liu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, 73019; USA
| | - Chongle Pan
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, 73019; USA
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| |
Collapse
|
9
|
Nasuhidehnavi A, McCall LI. It takes two to tango: How immune responses and metabolic changes jointly shape cardiac Chagas disease. PLoS Pathog 2023; 19:e1011399. [PMID: 37262078 PMCID: PMC10234536 DOI: 10.1371/journal.ppat.1011399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023] Open
Affiliation(s)
- Azadeh Nasuhidehnavi
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, United States of America
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, Oklahoma, United States of America
| |
Collapse
|
10
|
Liu Z, Ulrich R, Kendricks AL, Wheeler K, Leão AC, Pollet J, Bottazzi ME, Hotez P, Gusovsky F, Jones KM, McCall LI. Localized cardiac metabolic trajectories and post-infectious metabolic sequelae in experimental Chagas disease. RESEARCH SQUARE 2023:rs.3.rs-2497474. [PMID: 36711878 PMCID: PMC9882638 DOI: 10.21203/rs.3.rs-2497474/v1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Post-infectious conditions, where clinical symptoms fail to resolve even after pathogen clearance, present major health burdens. However, the mechanisms involved remain poorly understood. In Chagas disease (CD), caused by the parasite Trypanosoma cruzi, antiparasitic agents can clear T. cruzi but late-stage treatment does not improve clinical cardiac outcomes. In this study, we revealed differential metabolic trajectories of cardiac regions during T. cruzi infection, matching sites of clinical symptoms. Incomplete, region-specific, cardiac metabolic restoration was observed in animals treated with the antiparasitic benznidazole, even though parasites were successfully cleared. In contrast, superior metabolic restoration was observed for a combination treatment of reduced-dose benznidazole plus an immunotherapy (Tc24-C4 T. cruzi flagellar protein and TLR4 agonist adjuvant), even though parasite burden reduction was lower. Overall, these results provide a mechanism to explain prior clinical treatment failures in CD and to test novel candidate treatment regimens. More broadly, our results demonstrate a link between persistent metabolic perturbation and post-infectious conditions, with broad implications for our understanding of post-infectious disease sequelae.
Collapse
Affiliation(s)
- Zongyuan Liu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Rebecca Ulrich
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, Oklahoma, United States of America
- Department of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, United States of America
| | - April L. Kendricks
- Southern Star Medical Research Institute, Houston, TX, United States of America
| | - Kate Wheeler
- Department of Biology, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Ana Carolina Leão
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States of America
| | - Jeroen Pollet
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States of America
| | - Maria Elena Bottazzi
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Peter Hotez
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | | | - Kathryn M. Jones
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, Oklahoma, United States of America
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, United States of America
| |
Collapse
|
11
|
Nguyen TD, Lan Y, Kane SS, Haffner JJ, Liu R, McCall LI, Yang Z. Single-Cell Mass Spectrometry Enables Insight into Heterogeneity in Infectious Disease. Anal Chem 2022; 94:10567-10572. [PMID: 35863111 PMCID: PMC10064790 DOI: 10.1021/acs.analchem.2c02279] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cellular heterogeneity is generally overlooked in infectious diseases. In this study, we investigated host cell heterogeneity during infection with Trypanosoma cruzi (T. cruzi) parasites, causative agents of Chagas disease (CD). In chronic-stage CD, only a few host cells are infected with a large load of parasites and symptoms may appear at sites distal to parasite colonization. Furthermore, recent work has revealed T. cruzi heterogeneity with regard to replication rates and drug susceptibility. However, the role of cellular-level metabolic heterogeneity in these processes has yet to be assessed. To fill this knowledge gap, we developed a Single-probe SCMS (single-cell mass spectrometry) method compatible with biosafety protocols, to acquire metabolomics data from individual cells during T. cruzi infection. This study revealed heterogeneity in the metabolic response of the host cells to T. cruzi infection in vitro. Our results showed that parasite-infected cells possessed divergent metabolism compared to control cells. Strikingly, some uninfected cells adjacent to infected cells showed metabolic impacts as well. Specific metabolic changes include increases in glycerophospholipids with infection. These results provide novel insight into the pathogenesis of CD. Furthermore, they represent the first application of bioanalytical SCMS to the study of mammalian-infectious agents, with the potential for broad applications to study infectious diseases.
Collapse
Affiliation(s)
- Tra D Nguyen
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Yunpeng Lan
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Shelley S Kane
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Jacob J Haffner
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, Oklahoma 73019, United States.,Department of Anthropology, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Renmeng Liu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States.,Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, Oklahoma 73019, United States.,Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Zhibo Yang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
12
|
Dean DA, Haffner JJ, Katemauswa M, McCall LI. Chemical Cartography Approaches to Study Trypanosomatid Infection. J Vis Exp 2022:10.3791/63255. [PMID: 35129167 PMCID: PMC8875367 DOI: 10.3791/63255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024] Open
Abstract
Pathogen tropism and disease tropism refer to the tissue locations selectively colonized or damaged by pathogens, leading to localized disease symptoms. Human-infective trypanosomatid parasites include Trypanosoma cruzi, the causative agent of Chagas disease; Trypanosoma brucei, the causative agent of sleeping sickness; and Leishmania species, causative agents of leishmaniasis. Jointly, they affect 20 million people across the globe. These parasites show specific tropism: heart, esophagus, colon for T. cruzi, adipose tissue, pancreas, skin, circulatory system and central nervous system for T. brucei, skin for dermotropic Leishmania strains, and liver, spleen, and bone marrow for viscerotropic Leishmania strains. A spatial perspective is therefore essential to understand trypanosomatid disease pathogenesis. Chemical cartography generates 3D visualizations of small molecule abundance generated via liquid chromatography-mass spectrometry, in comparison to microbiological and immunological parameters. This protocol demonstrates how chemical cartography can be applied to study pathogenic processes during trypanosomatid infection, beginning from systematic tissue sampling and metabolite extraction, followed by liquid chromatography-tandem mass spectrometry data acquisition, and concluding with the generation of 3D maps of metabolite distribution. This method can be used for multiple research questions, such as nutrient requirements for tissue colonization by T. cruzi, T. brucei, or Leishmania, immunometabolism at sites of infection, and the relationship between local tissue metabolic perturbation and clinical disease symptoms, leading to comprehensive insight into trypanosomatid disease pathogenesis.
Collapse
Affiliation(s)
- Danya A Dean
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman
| | - Jacob J Haffner
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman; Department of Anthropology, University of Oklahoma, Norman
| | | | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman; Department of Microbiology and Plant Biology, University of Oklahoma, Norman;
| |
Collapse
|
13
|
Harris MB, Lesani M, Liu Z, McCall LI. Molecular networking in infectious disease models. Methods Enzymol 2022; 663:341-375. [PMID: 35168796 PMCID: PMC10040239 DOI: 10.1016/bs.mie.2021.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Small molecule metabolites are the product of many enzymatic reactions. Metabolomics thus opens a window into enzyme activity and function, integrating effects at the post-translational, proteome, transcriptome and genome level. In addition, small molecules can themselves regulate enzyme activity, expression and function both via substrate availability mechanisms and through allosteric regulation. Metabolites are therefore at the nexus of infectious diseases, regulating nutrient availability to the pathogen, immune responses, tropism, and host disease tolerance and resilience. Analysis of metabolomics data is however complex, particularly in terms of metabolite annotation. An emerging valuable approach to extend metabolite annotations beyond existing compound libraries and to identify infection-induced chemical changes is molecular networking. In this chapter, we discuss the applications of molecular networking in the context of infectious diseases specifically, with a focus on considerations relevant to these biological systems.
Collapse
Affiliation(s)
- Morgan B Harris
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, United States
| | - Mahbobeh Lesani
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, United States
| | - Zongyuan Liu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, United States
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States; Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, United States.
| |
Collapse
|
14
|
Dean DA, Gautham G, Siqueira-Neto JL, McKerrow JH, Dorrestein PC, McCall LI. Spatial metabolomics identifies localized chemical changes in heart tissue during chronic cardiac Chagas Disease. PLoS Negl Trop Dis 2021; 15:e0009819. [PMID: 34606502 PMCID: PMC8516257 DOI: 10.1371/journal.pntd.0009819] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 10/14/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
Chagas disease (CD), caused by the parasite Trypanosoma cruzi, is one of nineteen neglected tropical diseases. CD is a vector-borne disease transmitted by triatomines, but CD can also be transmitted through blood transfusions, organ transplants, T. cruzi-contaminated food and drinks, and congenital transmission. While endemic to the Americas, T. cruzi infects 7–8 million people worldwide and can induce severe cardiac symptoms including apical aneurysms, thromboembolisms and arrhythmias during the chronic stage of CD. However, these cardiac clinical manifestations and CD pathogenesis are not fully understood. Using spatial metabolomics (chemical cartography), we sought to understand the localized impact of chronic CD on the cardiac metabolome of mice infected with two divergent T. cruzi strains. Our data showed chemical differences in localized cardiac regions upon chronic T. cruzi infection, indicating that parasite infection changes the host metabolome at specific sites in chronic CD. These sites were distinct from the sites of highest parasite burden. In addition, we identified acylcarnitines and glycerophosphocholines as discriminatory chemical families within each heart region, comparing infected and uninfected samples. Overall, our study indicated global and positional metabolic differences common to infection with different T. cruzi strains and identified select infection-modulated pathways. These results provide further insight into CD pathogenesis and demonstrate the advantage of a systematic spatial perspective to understand infectious disease tropism. Chagas disease (CD) is a tropical disease caused by the parasite Trypanosoma cruzi. CD originated in the Americas but is now found globally due to population movements. CD is transmitted through a triatomine vector, organ transplants, blood transfusions, T. cruzi-contaminated food and drinks, and congenitally. It occurs in two stages, an acute stage (usually asymptomatic) and a chronic stage. Twenty to thirty percent of chronic stage cases present severe cardiac symptoms such as heart failure, localized aneurysms and cardiomyopathy. Unfortunately, what causes severe cardiac symptoms in some individuals in chronic CD is not fully understood. Therefore, we used liquid chromatography-tandem mass spectrometry to analyze the heart tissue of chronically T. cruzi-infected and uninfected mice, to understand the impact of infection on the tissue metabolome. We identified discriminatory small molecules related to T. cruzi infection and determined that regions with the highest parasite burden are distinct from the regions with the largest changes in overall metabolite profile. These locations of high metabolic perturbation provide a molecular mechanism to explain why localized cardiac symptoms occur in CD, particularly at the heart apex. Overall, our work gives insight into chronic cardiac CD symptom development and shapes a framework for novel CD treatment.
Collapse
Affiliation(s)
- Danya A. Dean
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Gautham Gautham
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, Oklahoma, United States of America
- Department of Biology, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Jair L. Siqueira-Neto
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - James H. McKerrow
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Pieter C. Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, United States of America
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, California, United States of America
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, Oklahoma, United States of America
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
15
|
Liu Z, Ulrich vonBargen R, McCall LI. Central role of metabolism in Trypanosoma cruzi tropism and Chagas disease pathogenesis. Curr Opin Microbiol 2021; 63:204-209. [PMID: 34455304 PMCID: PMC8463485 DOI: 10.1016/j.mib.2021.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 01/17/2023]
Abstract
Chagas disease is a neglected tropical disease caused by Trypanosoma cruzi parasites. During mammalian infection, T. cruzi alternates between an intracellular stage and extracellular stage. T. cruzi adapts its metabolism to this lifestyle, while also reshaping host metabolic pathways. Such host metabolic adaptations compensate for parasite-induced stress, but may promote parasite survival and proliferation. Recent work has demonstrated that metabolism controls parasite tropism and location of Chagas disease symptoms, and regulates whether infection is mild or severe. Such findings have important translational applications with regards to treatment and diagnostic test development, though further research is needed with regards to in vivo parasite metabolic gene expression, relationship between magnitude of local metabolic perturbation, parasite strain and disease location, and host-parasite-microbiota co-metabolism.
Collapse
Affiliation(s)
- Zongyuan Liu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, 73019, United States; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, Oklahoma, 73019, United States
| | - Rebecca Ulrich vonBargen
- Department of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, United States
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, 73019, United States; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, Oklahoma, 73019, United States; Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, 73019, United States.
| |
Collapse
|
16
|
Parab AR, Thomas D, Lostracco-Johnson S, Siqueira-Neto JL, McKerrow JH, Dorrestein PC, McCall LI. Dysregulation of Glycerophosphocholines in the Cutaneous Lesion Caused by Leishmania major in Experimental Murine Models. Pathogens 2021; 10:593. [PMID: 34068119 PMCID: PMC8152770 DOI: 10.3390/pathogens10050593] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 01/21/2023] Open
Abstract
Cutaneous leishmaniasis (CL) is the most common disease form caused by a Leishmania parasite infection and considered a neglected tropical disease (NTD), affecting 700,000 to 1.2 million new cases per year in the world. Leishmania major is one of several different species of the Leishmania genus that can cause CL. Current CL treatments are limited by adverse effects and rising resistance. Studying disease metabolism at the site of infection can provide knowledge of new targets for host-targeted drug development. In this study, tissue samples were collected from mice infected in the ear or footpad with L. major and analyzed by untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS). Significant differences in overall metabolite profiles were noted in the ear at the site of the lesion. Interestingly, lesion-adjacent, macroscopically healthy sites also showed alterations in specific metabolites, including selected glycerophosphocholines (PCs). Host-derived PCs in the lower m/z range (m/z 200-799) showed an increase with infection in the ear at the lesion site, while those in the higher m/z range (m/z 800-899) were decreased with infection at the lesion site. Overall, our results expanded our understanding of the mechanisms of CL pathogenesis through host metabolism and may lead to new curative measures against infection with Leishmania.
Collapse
Affiliation(s)
- Adwaita R. Parab
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA;
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK 73019, USA
| | - Diane Thomas
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; (D.T.); (S.L.-J.); (J.L.S.-N.); (J.H.M.); (P.C.D.)
| | - Sharon Lostracco-Johnson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; (D.T.); (S.L.-J.); (J.L.S.-N.); (J.H.M.); (P.C.D.)
| | - Jair L. Siqueira-Neto
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; (D.T.); (S.L.-J.); (J.L.S.-N.); (J.H.M.); (P.C.D.)
| | - James H. McKerrow
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; (D.T.); (S.L.-J.); (J.L.S.-N.); (J.H.M.); (P.C.D.)
| | - Pieter C. Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; (D.T.); (S.L.-J.); (J.L.S.-N.); (J.H.M.); (P.C.D.)
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Laura-Isobel McCall
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA;
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK 73019, USA
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
17
|
Parab AR, McCall LI. Tryp-ing Up Metabolism: Role of Metabolic Adaptations in Kinetoplastid Disease Pathogenesis. Infect Immun 2021; 89:e00644-20. [PMID: 33526564 PMCID: PMC8090971 DOI: 10.1128/iai.00644-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Today, more than a billion people-one-sixth of the world's population-are suffering from neglected tropical diseases. Human African trypanosomiasis, Chagas disease, and leishmaniasis are neglected tropical diseases caused by protozoan parasites belonging to the genera Trypanosoma and Leishmania About half a million people living in tropical and subtropical regions of the world are at risk of contracting one of these three infections. Kinetoplastids have complex life cycles with different morphologies and unique physiological requirements at each life cycle stage. This review covers the latest findings on metabolic pathways impacting disease pathogenesis of kinetoplastids within the mammalian host. Nutrient availability is a key factor shaping in vivo parasite metabolism; thus, kinetoplastids display significant metabolic flexibility. Proteomic and transcriptomic profiles show that intracellular trypanosomatids are able to switch to an energy-efficient metabolism within the mammalian host system. Host metabolic changes can also favor parasite persistence, and contribute to symptom development, in a location-specific fashion. Ultimately, targeted and untargeted metabolomics studies have been a valuable approach to elucidate the specific biochemical pathways affected by infection within the host, leading to translational drug development and diagnostic insights.
Collapse
Affiliation(s)
- Adwaita R Parab
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Laura-Isobel McCall
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|