1
|
Ahmed S, Herschhorn A. mRNA-based HIV-1 vaccines. Clin Microbiol Rev 2024; 37:e0004124. [PMID: 39016564 PMCID: PMC11391700 DOI: 10.1128/cmr.00041-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
SUMMARYThe success of the Severe Acute Respiratory Syndrome Coronavirus 2 mRNA vaccines to lessen/prevent severe COVID-19 opened new opportunities to develop RNA vaccines to fight other infectious agents. HIV-1 is a lentivirus that integrates into the host cell genome and persists for the lifetime of infected cells. Multiple mechanisms of immune evasion have posed significant obstacles to the development of an effective HIV-1 vaccine over the last four decades since the identification of HIV-1. Recently, attempts to address some of these challenges have led to multiple studies that manufactured, optimized, and tested, in different animal models, mRNA-based HIV-1 vaccines. Several clinical trials have also been initiated or are planned to start soon. Here, we review the current strategies applied to HIV-1 mRNA vaccines, discuss different targeting approaches, summarize the latest findings, and offer insights into the challenges and future of HIV-1 mRNA vaccines.
Collapse
Affiliation(s)
- Shamim Ahmed
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Alon Herschhorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Genome Engineering, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, Minnesota, USA
- The College of Veterinary Medicine Graduate Program, University of Minnesota, Minneapolis, Minnesota, USA
- Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
2
|
Jeffy J, Parthasarathy D, Ahmed S, Cervera-Benet H, Xiong U, Harris M, Mazurov D, Pickthorn S, Herschhorn A. Alternative substitutions of N332 in HIV-1 AD8 gp120 differentially affect envelope glycoprotein function and viral sensitivity to broadly neutralizing antibodies targeting the V3-glycan. mBio 2024; 15:e0268623. [PMID: 38470051 PMCID: PMC11005340 DOI: 10.1128/mbio.02686-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
The envelope glycoprotein (Env) trimer on the surface of human immunodeficiency virus type I (HIV-1) mediates viral entry into host CD4+ T cells and is the sole target of neutralizing antibodies. Broadly neutralizing antibodies (bnAbs) that target gp120 V3-glycan of HIV-1 Env trimer are potent and block the entry of diverse HIV-1 strains. Most V3-glycan bnAbs interact, to a different extent, with a glycan attached to N332, but Asn at this position is not absolutely conserved or required for HIV-1 entry based on the prevalence of N332 in different circulating HIV-1 strains from diverse clades. Here, we studied the effects of amino acid changes at position 332 of HIV-1AD8 Envs on HIV-1 sensitivity to antibodies, cold exposure, and soluble CD4. We further investigated how these changes affect Env function and HIV-1 infectivity in vitro. Our results suggest robust tolerability of HIV-1AD8 Env N332 to changes, with specific changes that resulted in extended exposure of gp120 V3 loop, which is typically concealed in most primary HIV-1 isolates. Viral evolution leading to Asn at position 332 of HIVAD8 Envs is supported by the selection advantage of high levels of cell-cell fusion, transmission, and infectivity with high levels of cell surface expression and slightly higher gp120 shedding than most N332 variants. Thus, tolerance of HIV-1AD8 Envs to different amino acids at position 332 provides increased flexibility to respond to changing conditions/environments and evade the immune system. Modeling studies of the distance between N332 glycan and specific bnAbs were in agreement with N332 glycan dependency on bnAb neutralization. Overall, our studies provide insights into the contribution of specific amino acids at position 332 to Env antigenicity, stability on ice, and conformational states. IMPORTANCE Glycan attached to amino acid asparagine at position 332 of HIV-1 envelope glycoproteins is a main target of a subset of broadly neutralizing antibodies that block HIV-1 infection. Here, we defined the contribution of different amino acids at this position to Env antigenicity, stability on ice, and conformational states.
Collapse
Affiliation(s)
- Jeffy Jeffy
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Durgadevi Parthasarathy
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Shamim Ahmed
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Héctor Cervera-Benet
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ulahn Xiong
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Miranda Harris
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Dmitriy Mazurov
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Stephanie Pickthorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Alon Herschhorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- Center of Genomic Engineering, University of Minnesota, Minneapolis, Minnesota, USA
- Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, Minnesota, USA
- The College of Veterinary Medicine Graduate Program, University of Minnesota, Minneapolis, Minnesota, USA
- Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
3
|
Mazurov D, Herschhorn A. Ultrasensitive quantification of HIV-1 cell-to-cell transmission in primary human CD4 + T cells measures viral sensitivity to broadly neutralizing antibodies. mBio 2024; 15:e0242823. [PMID: 38063394 PMCID: PMC10790777 DOI: 10.1128/mbio.02428-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/07/2023] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE HIV-1 can efficiently transmit from one cell to another but accurate quantification of this mode of transmission is still challenging. Here, we developed an ultrasensitive assay to measure HIV-1 transmission between cells and to evaluate HIV-1 escape from broadly neutralizing antibodies in primary human T cells. This assay will contribute to understanding the fundamental mechanisms of HIV-1 cell-to-cell transmission, allow evaluation of pre-existing or acquired HIV-1 resistance in clinical trials, and can be adapted to study the biology of other retroviruses.
Collapse
Affiliation(s)
- Dmitriy Mazurov
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Alon Herschhorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Engineering in Medicine, Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
- Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, Minnesota, USA
- The College of Veterinary Medicine Graduate Program, University of Minnesota, Minneapolis, Minnesota, USA
- Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
4
|
Jeffy J, Parthasarathy D, Ahmed S, Cervera-Benet H, Xiong U, Harris M, Mazurov D, Pickthorn S, Herschhorn A. Alternative substitutions of N332 in HIV-1 AD8 gp120 differentially affect envelope glycoprotein function and viral sensitivity to broadly neutralizing antibodies targeting the V3-glycan. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567910. [PMID: 38045336 PMCID: PMC10690231 DOI: 10.1101/2023.11.20.567910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The envelope glycoprotein (Env) trimer on the surface of human immunodeficiency virus type I (HIV-1) mediates viral entry into host CD4+ T cells and is the sole target of neutralizing antibodies. Broadly neutralizing antibodies (bnAbs) that target gp120 V3-glycan of HIV-1 Env trimer are potent and block the entry of diverse HIV-1 strains. Most V3-glycan bnAbs interact, to a different extent, with a glycan attached to N332 but Asn at this position is not absolutely conserved or required for HIV-1 entry based on prevalence of N332 in different circulating HIV-1 strains from diverse clades. Here, we studied the effects of amino acid changes at position 332 of HIV-1AD8 Envs on HIV-1 sensitivity to antibodies, cold exposure, and soluble CD4. We further investigated how these changes affect Env function and HIV-1 infectivity in vitro. Our results suggest robust tolerability of HIV-1AD8 Env N332 to changes with specific changes that resulted in extended exposure of gp120 V3 loop, which is typically concealed in most primary HIV-1 isolates. Viral evolution leading to Asn at position 332 of HIVAD8 Envs is supported by the selection advantage of high levels of cell-cell fusion, transmission, and infectivity even though cell surface expression levels are lower than most N332 variants. Thus, tolerance of HIV-1AD8 Envs to different amino acids at position 332 provides increased flexibility to respond to changing conditions/environments and to evade the immune system. Modeling studies of the distance between N332 glycan and specific bnAbs was in agreement with N332 glycan dependency on bnAb neutralization. Overall, our studies provide insights into the contribution of specific amino acids at position 332 to Env antigenicity, stability on ice, and conformational states.
Collapse
Affiliation(s)
- Jeffy Jeffy
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Durgadevi Parthasarathy
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Shamim Ahmed
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Héctor Cervera-Benet
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Ulahn Xiong
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Miranda Harris
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Dmitriy Mazurov
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Stephanie Pickthorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Alon Herschhorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Institute of Engineering and Medicine, University of Minnesota, Minneapolis, MN 55455, USA
- Center of Genomic Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Microbiology, Immunology, and Cancer Biology Graduate Program, the College of Veterinary Medicine Graduate Program, and Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|