1
|
Tan X, Xiang Y, Shi J, Chen L, Yu D. Targeting NTCP for liver disease treatment: A promising strategy. J Pharm Anal 2024; 14:100979. [PMID: 39310850 PMCID: PMC11415714 DOI: 10.1016/j.jpha.2024.100979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 09/25/2024] Open
Abstract
The sodium taurocholate co-transporting polypeptide (NTCP), a bile acids transporter, has been identified as a new therapeutic target for the treatment of liver disease. This paper thoroughly investigates the function of NTCP for regulating bile acid regulation, its correlation with hepatitis B and D infections, and its association with various liver diseases. Additionally, in this review we examine recent breakthroughs in creating NTCP inhibitors and their prospective applications in liver disease treatment. While this review emphasizes the promising potential of targeting NTCP, it concurrently underscores the need for broader and more detailed research to fully understand the long-term implications and potential side effects associated with NTCP inhibition.
Collapse
Affiliation(s)
- Xin Tan
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yu Xiang
- College of Medicine, University of Electronic Science and Technology, Chengdu, 610072, China
| | - Jianyou Shi
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lu Chen
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Guanghan People's Hospital, Guanghan, Sichuan, 618300, China
| | - Dongke Yu
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| |
Collapse
|
2
|
Zhu H, Hua H, Dong Y, Zhang J, Xu H, Ge X, Lu Q, Feng J. Long-Term Strategies for Poorly Water-Soluble Peptides: Combining Fatty Acid Modification with PAS Fusion. Bioconjug Chem 2023; 34:2366-2374. [PMID: 38037956 DOI: 10.1021/acs.bioconjchem.3c00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Bulevirtide, an entry inhibitor for the hepatitis B virus (HBV) and hepatitis D virus (HDV), is currently available on the European market. However, its clinical application is constrained by its short half-life and poor water solubility, rendering it unsuitable for fatty acid modification, aimed at achieving long-term effects. To address this limitation, we integrated a polypeptide chain consisting of Pro, Ala, and Ser at the C-terminus, which increased its hydrophilicity. To obtain the fusion sequence of A1 and A2, encompassing amino acids 1-47 of Bulevirtide and PAS, we used Escherichia coli fermentation expression. Subsequently, the N-terminal myristoyl groups of A1 and A2 were modified to yield Myr-A1 and Myr-A2, respectively. Five fatty acid moieties with the same hydrophilic spacers and different fatty acids were conjugated to analogs, generating 10 bioconjugations. The bioconjugates were then evaluated for their anti-HBV activity. Among them, HB-10 was selected for pharmacokinetic analysis and demonstrated a significantly prolonged half-life, with 5.88- and 13.18-fold increases in beagle dogs and rats, respectively. Additionally, higher drug doses resulted in substantially elevated liver concentrations. In conclusion, via fatty acid incorporation and PASylation, we successfully developed a novel Bulevirtide bioconjugate, HB-10, that exhibits an extended action duration. This compound holds substantial promise as a prospective long-acting entry inhibitor, warranting further investigation.
Collapse
Affiliation(s)
- Hongxiang Zhu
- China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Haoju Hua
- China State Institute of Pharmaceutical Industry, Shanghai 201203, China
- Shanghai Duomirui Biotechnology Co. Ltd., Shanghai 201203, China
| | - Yanzhen Dong
- China State Institute of Pharmaceutical Industry, Shanghai 201203, China
- Shanghai Duomirui Biotechnology Co. Ltd., Shanghai 201203, China
| | - Jinhua Zhang
- China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Hongjiang Xu
- Chia tai Tianqing Pharmaceutical Group Co. Ltd., Nanjing 211100, China
| | - Xingfeng Ge
- Chia tai Tianqing Pharmaceutical Group Co. Ltd., Nanjing 211100, China
| | - Qin Lu
- Chia tai Tianqing Pharmaceutical Group Co. Ltd., Nanjing 211100, China
| | - Jun Feng
- China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| |
Collapse
|
3
|
Broquetas T, Carrión JA. Past, present, and future of long-term treatment for hepatitis B virus. World J Gastroenterol 2023; 29:3964-3983. [PMID: 37476586 PMCID: PMC10354584 DOI: 10.3748/wjg.v29.i25.3964] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/22/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
The estimated world prevalence of hepatitis B virus (HBV) infection is 316 million. HBV infection was identified in 1963 and nowadays is a major cause of cirrhosis and hepatocellular carcinoma (HCC) despite universal vaccination programs, and effective antiviral therapy. Long-term administration of nucleos(t)ide analogues (NA) has been the treatment of choice for chronic hepatitis B during the last decades. The NA has shown a good safety profile and high efficacy in controlling viral replication, improving histology, and decreasing the HCC incidence, decompensation, and mortality. However, the low probability of HBV surface antigen seroclearance made necessary an indefinite treatment. The knowledge, in recent years, about the different phases of the viral cycle, and the new insights into the role of the immune system have yielded an increase in new therapeutic approaches. Consequently, several clinical trials evaluating combinations of new drugs with different mechanisms of action are ongoing with promising results. This integrative literature review aims to assess the knowledge and major advances from the past of hepatitis B, the present of NA treatment and withdrawal, and the future perspectives with combined molecules to achieve a functional cure.
Collapse
Affiliation(s)
- Teresa Broquetas
- Liver Section, Gastroenterology Department, Hospital del Mar, Barcelona 08003, Spain
- Institut Hospital del Mar D’Investigacions Mèdiques, PSMAR, Barcelona 08003, Spain
| | - José A Carrión
- Liver Section, Gastroenterology Department, Hospital del Mar, Barcelona 08003, Spain
- Institut Hospital del Mar D’Investigacions Mèdiques, PSMAR, Barcelona 08003, Spain
- Universitat Pompeu Fabra, Facultat de Ciències de la Salut i de la Vida, Barcelona 08003, Spain
| |
Collapse
|
4
|
Boora S, Sharma V, Kaushik S, Bhupatiraju AV, Singh S, Kaushik S. Hepatitis B virus-induced hepatocellular carcinoma: a persistent global problem. Braz J Microbiol 2023; 54:679-689. [PMID: 37059940 PMCID: PMC10235410 DOI: 10.1007/s42770-023-00970-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/05/2023] [Indexed: 04/16/2023] Open
Abstract
Hepatitis B virus (HBV) infections are highly prevalent globally, representing a serious public health problem. The diverse modes of transmission and the burden of the chronic carrier population pose challenges to the effective management of HBV. Vaccination is the most effective preventive measure available in the current scenario. Still, HBV is one of the significant health issues in various parts of the globe due to non-response to vaccines, the high number of concealed carriers, and the lack of access and awareness. Universal vaccination programs must be scaled up in neonates, especially in the developing parts of the world, to prevent new HBV infections. Novel treatments like combinational therapy, gene silencing, and new antivirals must be available for effective management. The prolonged infection of HBV, direct and indirect, can promote the growth of hepatocellular carcinoma (HCC). The present review emphasizes the problems and probable solutions for better managing HBV infections, causal risk factors of HCC, and mechanisms of HCC.
Collapse
Affiliation(s)
- Sanjit Boora
- Centre for Biotechnology, Maharshi Dayanand University, 124001, Haryana, Rohtak, India
| | - Vikrant Sharma
- Centre for Biotechnology, Maharshi Dayanand University, 124001, Haryana, Rohtak, India
| | | | | | - Sandeep Singh
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| | - Samander Kaushik
- Centre for Biotechnology, Maharshi Dayanand University, 124001, Haryana, Rohtak, India.
| |
Collapse
|
5
|
Elshazly EH, Nasr A, Elnosary ME, Gouda GA, Mohamed H, Song Y. Identifying the Anti-MERS-CoV and Anti-HcoV-229E Potential Drugs from the Ginkgo biloba Leaves Extract and Its Eco-Friendly Synthesis of Silver Nanoparticles. Molecules 2023; 28:1375. [PMID: 36771041 PMCID: PMC9919260 DOI: 10.3390/molecules28031375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
The present study aimed to estimate the antiviral activities of Ginkgo biloba (GB) leaves extract and eco-friendly free silver nanoparticles (Ag NPs) against the MERS-CoV (Middle East respiratory syndrome-coronavirus) and HCoV-229E (human coronavirus 229E), as well as isolation and identification of phytochemicals from GB. Different solvents and high-performance liquid chromatography (HPLC) were used to extract and identify flavonoids and phenolic compounds from GB leaves. The green, silver nanoparticle synthesis was synthesized from GB leaves aqueous extract and investigated for their possible effects as anti-coronaviruses MERS-CoV and HCoV-229E using MTT assay protocol. To verify the synthesis of Ag NPs, several techniques were employed, including X-ray diffraction (XRD), scan, transmission electron microscopy, FT-IR, and UV-visible spectroscopy. The highest contents of flavonoids and phenolic compounds were recorded for acetone, methanol, and ethanol as mixtures with water, in addition to pure water. HPLC flavonoids were detected as apegenin, luteolin, myricetin, and catechin, while HPLC phenolic compounds were pyrogallol, caffeic acid, gallic acid, and ellagic acid. In addition, our results revealed that Ag NPs were produced through the shift from yellow to dark brown. TEM examination of Ag NPs revealed spherical nanoparticles with mean sizes ranging from 5.46 to 19.40 nm and an average particle diameter of 11.81 nm. A UV-visible spectrophotometric investigation revealed an absorption peak at λ max of 441.56 nm. MTT protocol signified the use of GB leaves extract as an anti-coronavirus to be best from Ag NPs because GB extract had moderate anti-MERS-CoV with SI = 8.94, while had promising anti-HCov-229E, with an SI of 21.71. On the other hand, Ag NPs had a mild anti-MERS-CoV with SI = 4.23, and a moderate anti-HCoV-229E, with an SI of 7.51.
Collapse
Affiliation(s)
- Ezzat H. Elshazly
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Alyaa Nasr
- Department of Botany and Microbiology, Faculty of Science, Menoufia University, Shebin El-Kom 32511, Egypt
| | - Mohamed E. Elnosary
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt
| | - Gamal A. Gouda
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Hassan Mohamed
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| |
Collapse
|
6
|
The scientific basis of combination therapy for chronic hepatitis B functional cure. Nat Rev Gastroenterol Hepatol 2023; 20:238-253. [PMID: 36631717 DOI: 10.1038/s41575-022-00724-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/24/2022] [Indexed: 01/13/2023]
Abstract
Functional cure of chronic hepatitis B (CHB) - or hepatitis B surface antigen (HBsAg) loss after 24 weeks off therapy - is now the goal of treatment, but is rarely achieved with current therapy. Understanding the hepatitis B virus (HBV) life cycle and immunological defects that lead to persistence can identify targets for novel therapy. Broadly, treatments fall into three categories: those that reduce viral replication, those that reduce antigen load and immunotherapies. Profound viral suppression alone does not achieve quantitative (q)HBsAg reduction or HBsAg loss. Combining nucleos(t)ide analogues and immunotherapy reduces qHBsAg levels and induces HBsAg loss in some patients, particularly those with low baseline qHBsAg levels. Even agents that are specifically designed to reduce viral antigen load might not be able to achieve sustained HBsAg loss when used alone. Thus, rationale exists for the use of combinations of all three therapy types. Monitoring during therapy is important not just to predict HBsAg loss but also to understand mechanisms of HBsAg loss using viral and immunological biomarkers, and in selected cases intrahepatic sampling. We consider various paths to functional cure of CHB and the need to individualize treatment of this heterogeneous infection until a therapeutic avenue for all patients with CHB is available.
Collapse
|
7
|
Sarkar J, Das S, Aich S, Bhattacharyya P, Acharya K. Antiviral potential of nanoparticles for the treatment of Coronavirus infections. J Trace Elem Med Biol 2022; 72:126977. [PMID: 35397331 PMCID: PMC8957383 DOI: 10.1016/j.jtemb.2022.126977] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND On 31st December 2019 in Wuhan, China, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), was acknowledged. This virus spread quickly throughout the world causing a global pandemic. The World Health Organization declared COVID-19 a pandemic disease on 11th March 2020. Since then, the whole world has come together and have developed several vaccines against this deadly virus. Similarly, several alternative searches for pandemic disease therapeutics are still ongoing. One of them has been identified as nanotechnology. It has demonstrated significant promise for detecting and inhibiting a variety of viruses, including coronaviruses. Several nanoparticles, including gold nanoparticles, silver nanoparticles, quantum dots, carbon dots, graphene oxide nanoparticles, and zinc oxide nanoparticles, have previously demonstrated remarkable antiviral activity against a diverse array of viruses. OBJECTIVE This review aims to provide a basic and comprehensive overview of COVID-19's initial global outbreak and its mechanism of infiltration into human host cells, as well as the detailed mechanism and inhibitory effects of various nanoparticles against this virus. In addition to nanoparticles, this review focuses on the role of several antiviral drugs used against COVID-19 to date. CONCLUSION COVID-19 has severely disrupted the social and economic lives of people all over the world. Due to a lack of adequate medical facilities, countries have struggled to maintain control of the situation. Neither a drug nor a vaccine has a 100% efficacy rate. As a result, nanotechnology may be a better therapeutic alternative for this pandemic disease.
Collapse
Affiliation(s)
- Joy Sarkar
- Department of Botany, Dinabandhu Andrews College, Garia, Kolkata, West Bengal 700084, India
| | - Sunandana Das
- Department of Botany, Dinabandhu Andrews College, Garia, Kolkata, West Bengal 700084, India
| | - Sahasrabdi Aich
- Department of Botany, Vivekananda College, Thakurpukur, Kolkata, West Bengal 700063, India
| | - Prithu Bhattacharyya
- Department of Botany, Dinabandhu Andrews College, Garia, Kolkata, West Bengal 700084, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, Kolkata, West Bengal 700019, India; Center for Research in Nanoscience & Nanotechnology, Technology Campus, University of Calcutta, Kolkata, West Bengal 700098, India.
| |
Collapse
|
8
|
Darshani P, Sen Sarma S, Srivastava AK, Baishya R, Kumar D. Anti-viral triterpenes: a review. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2022; 21:1761-1842. [PMID: 35283698 PMCID: PMC8896976 DOI: 10.1007/s11101-022-09808-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/27/2022] [Indexed: 05/07/2023]
Abstract
Triterpenes are naturally occurring derivatives biosynthesized following the isoprene rule of Ruzicka. The triterpenes have been reported to possess a wide range of therapeutic applications including anti-viral properties. In this review, the recent studies (2010-2020) concerning the anti-viral activities of triterpenes have been summarized. The structure activity relationship studies have been described as well as brief biosynthesis of these triterpenes is discussed.
Collapse
Affiliation(s)
- Priya Darshani
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Jadavpur, Kolkata, India
| | - Shreya Sen Sarma
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Jadavpur, Kolkata, India
| | - Amit K. Srivastava
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Jadavpur, Kolkata, India
| | - Rinku Baishya
- Natural Product Chemistry Group, CSIR-North East Institute of Science and Technology (NEIST), NH-37, Pulibor, Jorhat, Assam India
| | - Deepak Kumar
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Jadavpur, Kolkata, India
| |
Collapse
|
9
|
Abstract
The COVID-19 pandemic has horrified the human race and every government of the world, not only in the healthcare sector but also in terms of the economy, social disturbances, and large-scale growth of all nations. SARS-CoV-2, responsible for this pandemic, is a single member of a huge family of pathogenic viruses. Previous encounters with these viruses have taught the whole world that they can transform into more resistant and more harmful forms in a very short time. Antiviral medicines with characteristics of excellent potency, less resistance, and low toxicity are still challenging, and obtaining such drugs is a demanding arena in the field of pharmaceutical development. Antiviral medicines contain heterocyclic moieties with diverse substitutions and fusion. Among the potent heterocycles, imidazoles serve as one of the most crucial moieties in the field of drug discovery due to their ability to interact with the active target sites of living systems which provide enormous opportunities to discover new drugs with several modes of action. This chapter gives a systemic representation of design, discovery, and structure–activity relationship studies of the imidazole analogs as antiviral drugs in comparison to standard treatment used in the present-day scenario.
Collapse
|
10
|
Ratan ZA, Mashrur FR, Chhoan AP, Shahriar SM, Haidere MF, Runa NJ, Kim S, Kweon DH, Hosseinzadeh H, Cho JY. Silver Nanoparticles as Potential Antiviral Agents. Pharmaceutics 2021; 13:2034. [PMID: 34959320 PMCID: PMC8705988 DOI: 10.3390/pharmaceutics13122034] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/31/2022] Open
Abstract
Since the early 1990s, nanotechnology has led to new horizons in nanomedicine, which encompasses all spheres of science including chemistry, material science, biology, and biotechnology. Emerging viral infections are creating severe hazards to public health worldwide, recently, COVID-19 has caused mass human casualties with significant economic impacts. Interestingly, silver nanoparticles (AgNPs) exhibited the potential to destroy viruses, bacteria, and fungi using various methods. However, developing safe and effective antiviral drugs is challenging, as viruses use host cells for replication. Designing drugs that do not harm host cells while targeting viruses is complicated. In recent years, the impact of AgNPs on viruses has been evaluated. Here, we discuss the potential role of silver nanoparticles as antiviral agents. In this review, we focus on the properties of AgNPs such as their characterization methods, antiviral activity, mechanisms, applications, and toxicity.
Collapse
Affiliation(s)
- Zubair Ahmed Ratan
- Department of Biomedical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh; (Z.A.R.); (F.R.M.); (A.P.C.)
- School of Health and Society, University of Wollongong, Wollongong, NSW 2500, Australia;
| | - Fazla Rabbi Mashrur
- Department of Biomedical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh; (Z.A.R.); (F.R.M.); (A.P.C.)
| | - Anisha Parsub Chhoan
- Department of Biomedical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh; (Z.A.R.); (F.R.M.); (A.P.C.)
| | - Sadi Md. Shahriar
- Department of Materials Science and Engineering, University of California-Davis, Davis, California, CA 95616, USA;
- Department of Materials Science and Engineering, Khulna University of Engineering and Technology, Khulna 9203, Bangladesh
| | | | | | - Sunggyu Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (S.K.); (D.-H.K.)
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (S.K.); (D.-H.K.)
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea
- Biomedical Institute for Convergence at SKKU (BICS), Suwon 16419, Korea
| | - Hassan Hosseinzadeh
- School of Health and Society, University of Wollongong, Wollongong, NSW 2500, Australia;
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (S.K.); (D.-H.K.)
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea
- Biomedical Institute for Convergence at SKKU (BICS), Suwon 16419, Korea
| |
Collapse
|
11
|
Pilaquinga F, Morey J, Torres M, Seqqat R, Piña MDLN. Silver nanoparticles as a potential treatment against SARS-CoV-2: A review. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1707. [PMID: 33638618 PMCID: PMC7995207 DOI: 10.1002/wnan.1707] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022]
Abstract
Several human coronaviruses (HCoVs) are distinguished by the ability to generate epidemics or pandemics, with their corresponding diseases characterized by severe respiratory illness, such as that which occurs in severe acute respiratory syndrome (SARS-CoV), Middle East respiratory syndrome (MERS-CoV), and, today, in SARS-CoV-2, an outbreak that has struck explosively and uncontrollably beginning in December 2019 and has claimed the lives of more than 1.9 M people worldwide as of January 2021. The development of vaccines has taken one year, which is why it is necessary to investigate whether some already-existing alternatives that have been successfully developed in recent years can mitigate the pandemic's advance. Silver nanoparticles (AgNPs) have proved effective in antiviral action. Thus, in this review, several in vitro and in vivo studies of the effect of AgNPs on viruses that cause respiratory diseases are analyzed and discussed to promote an understanding of the possible interaction of AgNPs with SARS-CoV-2. The study focuses on several in vivo toxicological studies of AgNPs and a dose extrapolation to humans to determine the chief avenue of exposure. It can be concluded that the use of AgNPs as a possible treatment for SARS-CoV-2 could be viable, based on comparing the virus' behavior to that of similar viruses in in vivo studies, and that the suggested route of administration in terms of least degree of adverse effects is inhalation. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Respiratory Disease Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Fernanda Pilaquinga
- School of Chemistry SciencesPontificia Universidad Católica del EcuadorQuitoEcuador
- Department of ChemistryUniversity of the Balearic IslandsPalma de MallorcaSpain
| | - Jeroni Morey
- Department of ChemistryUniversity of the Balearic IslandsPalma de MallorcaSpain
| | - Marbel Torres
- Immunology and Virology Laboratory, Nanoscience and Nanotechnology CenterUniversidad de las Fuerzas Armadas, ESPESangolquíEcuador
| | - Rachid Seqqat
- Immunology and Virology Laboratory, Nanoscience and Nanotechnology CenterUniversidad de las Fuerzas Armadas, ESPESangolquíEcuador
| | | |
Collapse
|
12
|
Delshadi R, Bahrami A, McClements DJ, Moore MD, Williams L. Development of nanoparticle-delivery systems for antiviral agents: A review. J Control Release 2021; 331:30-44. [PMID: 33450319 PMCID: PMC7803629 DOI: 10.1016/j.jconrel.2021.01.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 02/07/2023]
Abstract
The COVID-19 pandemic has resulted in unprecedented increases in sickness, death, economic disruption, and social disturbances globally. However, the virus (SARS-CoV-2) that caused this pandemic is only one of many viruses threatening public health. Consequently, it is important to have effective means of preventing viral transmission and reducing its devastating effects on human and animal health. Although many antivirals are already available, their efficacy is often limited because of factors such as poor solubility, low permeability, poor bioavailability, un-targeted release, adverse side effects, and antiviral resistance. Many of these problems can be overcome using advanced antiviral delivery systems constructed using nanotechnology principles. These delivery systems consist of antivirals loaded into nanoparticles, which may be fabricated from either synthetic or natural materials. Nevertheless, there is increasing emphasis on the development of antiviral delivery systems from natural substances, such as lipids, phospholipids, surfactants, proteins, and polysaccharides, due to health and environmental issues. The composition, morphology, dimensions, and interfacial characteristics of nanoparticles can be manipulated to improve the handling, stability, and potency of antivirals. This article outlines the major classes of antivirals, summarizes the challenges currently limiting their efficacy, and highlights how nanoparticles can be used to overcome these challenges. Recent studies on the application of antiviral nanoparticle-based delivery systems are reviewed and future directions are described.
Collapse
Affiliation(s)
- Rana Delshadi
- Food Science and Technology Graduate, Menomonie, WI, USA
| | - Akbar Bahrami
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | | | - Matthew D Moore
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| | - Leonard Williams
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, NC 28081, USA.
| |
Collapse
|
13
|
Jazie AA, Albaaji AJ, Abed SA. A review on recent trends of antiviral nanoparticles and airborne filters: special insight on COVID-19 virus. AIR QUALITY, ATMOSPHERE, & HEALTH 2021; 14:1811-1824. [PMID: 34178182 PMCID: PMC8211456 DOI: 10.1007/s11869-021-01055-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 06/01/2021] [Indexed: 05/10/2023]
Abstract
Novel corona virus (COVID-19) pandemic in the last 4 months stimulates the international scientific community to search for vaccine of antiviral agents suitable for in activating the virus inside and outside the human body. More than 4 million people globally are infected by the virus and about 300,000 dead cases until this moment. The ventilation and airborne filters are also investigated aiming to develop an efficient antiviral filtration technology. Human secretion of the infected person as nasal or saliva droplets goes as airborne and distributes the virus everywhere around the person. N95 and N98 filters are the must use filters for capturing particles of sizes around 300 nm. The average size of the novel corona virus (COVID-19) is 100 nm and there is no standard or special filter suitable for this virus. The nanoparticle-coated airborne filter is a suitable technique in this regard. While the efficiency of this type of filters still needs to be enhanced, new developed nanofiber filters are proposed. Most recently, the charged nanofiber filters of sizes below 100 nm are developed and provide an efficient viral filtration and inactivation. The efficiency of filter must be kept at accepted level without increasing the pressure drop. The present review outlines the most efficient antiviral nanoparticles including the recent functional nanoparticles. The filtration theory, filtration modeling, filter testing, and different types of filter with special concentration on the charged nanofiber filter were discussed. The charged nanofiber filter able to capture novel corona virus (COVID-19) with 94% efficiency and a pressure drop less than 20 MPa.
Collapse
Affiliation(s)
- Ali A. Jazie
- Chemical Engineering Department, Engineering College, University of Al-Qadisiyah, Al-Diwaniyah, Iraq
| | - Amar J. Albaaji
- Materials Engineering Department, Engineering College, University of Al-Qadisiyah, Al-Diwaniyah, Iraq
| | - Suhad A. Abed
- Department of Biology, College of Education, University of Al-Qadisiyah, Al-Diwaniyah, Iraq
| |
Collapse
|
14
|
Chen L, Liang J. An overview of functional nanoparticles as novel emerging antiviral therapeutic agents. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110924. [PMID: 32409074 PMCID: PMC7195146 DOI: 10.1016/j.msec.2020.110924] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/23/2020] [Accepted: 03/31/2020] [Indexed: 01/04/2023]
Abstract
Research on highly effective antiviral drugs is essential for preventing the spread of infections and reducing losses. Recently, many functional nanoparticles have been shown to possess remarkable antiviral ability, such as quantum dots, gold and silver nanoparticles, nanoclusters, carbon dots, graphene oxide, silicon materials, polymers and dendrimers. Despite their difference in antiviral mechanism and inhibition efficacy, these functional nanoparticles-based structures have unique features as potential antiviral candidates. In this topical review, we highlight the antiviral efficacy and mechanism of these nanoparticles. Specifically, we introduce various methods for analyzing the viricidal activity of functional nanoparticles and the latest advances in antiviral functional nanoparticles. Furthermore, we systematically describe the advantages and disadvantages of these functional nanoparticles in viricidal applications. Finally, we discuss the challenges and prospects of antiviral nanostructures. This topic review covers 132 papers and will enrich our knowledge about the antiviral efficacy and mechanism of various functional nanoparticles.
Collapse
Affiliation(s)
- Lu Chen
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jiangong Liang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
15
|
Verrier ER, Weiss A, Bach C, Heydmann L, Turon-Lagot V, Kopp A, El Saghire H, Crouchet E, Pessaux P, Garcia T, Pale P, Zeisel MB, Sureau C, Schuster C, Brino L, Baumert TF. Combined small molecule and loss-of-function screen uncovers estrogen receptor alpha and CAD as host factors for HDV infection and antiviral targets. Gut 2020; 69:158-167. [PMID: 30833451 PMCID: PMC6943243 DOI: 10.1136/gutjnl-2018-317065] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 01/24/2019] [Accepted: 02/10/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Hepatitis D virus (HDV) is a circular RNA virus coinfecting hepatocytes with hepatitis B virus. Chronic hepatitis D results in severe liver disease and an increased risk of liver cancer. Efficient therapeutic approaches against HDV are absent. DESIGN Here, we combined an RNAi loss-of-function and small molecule screen to uncover host-dependency factors for HDV infection. RESULTS Functional screening unravelled the hypoxia-inducible factor (HIF)-signalling and insulin-resistance pathways, RNA polymerase II, glycosaminoglycan biosynthesis and the pyrimidine metabolism as virus-hepatocyte dependency networks. Validation studies in primary human hepatocytes identified the carbamoyl-phosphatesynthetase 2, aspartate transcarbamylase and dihydroorotase (CAD) enzyme and estrogen receptor alpha (encoded by ESR1) as key host factors for HDV life cycle. Mechanistic studies revealed that the two host factors are required for viral replication. Inhibition studies using N-(phosphonoacetyl)-L-aspartic acid and fulvestrant, specific CAD and ESR1 inhibitors, respectively, uncovered their impact as antiviral targets. CONCLUSION The discovery of HDV host-dependency factors elucidates the pathogenesis of viral disease biology and opens therapeutic strategies for HDV cure.
Collapse
Affiliation(s)
- Eloi R Verrier
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, F-67000 Strasbourg, France
| | - Amélie Weiss
- IGBMC, Plateforme de Criblage Haut-débit, UMR7104 CNRS U1258 Inserm, Illkirch, France
| | - Charlotte Bach
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, F-67000 Strasbourg, France
| | - Laura Heydmann
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, F-67000 Strasbourg, France
| | - Vincent Turon-Lagot
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, F-67000 Strasbourg, France
| | - Arnaud Kopp
- IGBMC, Plateforme de Criblage Haut-débit, UMR7104 CNRS U1258 Inserm, Illkirch, France
| | - Houssein El Saghire
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, F-67000 Strasbourg, France
| | - Emilie Crouchet
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, F-67000 Strasbourg, France
| | - Patrick Pessaux
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, F-67000 Strasbourg, France,Institut Hospitalo-universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| | - Thomas Garcia
- Laboratoire de Synthèse, Réactivité Organiques et Catalyse, Institut de Chimie, UMR 7177 CNRS, Université de Strasbourg, Strasbourg, France
| | - Patrick Pale
- Laboratoire de Synthèse, Réactivité Organiques et Catalyse, Institut de Chimie, UMR 7177 CNRS, Université de Strasbourg, Strasbourg, France
| | - Mirjam B Zeisel
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, F-67000 Strasbourg, France
| | - Camille Sureau
- INTS, Laboratoire de Virologie Moléculaire, Paris, France
| | - Catherine Schuster
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, F-67000 Strasbourg, France
| | - Laurent Brino
- IGBMC, Plateforme de Criblage Haut-débit, UMR7104 CNRS U1258 Inserm, Illkirch, France
| | - Thomas F Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, F-67000 Strasbourg, France,Institut Hospitalo-universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France,Institut Universitaire de France, Paris, France
| |
Collapse
|
16
|
Habashy NH, Abu-Serie MM. Major royal-jelly protein 2 and its isoform X1 are two novel safe inhibitors for hepatitis C and B viral entry and replication. Int J Biol Macromol 2019; 141:1072-1087. [DOI: 10.1016/j.ijbiomac.2019.09.080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/31/2019] [Accepted: 09/10/2019] [Indexed: 02/07/2023]
|
17
|
Prevalence of hepatitis C virus infection in patients hospitalised for ischemic heart disease versus controls - PRO-CARDIO-C study. Clin Exp Hepatol 2019; 5:118-122. [PMID: 31501787 PMCID: PMC6728861 DOI: 10.5114/ceh.2019.84782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/06/2018] [Indexed: 01/01/2023] Open
Abstract
Aim of the study Ongoing national screening programmes suggest that the prevalence of chronic hepatitis C (CHC) in Poland ranges between 0.5% and 1%. It has been recently noted that patients with confirmed coronary artery disease may be at higher risk for hepatitis C virus (HCV) infection. Material and methods Testing for the presence of anti-HCV antibodies was performed in a group of patients admitted to the Cardiology Department with symptomatic ischemic heart disease (IHD) and in patients hospitalised in the Dermatology Department. Results A total of 1171 patients underwent anti-HCV testing: 672 patients in the Cardiology Department (K group) and 499 patients in the Dermatology Department (D group). Twenty-eight (2.4%) positive anti-HCV results were detected. The prevalence of positive anti-HCV antibodies in groups K and D was 2.23% and 2.61%, respectively (p > 0.05). Presence of HCV RNA was confirmed in 15 cases (1.28%) - 7 patients in group K and 8 patients in group D (1.04% and 1.6%, respectively; p > 0.05). Conclusions Our findings suggest that this patient cohort has increased risk of HCV infection, which may influence screening strategies.
Collapse
|
18
|
Joob B, Wiwanitkit V. Use of Organoids Technology on Study of Liver Malignancy. Indian J Med Paediatr Oncol 2018. [DOI: 10.4103/ijmpo.ijmpo_126_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
AbstractThe study on liver cancer has been performed in clinical medicine and medical science for a long time. Within the few recent years, there are many new emerging biomedical technologies that help better assess on the liver cancer. Of several new technologies, the advanced cell technologies for the assessment of liver cancer, organoids technology is very interesting. In fact, the organoids is an advanced cell research technique that can be useful for studying of many medical disorders. Organoids can be applied for study on the pathophysiology of many cancers. The application for studying on liver cancer is very interesting issue in hepatology. In this short article, the author summarizes and discusses on applied organoids technology for studying on various kinds of liver cancers. The application can be seen on primary hepatocellular carcinoma, metastatic cancer, cholangiocarcinoma, hepatoblastoma, as well as other rare liver cancers.
Collapse
Affiliation(s)
- Beuy Joob
- Sanitation 1 Medical Academic Center, Bangkok, Thailand
| | - Viroj Wiwanitkit
- Department of Biological Science, Joseph Ayo Babalola University, Ilara-Mokin, Nigeria
| |
Collapse
|
19
|
Saso W, Tsukuda S, Ohashi H, Fukano K, Morishita R, Matsunaga S, Ohki M, Ryo A, Park SY, Suzuki R, Aizaki H, Muramatsu M, Sureau C, Wakita T, Matano T, Watashi K. A new strategy to identify hepatitis B virus entry inhibitors by AlphaScreen technology targeting the envelope-receptor interaction. Biochem Biophys Res Commun 2018; 501:374-379. [PMID: 29730285 DOI: 10.1016/j.bbrc.2018.04.187] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 04/24/2018] [Indexed: 12/12/2022]
Abstract
Current anti-hepatitis B virus (HBV) agents have limited effect in curing HBV infection, and thus novel anti-HBV agents with different modes of action are in demand. In this study, we applied AlphaScreen assay to high-throughput screening of small molecules inhibiting the interaction between HBV large surface antigen (LHBs) and the HBV entry receptor, sodium taurocholate cotransporting polypeptide (NTCP). From the chemical screening, we identified that rapamycin, an immunosuppressant, strongly inhibited the LHBs-NTCP interaction. Rapamycin inhibited hepatocyte infection with HBV without significant cytotoxicity. This activity was due to impaired attachment of the LHBs preS1 domain to cell surface. Pretreatment of target cells with rapamycin remarkably reduced their susceptibility to preS1 attachment, while rapamycin pretreatment to preS1 did not affect its attachment activity, suggesting that rapamycin targets the host side. In support of this, a surface plasmon resonance analysis showed a direct interaction of rapamycin with NTCP. Consistently, rapamycin also prevented hepatitis D virus infection, whose entry into cells is also mediated by NTCP. We also identified two rapamycin derivatives, everolimus and temsirolimus, which possessed higher anti-HBV potencies than rapamycin. Thus, this is the first report for application of AlphaScreen technology that monitors a viral envelope-receptor interaction to identify viral entry inhibitors.
Collapse
Affiliation(s)
- Wakana Saso
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan; AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan; The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Senko Tsukuda
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan; Liver Cancer Prevention Research Unit, RIKEN Center for Integrative Medical Sciences (IMS), Wako, Japan
| | - Hirofumi Ohashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan; Department of Applied Biological Sciences, Tokyo University of Science, Noda, Japan
| | - Kento Fukano
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan; Department of Analytical Biochemistry, Meiji Pharmaceutical University, Kiyose, Japan
| | | | - Satoko Matsunaga
- Department of Microbiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Mio Ohki
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Sam-Yong Park
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Ryosuke Suzuki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Aizaki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Camille Sureau
- Laboratoire de Virologie Moléculaire, Institut National de la Transfusion Sanguine, INSERM U1134, Paris, France
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan; The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan; Department of Applied Biological Sciences, Tokyo University of Science, Noda, Japan; CREST, JST, Saitama, Japan.
| |
Collapse
|
20
|
Abstract
Abstract
Scavenger receptor class B type I (SR-BI) is a high-affinity receptor for high-density lipoprotein (HDL). The primary role of this receptor is the selective uptake of HDLs in the liver through reverse cholesterol transport. SR-BI interacts with HDL to regulate lipid metabolism and affects various vascular cell functions involved in atherosclerosis (As). In addition, SR-BI is involved in the development of malignant tumors and infectious diseases. This article reviews the function and potential therapeutic targets of SR-BI in As, malignancies, and infectious diseases.
Collapse
|
21
|
Crouchet E, Wrensch F, Schuster C, Zeisel MB, Baumert TF. Host-targeting therapies for hepatitis C virus infection: current developments and future applications. Therap Adv Gastroenterol 2018; 11:1756284818759483. [PMID: 29619090 PMCID: PMC5871046 DOI: 10.1177/1756284818759483] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/15/2018] [Indexed: 02/04/2023] Open
Abstract
Chronic hepatitis C virus (HCV) infection is a leading cause of chronic liver diseases and hepatocellular carcinoma (HCC) worldwide. In the past few years, anti-HCV therapies have undergone a revolution with the approval of multiple direct-acting antivirals (DAAs), which enable interferon-free treatments with considerable improvement of sustained virologic response in patients. Today, DAAs have become the standard of care for HCV therapy. However, several limitations remain, which include access to therapy, treatment failure in a subset of patients and persistent risk of HCC development following cure in patients with advanced fibrosis. By targeting conserved host proteins involved in the HCV life cycle, host-targeting agents (HTAs) offer opportunities for pan-genotypic antiviral approaches with a high barrier to drug resistance. Moreover, when applied in combination with DAAs, HTAs could improve the management of difficult-to-treat patients by acting through a complementary mechanism of action. In this review, we summarize the different HTAs evaluated in preclinical and clinical development and discuss their potential role for anti-HCV therapies.
Collapse
Affiliation(s)
- Emilie Crouchet
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France Université de Strasbourg, Strasbourg, France
| | - Florian Wrensch
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France Université de Strasbourg, Strasbourg, France
| | - Catherine Schuster
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France Université de Strasbourg, Strasbourg, France
| | - Mirjam B. Zeisel
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France Université de Strasbourg, Strasbourg, France Inserm U1052, CNRS UMR 5286, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL), Lyon, France
| | | |
Collapse
|
22
|
Kaneko M, Futamura Y, Tsukuda S, Kondoh Y, Sekine T, Hirano H, Fukano K, Ohashi H, Saso W, Morishita R, Matsunaga S, Kawai F, Ryo A, Park SY, Suzuki R, Aizaki H, Ohtani N, Sureau C, Wakita T, Osada H, Watashi K. Chemical array system, a platform to identify novel hepatitis B virus entry inhibitors targeting sodium taurocholate cotransporting polypeptide. Sci Rep 2018; 8:2769. [PMID: 29426822 PMCID: PMC5807303 DOI: 10.1038/s41598-018-20987-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 01/29/2018] [Indexed: 12/13/2022] Open
Abstract
Current anti-hepatitis B virus (HBV) agents including interferons and nucleos(t)ide analogs efficiently suppress HBV infection. However, as it is difficult to eliminate HBV from chronically infected liver, alternative anti-HBV agents targeting a new molecule are urgently needed. In this study, we applied a chemical array to high throughput screening of small molecules that interacted with sodium taurocholate cotransporting polypeptide (NTCP), an entry receptor for HBV. From approximately 30,000 compounds, we identified 74 candidates for NTCP interactants, and five out of these were shown to inhibit HBV infection in cell culture. One of such compound, NPD8716, a coumarin derivative, interacted with NTCP and inhibited HBV infection without causing cytotoxicity. Consistent with its NTCP interaction capacity, this compound was shown to block viral attachment to host hepatocytes. NPD8716 also prevented the infection with hepatitis D virus, but not hepatitis C virus, in agreement with NPD8716 specifically inhibiting NTCP-mediated infection. Analysis of derivative compounds showed that the anti-HBV activity of compounds was apparently correlated with the affinity to NTCP and the capacity to impair NTCP-mediated bile acid uptake. These results are the first to show that the chemical array technology represents a powerful platform to identify novel viral entry inhibitors.
Collapse
Affiliation(s)
- Manabu Kaneko
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan.,Department of Applied Biological Sciences, Tokyo University of Science, Noda, 278-8510, Japan
| | - Yushi Futamura
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science (CSRS), Wako, 351-0198, Japan
| | - Senko Tsukuda
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan.,Micro-signaling Regulation Technology Unit, RIKEN Center for Life Science Technologies (CLST), Wako, 351-0198, Japan
| | - Yasumitsu Kondoh
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science (CSRS), Wako, 351-0198, Japan
| | - Tomomi Sekine
- Bio-Active Compounds Discovery Research Unit, RIKEN CSRS, Wako, 351-0198, Japan
| | - Hiroyuki Hirano
- Chemical Resource Development Research Unit, RIKEN CSRS, Wako, 351-0198, Japan
| | - Kento Fukano
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan.,Department of Analytical Biochemistry, Meiji Pharmaceutical University, Kiyose, 204-8588, Japan
| | - Hirofumi Ohashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan.,Department of Applied Biological Sciences, Tokyo University of Science, Noda, 278-8510, Japan
| | - Wakana Saso
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan.,The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Ryo Morishita
- CellFree Sciences Co., Ltd, Matsuyama, 790-8577, Japan
| | - Satoko Matsunaga
- Department of Microbiology, Yokohama City University Graduate School of Medicine, Yokohama, 236-0027, Japan
| | - Fumihiro Kawai
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University Graduate School of Medicine, Yokohama, 236-0027, Japan
| | - Sam-Yong Park
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan
| | - Ryosuke Suzuki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Hideki Aizaki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Naoko Ohtani
- Department of Applied Biological Sciences, Tokyo University of Science, Noda, 278-8510, Japan
| | - Camille Sureau
- Laboratoire de Virologie Moléculaire, Institut National de la Transfusion Sanguine, INSERM U1134, Paris, 75015, France
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science (CSRS), Wako, 351-0198, Japan.
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan. .,Department of Applied Biological Sciences, Tokyo University of Science, Noda, 278-8510, Japan. .,CREST, JST, Saitama, 332-0012, Japan.
| |
Collapse
|
23
|
Verrier ER, Colpitts CC, Bach C, Heydmann L, Zona L, Xiao F, Thumann C, Crouchet E, Gaudin R, Sureau C, Cosset FL, McKeating JA, Pessaux P, Hoshida Y, Schuster C, Zeisel MB, Baumert TF. Solute Carrier NTCP Regulates Innate Antiviral Immune Responses Targeting Hepatitis C Virus Infection of Hepatocytes. Cell Rep 2017; 17:1357-1368. [PMID: 27783949 PMCID: PMC5098118 DOI: 10.1016/j.celrep.2016.09.084] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 08/10/2016] [Accepted: 09/26/2016] [Indexed: 12/18/2022] Open
Abstract
Chronic hepatitis B, C, and D virus (HBV, HCV, and HDV) infections are the leading causes of liver disease and cancer worldwide. Recently, the solute carrier and sodium taurocholate co-transporter NTCP has been identified as a receptor for HBV and HDV. Here, we uncover NTCP as a host factor regulating HCV infection. Using gain- and loss-of-function studies, we show that NTCP mediates HCV infection of hepatocytes and is relevant for cell-to-cell transmission. NTCP regulates HCV infection by augmenting the bile-acid-mediated repression of interferon-stimulated genes (ISGs), including IFITM3. In conclusion, our results uncover NTCP as a mediator of innate antiviral immune responses in the liver, and they establish a role for NTCP in the infection process of multiple viruses via distinct mechanisms. Collectively, our findings suggest a role for solute carriers in the regulation of innate antiviral responses, and they have potential implications for virus-host interactions and antiviral therapies. NTCP is involved in hepatocyte infection by multiple viruses via distinct mechanisms NTCP facilitates HCV infection by modulating innate antiviral responses Solute carrier NTCP is a regulator of antiviral immune responses in the liver This function is relevant for infection and therapies for hepatotropic viruses
Collapse
Affiliation(s)
- Eloi R Verrier
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Che C Colpitts
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Charlotte Bach
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Laura Heydmann
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Laetitia Zona
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Fei Xiao
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Christine Thumann
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Emilie Crouchet
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Raphaël Gaudin
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Camille Sureau
- INTS, Laboratoire de Virologie Moléculaire, 75015 Paris, France
| | - François-Loïc Cosset
- CIRI-International Center for Infectiology Research, 69364 Lyon Cedex 07, France; INSERM, U1111, 69007 Lyon, France; Ecole Normale Supérieure, 69007 Lyon, France; Centre National de la Recherche Scientifique (CNRS) UMR 5308, 69007 Lyon, France; LabEx Ecofect, University of Lyon, 69007 Lyon, France
| | - Jane A McKeating
- Centre for Human Virology, University of Birmingham, Birmingham, UK; NIHR Liver Biomedical Research Unit, University of Birmingham, Birmingham, UK
| | - Patrick Pessaux
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France; Institut Hospitalo-universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, 67000 Strasbourg, France
| | - Yujin Hoshida
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Catherine Schuster
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Mirjam B Zeisel
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France.
| | - Thomas F Baumert
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France; Institut Hospitalo-universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, 67000 Strasbourg, France.
| |
Collapse
|
24
|
Colpitts CC, Chung RT, Baumert TF. Entry Inhibitors: A Perspective for Prevention of Hepatitis C Virus Infection in Organ Transplantation. ACS Infect Dis 2017; 3:620-623. [PMID: 28812869 DOI: 10.1021/acsinfecdis.7b00091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Entry inhibitors are emerging as an attractive class of therapeutics for hepatitis C virus (HCV) infection. Entry inhibitors target either virion-associated factors or cellular factors necessary for infection. By blocking entry into cells, entry inhibitors prevent both the establishment of persistent reservoirs and the emergence of resistant variants during viral replication. Furthermore, entry inhibitors protect naïve cells from virus-induced alterations. Combining entry inhibitors with direct-acting antivirals (DAAs) may therefore improve treatment outcomes, particularly in the context of organ transplantation. The role of DAAs in transplantation, while still under clinical investigation, carries the risk of recipient infection and HCV-induced disease, since DAAs act only after infection is established. Thus, entry inhibitors provide a perspective to improve patient outcomes during organ transplantation. Applying this approach for transplant of organs from HCV-positive donors to HCV-negative recipients may also contribute to alleviate the medical burden of organ shortage.
Collapse
Affiliation(s)
- Che C. Colpitts
- Inserm, U1110, Institut de Recherche
sur les Maladies Virales et Hépatiques, 3 Rue Koeberlé, 67000 Strasbourg, France
- Université de Strasbourg, 67000 Strasbourg, France
- Division of Infection
and Immunity, University College London, WC1E 6BT London, United Kingdom
| | - Raymond T. Chung
- Liver
Center and Gastrointestinal Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Thomas F. Baumert
- Inserm, U1110, Institut de Recherche
sur les Maladies Virales et Hépatiques, 3 Rue Koeberlé, 67000 Strasbourg, France
- Université de Strasbourg, 67000 Strasbourg, France
- Institut
Hospitalo-Universitaire, Pôle Hépato-digestif, Hopitaux Universitaires de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
25
|
Cole AG. Modulators of HBV capsid assembly as an approach to treating hepatitis B virus infection. Curr Opin Pharmacol 2017; 30:131-137. [PMID: 27636324 DOI: 10.1016/j.coph.2016.08.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/12/2016] [Accepted: 08/15/2016] [Indexed: 02/07/2023]
Abstract
The search for a cure for hepatitis B virus infection extends beyond interferon and the existing polymerase inhibitors, and targets different aspects of the virus life cycle to develop agents that operate by alternative mechanisms. Examples of small molecules that disrupt the encapsidation of pgRNA have been known for some time, but recent advances in the understanding of nucleocapsid formation, how compounds interact with core protein, and the development of drug-like molecules have recently progressed the study of capsid assembly modulators to proof of concept in the clinic with respect to reduction of viral load in chronic HBV patients. Interference with HBV capsid assembly is thus a legitimate approach to treating HBV infection.
Collapse
Affiliation(s)
- Andrew G Cole
- Arbutus Biopharma, Inc., 3805 Old Easton Road, Doylestown, PA 18902, USA.
| |
Collapse
|
26
|
Verrier ER, Schuster C, Baumert TF. Advancing hepatitis B virus entry inhibitors. J Hepatol 2017; 66:677-679. [PMID: 27965159 PMCID: PMC5362280 DOI: 10.1016/j.jhep.2016.11.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Eloi R. Verrier
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et
Hépatiques, 67000 Strasbourg, France,Université de Strasbourg, 67000 Strasbourg, France
| | - Catherine Schuster
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et
Hépatiques, 67000 Strasbourg, France,Université de Strasbourg, 67000 Strasbourg, France
| | - Thomas F. Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et
Hépatiques, 67000 Strasbourg, France,Université de Strasbourg, 67000 Strasbourg, France,Institut Hospitalo-Universitaire, Pôle
Hépato-digestif, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg,
France,Corresponding author. Address: Inserm Unit 1110,
Université de Strasbourg, 3 Rue Koeberlé, 67000 Strasbourg, France. Tel.:
+33 3 68 85 37 03; fax: +33 3 68 85 37 24. (T.F.
Baumert)
| |
Collapse
|
27
|
Affiliation(s)
- Che C. Colpitts
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques and Université de Strasbourg, Strasbourg, France
| | - Thomas F. Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques and Université de Strasbourg and Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hopitaux, Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
28
|
Hepatitis C virus cell entry: a target for novel antiviral strategies to address limitations of direct acting antivirals. Hepatol Int 2016; 10:741-8. [DOI: 10.1007/s12072-016-9724-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/16/2016] [Indexed: 12/12/2022]
|
29
|
Hepatitis B virus receptors and molecular drug targets. Hepatol Int 2016; 10:567-73. [DOI: 10.1007/s12072-016-9718-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 02/18/2016] [Indexed: 12/16/2022]
|
30
|
Baumert TF, Verrier ER, Nassal M, Chung RT, Zeisel MB. Host-targeting agents for treatment of hepatitis B virus infection. Curr Opin Virol 2015; 14:41-6. [PMID: 26262886 DOI: 10.1016/j.coviro.2015.07.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/16/2015] [Accepted: 07/20/2015] [Indexed: 02/07/2023]
Abstract
Hepatitis B virus (HBV) infection is a major cause of chronic liver disease, including liver cirrhosis, liver failure and hepatocellular carcinoma (HCC)-the second leading and fastest rising cause of cancer death world-wide. While de novo infection can be efficiently prevented by vaccination and chronic infection can be controlled using antivirals targeting the viral polymerase, the development of efficient antiviral strategies to eliminate the virus and thus to cure infection remains a key unmet medical need. The recent progress in the development of robust infectious HBV cell culture models now enables the investigation of the full viral life cycle, including a more detailed study of the molecular mechanisms of virus-host interactions responsible for viral persistence. The understanding of these virus-host interactions will be instrumental for the development of curative treatments. Host-dependency factors have recently emerged as promising candidates to treat and prevent infection by various pathogens. This review focuses on the potential of host-targeting agents (HTAs) as novel antivirals to treat and cure HBV infection. These include HTAs that inhibit de novo and re-infection, synthesis and spread of cccDNA as well as development of immune-based approaches eliminating or curing infected hepatocytes, including the eradication of viral cccDNA.
Collapse
Affiliation(s)
- Thomas F Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France; Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, 67000 Strasbourg, France; Liver Center and Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States.
| | - Eloi R Verrier
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Michael Nassal
- Department of Internal Medicine 2/Molecular Biology, University Hospital Freiburg, D-79106 Freiburg, Germany
| | - Raymond T Chung
- Liver Center and Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Mirjam B Zeisel
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|