1
|
Kramara J, Kim MJ, Ollinger TL, Ristow LC, Wakade RS, Zarnowski R, Wellington M, Andes DR, Mitchell AG, Krysan DJ. Systematic analysis of the Candida albicans kinome reveals environmentally contingent protein kinase-mediated regulation of filamentation and biofilm formation in vitro and in vivo. mBio 2024; 15:e0124924. [PMID: 38949302 PMCID: PMC11323567 DOI: 10.1128/mbio.01249-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/20/2024] [Indexed: 07/02/2024] Open
Abstract
Protein kinases are critical regulatory proteins in both prokaryotes and eukaryotes. Accordingly, protein kinases represent a common drug target for a wide range of human diseases. Therefore, understanding protein kinase function in human pathogens such as the fungus Candida albicans is likely to extend our knowledge of its pathobiology and identify new potential therapies. To facilitate the study of C. albicans protein kinases, we constructed a library of 99 non-essential protein kinase homozygous deletion mutants marked with barcodes in the widely used SN genetic background. Here, we describe the construction of this library and the characterization of the competitive fitness of the protein kinase mutants under 11 different growth and stress conditions. We also screened the library for protein kinase mutants with altered filamentation and biofilm formation, two critical virulence traits of C. albicans. An extensive network of protein kinases governs these virulence traits in a manner highly dependent on the specific environmental conditions. Studies on specific protein kinases revealed that (i) the cell wall integrity MAPK pathway plays a condition-dependent role in filament initiation and elongation; (ii) the hyper-osmolar glycerol MAPK pathway is required for both filamentation and biofilm formation, particularly in the setting of in vivo catheter infection; and (iii) Sok1 is dispensable for filamentation in hypoxic environments at the basal level of a biofilm but is required for filamentation in normoxia. In addition to providing a new genetic resource for the community, these observations emphasize the environmentally contingent function of C. albicans protein kinases.IMPORTANCECandida albicans is one of the most common causes of fungal disease in humans for which new therapies are needed. Protein kinases are key regulatory proteins and are increasingly targeted by drugs for the treatment of a wide range of diseases. Understanding protein kinase function in C. albicans pathogenesis may facilitate the development of new antifungal drugs. Here, we describe a new library of 99 protein kinase deletion mutants to facilitate the study of protein kinases. Furthermore, we show that the function of protein kinases in two virulence-related processes, filamentation and biofilm formation, is dependent on the specific environmental conditions.
Collapse
Affiliation(s)
- Juraj Kramara
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Min-Ju Kim
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Tomye L. Ollinger
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Laura C. Ristow
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Rohan S. Wakade
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Robert Zarnowski
- Department of Medicine, Section of Infectious Disease, University of Wisconsin, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, USA
| | - Melanie Wellington
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - David R. Andes
- Department of Medicine, Section of Infectious Disease, University of Wisconsin, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, USA
| | - Aaron G. Mitchell
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Damian J. Krysan
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
2
|
Choi JY, Gihaz S, Munshi M, Singh P, Vydyam P, Hamel P, Adams EM, Sun X, Khalimonchuk O, Fuller K, Ben Mamoun C. Vitamin B5 metabolism is essential for vacuolar and mitochondrial functions and drug detoxification in fungi. Commun Biol 2024; 7:894. [PMID: 39043829 PMCID: PMC11266677 DOI: 10.1038/s42003-024-06595-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/17/2024] [Indexed: 07/25/2024] Open
Abstract
Fungal infections, a leading cause of mortality among eukaryotic pathogens, pose a growing global health threat due to the rise of drug-resistant strains. New therapeutic strategies are urgently needed to combat this challenge. The PCA pathway for biosynthesis of Co-enzyme A (CoA) and Acetyl-CoA (AcCoA) from vitamin B5 (pantothenic acid) has been validated as an excellent target for the development of new antimicrobials against fungi and protozoa. The pathway regulates key cellular processes including metabolism of fatty acids, amino acids, sterols, and heme. In this study, we provide genetic evidence that disruption of the PCA pathway in Saccharomyces cerevisiae results in a significant alteration in the susceptibility of fungi to a wide range of xenobiotics, including clinically approved antifungal drugs through alteration of vacuolar morphology and drug detoxification. The drug potentiation mediated by genetic regulation of genes in the PCA pathway could be recapitulated using the pantazine analog PZ-2891 as well as the celecoxib derivative, AR-12 through inhibition of fungal AcCoA synthase activity. Collectively, the data validate the PCA pathway as a suitable target for enhancing the efficacy and safety of current antifungal therapies.
Collapse
Affiliation(s)
- Jae-Yeon Choi
- Section of Infectious Diseases, Department of Medicine, Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Shalev Gihaz
- Section of Infectious Diseases, Department of Medicine, Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Muhammad Munshi
- Section of Infectious Diseases, Department of Medicine, Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Pallavi Singh
- Section of Infectious Diseases, Department of Medicine, Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Pratap Vydyam
- Section of Infectious Diseases, Department of Medicine, Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Patrice Hamel
- Departments of Molecular Genetics and Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA
| | - Emily M Adams
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Xinghui Sun
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Redox Biology Center, Lincoln, NE, USA
- Fred & Pamela Buffett Cancer Center, Omaha, NE, USA
| | - Kevin Fuller
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Choukri Ben Mamoun
- Section of Infectious Diseases, Department of Medicine, Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
3
|
Qureshi ZA, Ghazanfar H, Altaf F, Ghazanfar A, Hasan KZ, Kandhi S, Fortuzi K, Dileep A, Shrivastava S. Cryptococcosis and Cryptococcal Meningitis: A Narrative Review and the Up-to-Date Management Approach. Cureus 2024; 16:e55498. [PMID: 38571832 PMCID: PMC10990067 DOI: 10.7759/cureus.55498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 04/05/2024] Open
Abstract
Cryptococcosis is a fungal infectious disease that enormously impacts human health worldwide. Cryptococcal meningitis is the most severe disease caused by the fungus Cryptococcus, and can lead to death, if left untreated. Many patients develop resistance and progress to death even after treatment. It requires a prolonged treatment course in people with AIDS. This narrative review provides an evidence-based summary of the current treatment modalities and future trial options, including newer ones, namely, 18B7, T-2307, VT-1598, AR12, manogepix, and miltefosine. This review also evaluated the management and empiric treatment of cryptococcus meningitis. The disease can easily evade diagnosis with subacute presentation. Despite the severity of the disease, treatment options for cryptococcosis remain limited, and more research is needed.
Collapse
Affiliation(s)
- Zaheer A Qureshi
- Medicine, Frank H. Netter MD School of Medicine, Quinnipiac University, Bridgeport, USA
| | | | - Faryal Altaf
- Internal Medicine, BronxCare Health System, New York City, USA
| | - Ali Ghazanfar
- Internal Medicine, Federal Medical and Dental College, Islamabad, PAK
| | - Khushbu Z Hasan
- Internal Medicine, Mohtarma Benazir Bhutto Shaheed Medical College, Mirpur, PAK
| | - Sameer Kandhi
- Gastroenterology and Hepatology, BronxCare Health System, New York City, USA
| | - Ked Fortuzi
- Internal Medicine, BronxCare Health System, New York City, USA
| | | | - Shitij Shrivastava
- Internal Medicine, BronxCare Health System, New York City, USA
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
4
|
Bąk U, Krupa A. Challenges and Opportunities for Celecoxib Repurposing. Pharm Res 2023; 40:2329-2345. [PMID: 37552383 PMCID: PMC10661717 DOI: 10.1007/s11095-023-03571-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/18/2023] [Indexed: 08/09/2023]
Abstract
Drug repositioning, also known as drug repurposing, reprofiling, or rediscovery, is considered to be one of the most promising strategies to accelerate the development of new original drug products. Multiple examples of successful rediscovery or therapeutic switching of old molecules that did not show clinical benefits or safety in initial trials encourage the following of the discovery of new therapeutic pathways for them. This review summarizes the efforts that have been made, mostly over the last decade, to identify new therapeutic targets for celecoxib. To achieve this goal, records gathered in MEDLINE PubMed and Scopus databases along with the registry of clinical trials by the US National Library of Medicine at the U.S. National Institutes of Health were explored. Since celecoxib is a non-steroidal anti-inflammatory drug that represents the class of selective COX-2 inhibitors (coxibs), its clinical potential in metronomic cancer therapy, the treatment of mental disorders, or infectious diseases has been discussed. In the end, the perspective of a formulator, facing various challenges related to unfavorable physicochemical properties of celecoxib upon the development of new oral dosage forms, long-acting injectables, and topical formulations, including the latest trends in the pharmaceutical technology, such as the application of mesoporous carriers, biodegradable microparticles, lipid-based nanosystems, or spanlastics, was presented.
Collapse
Affiliation(s)
- Urszula Bąk
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688, Cracow, Poland
| | - Anna Krupa
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688, Cracow, Poland.
| |
Collapse
|
5
|
Iyer KR, Li SC, Revie NM, Lou JW, Duncan D, Fallah S, Sanchez H, Skulska I, Ušaj MM, Safizadeh H, Larsen B, Wong C, Aman A, Kiyota T, Yoshimura M, Kimura H, Hirano H, Yoshida M, Osada H, Gingras AC, Andes DR, Shapiro RS, Robbins N, Mazhab-Jafari MT, Whitesell L, Yashiroda Y, Boone C, Cowen LE. Identification of triazenyl indoles as inhibitors of fungal fatty acid biosynthesis with broad-spectrum activity. Cell Chem Biol 2023; 30:795-810.e8. [PMID: 37369212 PMCID: PMC11016341 DOI: 10.1016/j.chembiol.2023.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 04/17/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023]
Abstract
Rising drug resistance among pathogenic fungi, paired with a limited antifungal arsenal, poses an increasing threat to human health. To identify antifungal compounds, we screened the RIKEN natural product depository against representative isolates of four major human fungal pathogens. This screen identified NPD6433, a triazenyl indole with broad-spectrum activity against all screening strains, as well as the filamentous mold Aspergillus fumigatus. Mechanistic studies indicated that NPD6433 targets the enoyl reductase domain of fatty acid synthase 1 (Fas1), covalently inhibiting its flavin mononucleotide-dependent NADPH-oxidation activity and arresting essential fatty acid biosynthesis. Robust Fas1 inhibition kills Candida albicans, while sublethal inhibition impairs diverse virulence traits. At well-tolerated exposures, NPD6433 extended the lifespan of nematodes infected with azole-resistant C. albicans. Overall, identification of NPD6433 provides a tool with which to explore lipid homeostasis as a therapeutic target in pathogenic fungi and reveals a mechanism by which Fas1 function can be inhibited.
Collapse
Affiliation(s)
- Kali R Iyer
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Sheena C Li
- Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON, Canada; RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Nicole M Revie
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jennifer W Lou
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Dustin Duncan
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Sara Fallah
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Hiram Sanchez
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | - Iwona Skulska
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Mojca Mattiazzi Ušaj
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON, Canada
| | - Hamid Safizadeh
- Department of Computer Science and Engineering and Department of Electrical and Computer Engineering, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Brett Larsen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Cassandra Wong
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Ahmed Aman
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Taira Kiyota
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Mami Yoshimura
- RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Hiromi Kimura
- RIKEN Center for Sustainable Resource Science, Wako, Japan
| | | | - Minoru Yoshida
- RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Hiroyuki Osada
- RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - David R Andes
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Mohammad T Mazhab-Jafari
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Yoko Yashiroda
- RIKEN Center for Sustainable Resource Science, Wako, Japan.
| | - Charles Boone
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON, Canada; RIKEN Center for Sustainable Resource Science, Wako, Japan.
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
6
|
Deng H, Song J, Huang Y, Yang C, Zang X, Zhou Y, Li H, Dai B, Xue X. Combating increased antifungal drug resistance in Cryptococcus, what should we do in the future? Acta Biochim Biophys Sin (Shanghai) 2023; 55:540-547. [PMID: 36815374 PMCID: PMC10195138 DOI: 10.3724/abbs.2023011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/08/2022] [Indexed: 02/05/2023] Open
Abstract
Few therapeutic drugs and increased drug resistance have aggravated the current treatment difficulties of Cryptococcus in recent years. To better understand the antifungal drug resistance mechanism and treatment strategy of cryptococcosis. In this review, by combining the fundamental features of Cryptococcus reproduction leading to changes in its genome, we review recent research into the mechanism of four current anti-cryptococcal agents, coupled with new therapeutic strategies and the application of advanced technologies WGS and CRISPR-Cas9 in this field, hoping to provide a broad idea for the future clinical therapy of cryptococcosis.
Collapse
Affiliation(s)
- Hengyu Deng
- Affiliated Hospital of Weifang Medical UniversitySchool of Clinical MedicineWeifang Medical UniversityWeifang261053China
| | - Jialin Song
- Affiliated Hospital of Weifang Medical UniversitySchool of Clinical MedicineWeifang Medical UniversityWeifang261053China
| | - Yemei Huang
- of Respiratory and Critical CareBeijing Shijitan HospitalCapital Medical University; Peking University Ninth School of Clinical MedicineBeijing100089China
| | - Chen Yang
- Department of Laboratory Medicinethe First Medical CentreChinese PLA General HospitalBeijing100853China
| | - Xuelei Zang
- of Respiratory and Critical CareBeijing Shijitan HospitalCapital Medical University; Peking University Ninth School of Clinical MedicineBeijing100089China
| | - Yangyu Zhou
- of Respiratory and Critical CareBeijing Shijitan HospitalCapital Medical University; Peking University Ninth School of Clinical MedicineBeijing100089China
| | - Hongli Li
- Affiliated Hospital of Weifang Medical UniversitySchool of Clinical MedicineWeifang Medical UniversityWeifang261053China
| | - Bin Dai
- of Respiratory and Critical CareBeijing Shijitan HospitalCapital Medical University; Peking University Ninth School of Clinical MedicineBeijing100089China
| | - Xinying Xue
- Affiliated Hospital of Weifang Medical UniversitySchool of Clinical MedicineWeifang Medical UniversityWeifang261053China
- of Respiratory and Critical CareBeijing Shijitan HospitalCapital Medical University; Peking University Ninth School of Clinical MedicineBeijing100089China
| |
Collapse
|
7
|
Lee D, Lee Y, Hye Shin S, Min Choi S, Hyeon Lee S, Jeong S, Jang S, Kee JM. A simple protein histidine kinase activity assay for high-throughput inhibitor screening. Bioorg Chem 2023; 130:106232. [DOI: 10.1016/j.bioorg.2022.106232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/15/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022]
|
8
|
Wang H, Bi J, Zhang Y, Pan M, Guo Q, Xiao G, Cui Y, Hu S, Chan CK, Yuan Y, Kaneko T, Zhang G, Chen S. Human Kinase IGF1R/IR Inhibitor Linsitinib Controls the In Vitro and Intracellular Growth of Mycobacterium tuberculosis. ACS Infect Dis 2022; 8:2019-2027. [PMID: 36048501 DOI: 10.1021/acsinfecdis.2c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
ATP provides energy in the biosynthesis of cellular metabolites as well as regulates protein functions through phosphorylation. Many ATP-dependent enzymes are antibacterial and anticancer targets including human kinases acted on by most of the successful drugs. In search of new chemotherapeutics for tuberculosis (TB), we screened repurposing compounds against the essential glutamine synthase (GlnA1) of Mycobacterium tuberculosis (Mtb) and identified linsitinib, a clinical-stage drug originally targeting kinase IGF1R/IR as a potent GlnA1 inhibitor. Linsitinib has direct antimycobacterial activity. Biochemical, molecular modeling, and target engagement analyses revealed the inhibition is ATP-competitive and specific in Mtb. Linsitinib also improves autophagy flux in both Mtb-infected and uninfected THP1 macrophages, as demonstrated by the decreased p-mTOR and p62 and the increased lipid-bound LC3B-II and autophagosome forming puncta. Linsitinib-mediated autophagy reduces intracellular growth of wild-type and isoniazid-resistant Mtb alone or in combination with bedaquiline. We have demonstrated that an IGF-IR/IR inhibitor can potentially be used to treat TB. Our study reinforces the concept of targeting ATP-dependent enzymes for novel anti-TB therapy.
Collapse
Affiliation(s)
- Heng Wang
- Global Health Drug Discovery Institute, Haidian, Beijing 100192, China
| | - Jing Bi
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Yuan Zhang
- Global Health Drug Discovery Institute, Haidian, Beijing 100192, China
| | - Miaomiao Pan
- Global Health Drug Discovery Institute, Haidian, Beijing 100192, China
| | - Qinglong Guo
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Genhui Xiao
- Global Health Drug Discovery Institute, Haidian, Beijing 100192, China
| | - Yumeng Cui
- Global Health Drug Discovery Institute, Haidian, Beijing 100192, China
| | - Song Hu
- Global Health Drug Discovery Institute, Haidian, Beijing 100192, China
| | - Chi Kin Chan
- Global Health Drug Discovery Institute, Haidian, Beijing 100192, China
| | - Ying Yuan
- Global Health Drug Discovery Institute, Haidian, Beijing 100192, China
| | - Takushi Kaneko
- Global Alliance for TB Drug Development, New York, New York 10005, United States
| | - Guoliang Zhang
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Shawn Chen
- Global Health Drug Discovery Institute, Haidian, Beijing 100192, China
| |
Collapse
|
9
|
Cui X, Wang L, Lü Y, Yue C. Development and research progress of anti-drug resistant fungal drugs. J Infect Public Health 2022; 15:986-1000. [PMID: 35981408 DOI: 10.1016/j.jiph.2022.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022] Open
Abstract
With the widespread use of immunosuppressive agents and the increase in patients with severe infections, the incidence of fungal infections worldwide has increased year by year. The fungal pathogens Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus cause a total of more than 1 million deaths each year. Long-term use of antifungal drugs can easily lead to fungal resistance, and the prevalence of drug-resistant fungi is a major global health challenge. In order to effectively control global fungal infections, there is an urgent need for new drugs that can exert effective antifungal activity and overcome drug resistance. We must promote the discovery of new antifungal targets and drugs, and find effective ways to control drug-resistant fungi through different ways, so as to reduce the threat of drug-resistant fungi to human life, health and safety. In the past few years, certain progress has been made in the research and development of antifungal drugs. In addition to summarizing some of the antifungal drugs currently approved by the FDA, this review also focuses on potential antifungal drugs, the repositioned drugs, and drugs that can treat drug-resistant bacteria and fungal infections, and provide new ideas for the development of antifungal drugs in the future.
Collapse
Affiliation(s)
- Xiangyi Cui
- Key Laboratory of Microbial Drugs Innovation and Transformation of Yan'an, School of Basic Medicine, Yan'an University, Yan'an 716000, Shaanxi, China; Shaanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources,Yan'an University, NO.580 Shengdi Road, Baota District, Yan'an 716000, Shaanxi, China.
| | - Lanlin Wang
- Key Laboratory of Microbial Drugs Innovation and Transformation of Yan'an, School of Basic Medicine, Yan'an University, Yan'an 716000, Shaanxi, China; Shaanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources,Yan'an University, NO.580 Shengdi Road, Baota District, Yan'an 716000, Shaanxi, China.
| | - Yuhong Lü
- Key Laboratory of Microbial Drugs Innovation and Transformation of Yan'an, School of Basic Medicine, Yan'an University, Yan'an 716000, Shaanxi, China; Shaanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources,Yan'an University, NO.580 Shengdi Road, Baota District, Yan'an 716000, Shaanxi, China.
| | - Changwu Yue
- Key Laboratory of Microbial Drugs Innovation and Transformation of Yan'an, School of Basic Medicine, Yan'an University, Yan'an 716000, Shaanxi, China; Shaanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources,Yan'an University, NO.580 Shengdi Road, Baota District, Yan'an 716000, Shaanxi, China.
| |
Collapse
|
10
|
Jampilek J. Novel avenues for identification of new antifungal drugs and current challenges. Expert Opin Drug Discov 2022; 17:949-968. [PMID: 35787715 DOI: 10.1080/17460441.2022.2097659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : Some of otherwise useful fungi are pathogenic to humans, and unfortunately, the number of these pathogens is increasing. In addition to common skin infections, these opportunistic pathogens are able to cause severe, often incurable, systemic mycoses. AREAS COVERED : The number of antifungal drugs is limited, especially drugs that can be used for systemic administration, and resistance to these drugs is very common. This review summarizes various approaches to the discovery and development of new antifungal drugs, provides an overview of the most important molecules in terms of basic (laboratory) research and compounds currently in clinical trials, and focuses on drug repurposing strategy, while providing an overview of drugs of other indications that have been tested in vitro for their antifungal activity for possible expansion of antifungal drugs and/or support of existing antimycotics. EXPERT OPINION : Despite the limitations of the research of new antifungal drugs by pharmaceutical manufacturers, in addition to innovated molecules based on clinically used drugs, several completely new small entities with unique mechanisms of actions have been identified. The identification of new molecular targets that offer alternatives for the development of new unique selective antifungal highly effective agents has been an important outcome of repurposing of non-antifungal drugs to antifungal drug. Also, given the advances in monoclonal antibodies and their application to immunosuppressed patients, it may seem possible to predict a more optimistic future for antifungal therapy than has been the case in recent decades.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia.,Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10 Bratislava, Slovakia
| |
Collapse
|
11
|
Murphy SE, Bicanic T. Drug Resistance and Novel Therapeutic Approaches in Invasive Candidiasis. Front Cell Infect Microbiol 2022; 11:759408. [PMID: 34970504 PMCID: PMC8713075 DOI: 10.3389/fcimb.2021.759408] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Candida species are the leading cause of invasive fungal infections worldwide and are associated with acute mortality rates of ~50%. Mortality rates are further augmented in the context of host immunosuppression and infection with drug-resistant Candida species. In this review, we outline antifungal drugs already in clinical use for invasive candidiasis and candidaemia, their targets and mechanisms of resistance in clinically relevant Candida species, encompassing not only classical resistance, but also heteroresistance and tolerance. We describe novel antifungal agents and targets in pre-clinical and clinical development, including their spectrum of activity, antifungal target, clinical trial data and potential in treatment of drug-resistant Candida. Lastly, we discuss the use of combination therapy between conventional and repurposed agents as a potential strategy to combat the threat of emerging resistance in Candida.
Collapse
Affiliation(s)
- Sarah E Murphy
- Institute of Infection & Immunity, St George's University of London, London, United Kingdom
| | - Tihana Bicanic
- Institute of Infection & Immunity, St George's University of London, London, United Kingdom.,Clinical Academic Group in Infection and Immunity, St. George's University Hospital National Health Service (NHS) Foundation Trust, London, United Kingdom
| |
Collapse
|
12
|
Tsao N, Chang YC, Hsieh SY, Li TC, Chiu CC, Yu HH, Hsu TC, Kuo CF. AR-12 Has a Bactericidal Activity and a Synergistic Effect with Gentamicin against Group A Streptococcus. Int J Mol Sci 2021; 22:ijms222111617. [PMID: 34769046 PMCID: PMC8583967 DOI: 10.3390/ijms222111617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/24/2021] [Accepted: 10/24/2021] [Indexed: 12/30/2022] Open
Abstract
Streptococcus pyogenes (group A Streptococcus (GAS) is an important human pathogen that can cause severe invasive infection, such as necrotizing fasciitis and streptococcal toxic shock syndrome. The mortality rate of streptococcal toxic shock syndrome ranges from 20% to 50% in spite of antibiotics administration. AR-12, a pyrazole derivative, has been reported to inhibit the infection of viruses, intracellular bacteria, and fungi. In this report, we evaluated the bactericidal activities and mechanisms of AR-12 on GAS infection. Our in vitro results showed that AR-12 dose-dependently reduced the GAS growth, and 2.5 μg/mL of AR-12 significantly killed GAS within 2 h. AR-12 caused a remarkable reduction in nucleic acid and protein content of GAS. The expression of heat shock protein DnaK and streptococcal exotoxins was also inhibited by AR-12. Surveys of the GAS architecture by scanning electron microscopy revealed that AR-12-treated GAS displayed incomplete septa and micro-spherical structures protruding out of cell walls. Moreover, the combination of AR-12 and gentamicin had a synergistic antibacterial activity against GAS replication for both in vitro and in vivo infection. Taken together, these novel findings obtained in this study may provide a new therapeutic strategy for invasive GAS infection.
Collapse
Affiliation(s)
- Nina Tsao
- Department of Medical Laboratory Science, College of Medical Science and Technology, I-Shou University, Kaohsiung 824005, Taiwan; (N.T.); (Y.-C.C.); (T.-C.L.); (C.-C.C.)
- Department of Biological Science and Technology, College of Medical Science and Technology, I-Shou University, Kaohsiung 824005, Taiwan; (H.-H.Y.); (T.-C.H.)
| | - Ya-Chu Chang
- Department of Medical Laboratory Science, College of Medical Science and Technology, I-Shou University, Kaohsiung 824005, Taiwan; (N.T.); (Y.-C.C.); (T.-C.L.); (C.-C.C.)
| | - Sung-Yuan Hsieh
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu 300024, Taiwan;
| | - Tang-Chi Li
- Department of Medical Laboratory Science, College of Medical Science and Technology, I-Shou University, Kaohsiung 824005, Taiwan; (N.T.); (Y.-C.C.); (T.-C.L.); (C.-C.C.)
| | - Ching-Chen Chiu
- Department of Medical Laboratory Science, College of Medical Science and Technology, I-Shou University, Kaohsiung 824005, Taiwan; (N.T.); (Y.-C.C.); (T.-C.L.); (C.-C.C.)
| | - Hai-Han Yu
- Department of Biological Science and Technology, College of Medical Science and Technology, I-Shou University, Kaohsiung 824005, Taiwan; (H.-H.Y.); (T.-C.H.)
| | - Tzu-Ching Hsu
- Department of Biological Science and Technology, College of Medical Science and Technology, I-Shou University, Kaohsiung 824005, Taiwan; (H.-H.Y.); (T.-C.H.)
| | - Chih-Feng Kuo
- School of Medicine, I-Shou University, Kaohsiung 824005, Taiwan
- Department of Nursing, College of Medicine, I-Shou University, Kaohsiung 824005, Taiwan
- Correspondence: ; Tel.: +886-7-6151100 (ext. 7967)
| |
Collapse
|
13
|
Forte B, Ottilie S, Plater A, Campo B, Dechering KJ, Gamo FJ, Goldberg DE, Istvan ES, Lee M, Lukens AK, McNamara CW, Niles JC, Okombo J, Pasaje CFA, Siegel MG, Wirth D, Wyllie S, Fidock DA, Baragaña B, Winzeler EA, Gilbert IH. Prioritization of Molecular Targets for Antimalarial Drug Discovery. ACS Infect Dis 2021; 7:2764-2776. [PMID: 34523908 PMCID: PMC8608365 DOI: 10.1021/acsinfecdis.1c00322] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
There is a shift
in antimalarial drug discovery from phenotypic
screening toward target-based approaches, as more potential drug targets
are being validated in Plasmodium species. Given
the high attrition rate and high cost of drug discovery, it is important
to select the targets most likely to deliver progressible drug candidates.
In this paper, we describe the criteria that we consider important
for selecting targets for antimalarial drug discovery. We describe
the analysis of a number of drug targets in the Malaria Drug Accelerator
(MalDA) pipeline, which has allowed us to prioritize targets that
are ready to enter the drug discovery process. This selection process
has also highlighted where additional data are required to inform
target progression or deprioritization of other targets. Finally,
we comment on how additional drug targets may be identified.
Collapse
Affiliation(s)
- Barbara Forte
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Sabine Ottilie
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Andrew Plater
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Brice Campo
- Medicines for Malaria Venture, 1215 Geneva, Switzerland
| | | | | | - Daniel E. Goldberg
- Division of Infectious Diseases, Department of Medicine and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Eva S. Istvan
- Division of Infectious Diseases, Department of Medicine and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Marcus Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, United Kingdom
| | - Amanda K. Lukens
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts 02142, United States
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Case W. McNamara
- Calibr, a Division of The Scripps Research Institute, 11119 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jacquin C. Niles
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge Massachusetts 02139-4307, United States
| | - John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Charisse Flerida A. Pasaje
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge Massachusetts 02139-4307, United States
| | | | - Dyann Wirth
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts 02142, United States
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Susan Wyllie
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Beatriz Baragaña
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Elizabeth A. Winzeler
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Ian H. Gilbert
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, United Kingdom
| |
Collapse
|
14
|
Rodríguez-Enríquez S, Robledo-Cadena DX, Gallardo-Pérez JC, Pacheco-Velázquez SC, Vázquez C, Saavedra E, Vargas-Navarro JL, Blanco-Carpintero BA, Marín-Hernández Á, Jasso-Chávez R, Encalada R, Ruiz-Godoy L, Aguilar-Ponce JL, Moreno-Sánchez R. Acetate Promotes a Differential Energy Metabolic Response in Human HCT 116 and COLO 205 Colon Cancer Cells Impacting Cancer Cell Growth and Invasiveness. Front Oncol 2021; 11:697408. [PMID: 34414111 PMCID: PMC8370060 DOI: 10.3389/fonc.2021.697408] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/15/2021] [Indexed: 12/26/2022] Open
Abstract
Under dysbiosis, a gut metabolic disorder, short-chain carboxylic acids (SCCAs) are secreted to the lumen, affecting colorectal cancer (CRC) development. Butyrate and propionate act as CRC growth inhibitors, but they might also serve as carbon source. In turn, the roles of acetate as metabolic fuel and protein acetylation promoter have not been clearly elucidated. To assess whether acetate favors CRC growth through active mitochondrial catabolism, a systematic study evaluating acetate thiokinase (AcK), energy metabolism, cell proliferation, and invasiveness was performed in two CRC cell lines incubated with physiological SCCAs concentrations. In COLO 205, acetate (+glucose) increased the cell density (50%), mitochondrial protein content (3–10 times), 2-OGDH acetylation, and oxidative phosphorylation (OxPhos) flux (36%), whereas glycolysis remained unchanged vs. glucose-cultured cells; the acetate-induced OxPhos activation correlated with a high AcK activity, content, and acetylation (1.5–6-fold). In contrast, acetate showed no effect on HCT116 cell growth, OxPhos, AcK activity, protein content, and acetylation. However, a substantial increment in the HIF-1α content, HIF-1α-glycolytic protein targets (1–2.3 times), and glycolytic flux (64%) was observed. Butyrate and propionate decreased the growth of both CRC cells by impairing OxPhos flux through mitophagy and mitochondrial fragmentation activation. It is described, for the first time, the role of acetate as metabolic fuel for ATP supply in CRC COLO 205 cells to sustain proliferation, aside from its well-known role as protein epigenetic regulator. The level of AcK determined in COLO 205 cells was similar to that found in human CRC biopsies, showing its potential role as metabolic marker.
Collapse
Affiliation(s)
| | | | | | | | - Citlali Vázquez
- Departamento de Bioquímica, Instituto Nacional de Cardiología, México, Mexico
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología, México, Mexico
| | | | | | | | | | - Rusely Encalada
- Departamento de Bioquímica, Instituto Nacional de Cardiología, México, Mexico
| | - Luz Ruiz-Godoy
- Banco de Tumores, Instituto Nacional de Cancerología, México, Mexico
| | | | | |
Collapse
|
15
|
Jezewski A, Alden KM, Esan TE, DeBouver ND, Abendroth J, Bullen JC, Calhoun BM, Potts KT, Murante DM, Hagen TJ, Fox D, Krysan DJ. Structural Characterization of the Reaction and Substrate Specificity Mechanisms of Pathogenic Fungal Acetyl-CoA Synthetases. ACS Chem Biol 2021; 16:1587-1599. [PMID: 34369755 PMCID: PMC8383264 DOI: 10.1021/acschembio.1c00484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/29/2021] [Indexed: 11/28/2022]
Abstract
Acetyl CoA synthetases (ACSs) are Acyl-CoA/NRPS/Luciferase (ANL) superfamily enzymes that couple acetate with CoA to generate acetyl CoA, a key component of central carbon metabolism in eukaryotes and prokaryotes. Normal mammalian cells are not dependent on ACSs, while tumor cells, fungi, and parasites rely on acetate as a precursor for acetyl CoA. Consequently, ACSs have emerged as a potential drug target. As part of a program to develop antifungal ACS inhibitors, we characterized fungal ACSs from five diverse human fungal pathogens using biochemical and structural studies. ACSs catalyze a two-step reaction involving adenylation of acetate followed by thioesterification with CoA. Our structural studies captured each step of these two half-reactions including the acetyl-adenylate intermediate of the first half-reaction in both the adenylation conformation and the thioesterification conformation and thus provide a detailed picture of the reaction mechanism. We also used a systematic series of increasingly larger alkyl adenosine esters as chemical probes to characterize the structural basis of the exquisite ACS specificity for acetate over larger carboxylic acid substrates. Consistent with previous biochemical and genetic data for other enzymes, structures of fungal ACSs with these probes bound show that a key tryptophan residue limits the size of the alkyl binding site and forces larger alkyl chains to adopt high energy conformers, disfavoring their efficient binding. Together, our analysis provides highly detailed structural models for both the reaction mechanism and substrate specificity that should be useful in designing selective inhibitors of eukaryotic ACSs as potential anticancer, antifungal, and antiparasitic drugs.
Collapse
Affiliation(s)
- Andrew
J. Jezewski
- Department
of Pediatrics Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, United States
| | - Katy M. Alden
- Department
of Pediatrics Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, United States
| | - Taiwo E. Esan
- Department
of Chemistry and Biochemistry, Northern
Illinois University, DeKalb, Illinois 60115, United States
| | - Nicholas D. DeBouver
- UCB
Pharma, 7869 NE Day Road West, Bainbridge Island, Washington 98110, United States
- Seattle
Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98109, United States
| | - Jan Abendroth
- UCB
Pharma, 7869 NE Day Road West, Bainbridge Island, Washington 98110, United States
- Seattle
Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98109, United States
| | - Jameson C. Bullen
- UCB
Pharma, 7869 NE Day Road West, Bainbridge Island, Washington 98110, United States
- Seattle
Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98109, United States
| | - Brandy M. Calhoun
- UCB
Pharma, 7869 NE Day Road West, Bainbridge Island, Washington 98110, United States
- Seattle
Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98109, United States
| | - Kristy T. Potts
- UCB
Pharma, 7869 NE Day Road West, Bainbridge Island, Washington 98110, United States
- Beryllium
Discovery Corp., 7869
NE Day Road West, Bainbridge Island, Washington 98110, United States
| | - Daniel M. Murante
- Department
of Pediatrics Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, United States
| | - Timothy J. Hagen
- Department
of Chemistry and Biochemistry, Northern
Illinois University, DeKalb, Illinois 60115, United States
| | - David Fox
- UCB
Pharma, 7869 NE Day Road West, Bainbridge Island, Washington 98110, United States
- Beryllium
Discovery Corp., 7869
NE Day Road West, Bainbridge Island, Washington 98110, United States
- Seattle
Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98109, United States
| | - Damian J. Krysan
- Department
of Pediatrics Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, United States
- Microbiology/Immunology,
Carver College of Medicine, University of
Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
16
|
Affiliation(s)
- Laila S Al Yazidi
- Child Health Department, Sultan Qaboos University Hospital, Muscat, Oman
| | - Abdullah M. S. Al-Hatmi
- Natural & Medical Sciences Research Center, University of Nizwa,Nizwa, Oman
- Department of Biological Sciences & Chemistry, College of Arts and Sciences, University of Nizwa, Nizwa, Oman
- Centre of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
| |
Collapse
|
17
|
The Future of Antifungal Drug Therapy: Novel Compounds and Targets. Antimicrob Agents Chemother 2021; 65:AAC.01719-20. [PMID: 33229427 DOI: 10.1128/aac.01719-20] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fungal infections are a universal problem and are routinely associated with high morbidity and mortality rates in immunocompromised patients. Existing therapies comprise five different classes of antifungal agents, four of which target the synthesis of ergosterol and cell wall glucans. However, the currently available antifungals have many limitations, including poor oral bioavailability, narrow therapeutic indices, and emerging drug resistance resulting from their use, thus making it essential to investigate the development of novel drugs which can overcome these limitations and add to the antifungal armamentarium. Advances have been made in antifungal drug discovery research and development over the past few years as evidenced by the presence of several new compounds currently in various stages of development. In the following minireview, we provide a comprehensive summary of compounds aimed at one or more novel molecular targets. We also briefly describe potential pathways relevant for fungal pathogenesis that can be considered for drug development in the near future.
Collapse
|
18
|
Vallières C, Singh N, Alexander C, Avery SV. Repurposing Nonantifungal Approved Drugs for Synergistic Targeting of Fungal Pathogens. ACS Infect Dis 2020; 6:2950-2958. [PMID: 33141557 DOI: 10.1021/acsinfecdis.0c00405] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
With the spread of drug resistance, new antimicrobials are urgently needed. Here, we set out to tackle this problem by high-throughput exploration for novel antifungal synergies among combinations of approved, nonantifungal drugs; a novel strategy exploiting the potential of alternative targets, low chemicals usage and low development risk. We screened the fungal pathogen Candida albicans by combining a small panel of nonantifungal drugs (all in current use for other clinical applications) with 1280 compounds from an approved drug library. Screens at sublethal concentrations of the antibiotic paromomycin (PM), the antimalarial primaquine (PQ), or the anti-inflammatory drug ibuprofen (IF) revealed a total of 17 potential strong, synergistic interactions with the library compounds. Susceptibility testing with the most promising combinations corroborated marked synergies [fractional inhibitory concentration (FIC) indices ≤0.5] between PM + β-escin, PQ + celecoxib, and IF + pentamidine, reducing the MICs of PM, PQ, and IF in C. albicans by >64-, 16-, and 8-fold, respectively. Paromomycin + β-escin and PQ + celecoxib were effective also against C. albicans biofilms, azole-resistant clinical isolates, and other fungal pathogens. Actions were specific, as no synergistic effect was observed in mammalian cells. Mode of action was investigated for one of the combinations, revealing that PM + β-escin synergistically increase the error-rate of mRNA translation and suggesting a different molecular target to current antifungals. The study unveils the potential of the described combinatorial strategy in enabling acceleration of drug-repurposing discovery for combatting fungal pathogens.
Collapse
Affiliation(s)
- Cindy Vallières
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Nishant Singh
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Cameron Alexander
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Simon V. Avery
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| |
Collapse
|
19
|
AR-12 Exhibits Direct and Host-Targeted Antibacterial Activity toward Mycobacterium abscessus. Antimicrob Agents Chemother 2020; 64:AAC.00236-20. [PMID: 32482678 PMCID: PMC7526805 DOI: 10.1128/aac.00236-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/25/2020] [Indexed: 12/17/2022] Open
Abstract
Therapeutic options for Mycobacterium abscessus infections are extremely limited. New or repurposed drugs are needed. The anti-M. abscessus activity of AR-12 (OSU-03012), reported to express broad-spectrum antimicrobial effects, was investigated in vitro and in vivo Antimicrobial susceptibility testing was performed on 194 clinical isolates. Minimum bactericidal concentration and time-kill kinetics assays were conducted to distinguish the bactericidal versus bacteriostatic activity of AR-12. Synergy between AR-12 and five clinically important antibiotics was determined using a checkerboard synergy assay. The activity of AR-12 against intracellular M. abscessus residing within macrophage was also evaluated. Finally, the potency of AR-12 in vivo was determined in a neutropenic mouse model that mimics pulmonary M. abscessus infection. AR-12 exhibited high anti-M. abscessus activity in vitro, with an MIC50 of 4 mg/liter (8.7 μM) and an MIC90 of 8 mg/liter (17.4 μM) for both subsp. abscessus and subsp. massiliense AR-12 and amikacin exhibited comparable bactericidal activity against extracellular M. abscessus in culture. AR-12, however, exhibited significantly greater intracellular antibacterial activity than amikacin and caused a significant reduction in the bacterial load in the lungs of neutropenic mice infected with M. abscessus No antagonism between AR-12 and clarithromycin, amikacin, imipenem, cefoxitin, or tigecycline was evident. In conclusion, AR-12 is active against M. abscessus in vitro and in vivo and does not antagonize the most frequently used anti-M. abscessus drugs. As such, AR-12 is a potential candidate to include in novel strategies to treat M. abscessus infections.
Collapse
|
20
|
Spadari CDC, Wirth F, Lopes LB, Ishida K. New Approaches for Cryptococcosis Treatment. Microorganisms 2020; 8:E613. [PMID: 32340403 PMCID: PMC7232457 DOI: 10.3390/microorganisms8040613] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 02/06/2023] Open
Abstract
Cryptococcosis is an important opportunistic infection and a leading cause of meningitis in patients with HIV infection. The antifungal pharmacological treatment is limited to amphotericin B, fluconazole and 5- flucytosine. In addition to the limited pharmacological options, the high toxicity, increased resistance rate and difficulty of the currently available antifungal molecules to cross the blood-brain barrier hamper the treatment. Thus, the search for new alternatives for the treatment of cryptococcal meningitis is extremely necessary. In this review, we describe the therapeutic strategies currently available, discuss new molecules with antifungal potential in different phases of clinical trials and in advanced pre-clinical phase, and examine drug nanocarriers to improve delivery to the central nervous system.
Collapse
Affiliation(s)
- Cristina de Castro Spadari
- Laboratory of Antifungal Chemotherapy, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (C.d.C.S.); (F.W.)
| | - Fernanda Wirth
- Laboratory of Antifungal Chemotherapy, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (C.d.C.S.); (F.W.)
| | - Luciana Biagini Lopes
- Laboratory of Nanomedicine and Drug Delivery Systems, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil;
| | - Kelly Ishida
- Laboratory of Antifungal Chemotherapy, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (C.d.C.S.); (F.W.)
| |
Collapse
|
21
|
Howard KC, Dennis EK, Watt DS, Garneau-Tsodikova S. A comprehensive overview of the medicinal chemistry of antifungal drugs: perspectives and promise. Chem Soc Rev 2020; 49:2426-2480. [PMID: 32140691 DOI: 10.1039/c9cs00556k] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The emergence of new fungal pathogens makes the development of new antifungal drugs a medical imperative that in recent years motivates the talents of numerous investigators across the world. Understanding not only the structural families of these drugs but also their biological targets provides a rational means for evaluating the merits and selectivity of new agents for fungal pathogens and normal cells. An equally important aspect of modern antifungal drug development takes a balanced look at the problems of drug potency and drug resistance. The future development of new antifungal agents will rest with those who employ synthetic and semisynthetic methodology as well as natural product isolation to tackle these problems and with those who possess a clear understanding of fungal cell architecture and drug resistance mechanisms. This review endeavors to provide an introduction to a growing and increasingly important literature, including coverage of the new developments in medicinal chemistry since 2015, and also endeavors to spark the curiosity of investigators who might enter this fascinatingly complex fungal landscape.
Collapse
Affiliation(s)
- Kaitlind C Howard
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA.
| | | | | | | |
Collapse
|
22
|
Silva LN, de Mello TP, de Souza Ramos L, Branquinha MH, Dos Santos ALS. New and Promising Chemotherapeutics for Emerging Infections Involving Drug-resistant Non-albicans Candida Species. Curr Top Med Chem 2020; 19:2527-2553. [PMID: 31654512 DOI: 10.2174/1568026619666191025152412] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 02/13/2019] [Accepted: 02/16/2019] [Indexed: 02/06/2023]
Abstract
Fungal infections are a veritable public health problem worldwide. The increasing number of patient populations at risk (e.g. transplanted individuals, cancer patients, and HIV-infected people), as well as the use of antifungal agents for prophylaxis in medicine, have favored the emergence of previously rare or newly identified fungal species. Indeed, novel antifungal resistance patterns have been observed, including environmental sources and the emergence of simultaneous resistance to different antifungal classes, especially in Candida spp., which are known for the multidrug-resistance (MDR) profile. In order to circumvent this alarming scenario, the international researchers' community is engaged in discovering new, potent, and promising compounds to be used in a near future to treat resistant fungal infections in hospital settings on a global scale. In this context, many compounds with antifungal action from both natural and synthetic sources are currently under clinical development, including those that target either ergosterol or β(1,3)-D-glucan, presenting clear evidence of pharmacologic/pharmacokinetic advantages over currently available drugs against these two well-known fungal target structures. Among these are the tetrazoles VT-1129, VT-1161, and VT-1598, the echinocandin CD101, and the glucan synthase inhibitor SCY-078. In this review, we compiled the most recent antifungal compounds that are currently in clinical trials of development and described the potential outcomes against emerging and rare Candida species, with a focus on C. auris, C. dubliniensis, C. glabrata, C. guilliermondii, C. haemulonii, and C. rugosa. In addition to possibly overcoming the limitations of currently available antifungals, new investigational chemical agents that can enhance the classic antifungal activity, thereby reversing previously resistant phenotypes, were also highlighted. While novel and increasingly MDR non-albicans Candida species continue to emerge worldwide, novel strategies for rapid identification and treatment are needed to combat these life-threatening opportunistic fungal infections.
Collapse
Affiliation(s)
- Laura Nunes Silva
- Laboratorio de Estudos Avancados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thaís Pereira de Mello
- Laboratorio de Estudos Avancados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lívia de Souza Ramos
- Laboratorio de Estudos Avancados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marta Helena Branquinha
- Laboratorio de Estudos Avancados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André Luis Souza Dos Santos
- Laboratorio de Estudos Avancados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
23
|
Rauseo AM, Coler-Reilly A, Larson L, Spec A. Hope on the Horizon: Novel Fungal Treatments in Development. Open Forum Infect Dis 2020; 7:ofaa016. [PMID: 32099843 PMCID: PMC7031074 DOI: 10.1093/ofid/ofaa016] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/09/2020] [Indexed: 12/19/2022] Open
Abstract
The treatment of invasive fungal infections remains challenging due to limitations in currently available antifungal therapies including toxicity, interactions, restricted routes of administration, and drug resistance. This review focuses on novel therapies in clinical development, including drugs and a device. These drugs have novel mechanisms of action to overcome resistance, and some offer new formulations providing distinct advantages over current therapies to improve safety profiles and reduce interactions. Among agents that target the cell wall, 2 glucan synthesis inhibitors are discussed (rezafungin and ibrexafungerp), as well as fosmanogepix and nikkomycin Z. Agents that target the cell membrane include 3 fourth-generation azoles, oral encochleated amphotericin B, and aureobasidin A. Among agents with intracellular targets, we will review olorofim, VL-2397, T-2307, AR-12, and MGCD290. In addition, we will describe neurapheresis, a device used as adjunctive therapy for cryptococcosis. With a field full of novel treatments for fungal infections, the future looks promising.
Collapse
Affiliation(s)
- Adriana M Rauseo
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Lindsey Larson
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrej Spec
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
24
|
Al-Hatmi AMS, de Hoog GS, Meis JF. Multiresistant Fusarium Pathogens on Plants and Humans: Solutions in (from) the Antifungal Pipeline? Infect Drug Resist 2019; 12:3727-3737. [PMID: 31819555 PMCID: PMC6886543 DOI: 10.2147/idr.s180912] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/22/2019] [Indexed: 12/15/2022] Open
Abstract
The fungal genus Fusarium contains numerous plant pathogens causing considerable economic losses. In addition, Fusarium species are emerging as opportunistic human pathogens causing both superficial and systemic infections. Appropriate treatment of Fusarium infections in a clinical setting of neutropenia is currently not available. ESCMID and ECMM joint guidelines, following the majority of published studies, suggest early therapy with amphotericin B and voriconazole, in conjunction with surgical debridement and reversal of immunosuppression. In this review, we elaborate on the trans-kingdom pathogenicity of Fusarium. Intrinsic resistance to several antifungal drugs and the evolution of antifungal resistance over the years are highlighted. Recent studies present novel compounds that are effective against some pathogenic fungi including Fusarium. We discuss the robust and dynamic antifungal pipeline, including results from clinical trials as well as preclinical data that might appear beneficial for patients with invasive fusariosis.
Collapse
Affiliation(s)
- Abdullah MS Al-Hatmi
- Ministry of Health, Directorate General of Health Services, Ibri, Oman
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
- Centre of Expertise in Mycology Radboud University Medical Centre/Canisius Wilhelmina Hospital, Nijmegen, the Netherlands
| | - G Sybren de Hoog
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
- Centre of Expertise in Mycology Radboud University Medical Centre/Canisius Wilhelmina Hospital, Nijmegen, the Netherlands
| | - Jacques F Meis
- Centre of Expertise in Mycology Radboud University Medical Centre/Canisius Wilhelmina Hospital, Nijmegen, the Netherlands
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, the Netherlands
| |
Collapse
|
25
|
Yadav S, Pandey SK, Goel Y, Temre MK, Singh SM. Diverse Stakeholders of Tumor Metabolism: An Appraisal of the Emerging Approach of Multifaceted Metabolic Targeting by 3-Bromopyruvate. Front Pharmacol 2019; 10:728. [PMID: 31333455 PMCID: PMC6620530 DOI: 10.3389/fphar.2019.00728] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022] Open
Abstract
Malignant cells possess a unique metabolic machinery to endure unobstructed cell survival. It comprises several levels of metabolic networking consisting of 1) upregulated expression of membrane-associated transporter proteins, facilitating unhindered uptake of substrates; 2) upregulated metabolic pathways for efficient substrate utilization; 3) pH and redox homeostasis, conducive for driving metabolism; 4) tumor metabolism-dependent reconstitution of tumor growth promoting the external environment; 5) upregulated expression of receptors and signaling mediators; and 6) distinctive genetic and regulatory makeup to generate and sustain rearranged metabolism. This feat is achieved by a "battery of molecular patrons," which acts in a highly cohesive and mutually coordinated manner to bestow immortality to neoplastic cells. Consequently, it is necessary to develop a multitargeted therapeutic approach to achieve a formidable inhibition of the diverse arrays of tumor metabolism. Among the emerging agents capable of such multifaceted targeting of tumor metabolism, an alkylating agent designated as 3-bromopyruvate (3-BP) has gained immense research focus because of its broad spectrum and specific antineoplastic action. Inhibitory effects of 3-BP are imparted on a variety of metabolic target molecules, including transporters, metabolic enzymes, and several other crucial stakeholders of tumor metabolism. Moreover, 3-BP ushers a reconstitution of the tumor microenvironment, a reversal of tumor acidosis, and recuperative action on vital organs and systems of the tumor-bearing host. Studies have been conducted to identify targets of 3-BP and its derivatives and characterization of target binding for further optimization. This review presents a brief and comprehensive discussion about the current state of knowledge concerning various aspects of tumor metabolism and explores the prospects of 3-BP as a safe and effective antineoplastic agent.
Collapse
Affiliation(s)
| | | | | | | | - Sukh Mahendra Singh
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
26
|
Novel AR-12 derivatives, P12-23 and P12-34, inhibit flavivirus replication by blocking host de novo pyrimidine biosynthesis. Emerg Microbes Infect 2018; 7:187. [PMID: 30459406 PMCID: PMC6246607 DOI: 10.1038/s41426-018-0191-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/12/2018] [Accepted: 10/21/2018] [Indexed: 12/14/2022]
Abstract
The genus Flavivirus contains many important pathogens, including dengue virus (DENV), Zika virus (ZIKV), and Japanese encephalitis virus (JEV). AR-12 is a celecoxib-derived anticancer agent that possesses antiviral activity against a broad range of viruses. We pharmacologically exploited this unique activity to develop additional antiviral agents, resulting in the production of the AR-12 derivatives P12-23 and P12-34. At nanomolar concentrations, these compounds were effective in suppressing DENV, ZIKV and JEV replication, exhibiting 10-fold improvements in the efficacy and selectivity indices as compared to AR-12. Regarding the mode of antiviral action, P12-23 and P12-34 inhibited viral RNA replication but had no effect on viral binding, entry or translation. Moreover, these AR-12 derivatives co-localized with mitochondrial markers, and their antiviral activity was lost in mitochondria-depleted cells. Interestingly, exogenous uridine or orotate, the latter being a metabolite of the mitochondrial enzyme dihydroorotate dehydrogenase (DHODH), abolished the antiviral activity of AR-12 and its derivatives. As DHODH is a key enzyme in the de novo pyrimidine biosynthesis pathway, these AR-12 derivatives may act by targeting pyrimidine biosynthesis in host cells to inhibit viral replication. Importantly, treatment with P12-34 significantly improved the survival of mice that were subcutaneously challenged with DENV. Thus, P12-34 may warrant further evaluation as a therapeutic to control flaviviral outbreaks.
Collapse
|
27
|
Santos-Gandelman J, Rodrigues ML, Machado Silva A. Future perspectives for cryptococcosis treatment. Expert Opin Ther Pat 2018; 28:625-634. [PMID: 30084284 DOI: 10.1080/13543776.2018.1503252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Cryptococcosis is one of the most devastating human fungal infections. Despite its impact, none of the standard antifungals were developed after 1990. New, improved, less toxic, affordable and widely available treatment is, therefore, imperative. AREAS COVERED This review offers an insight into technological developments for cryptococcosis disclosed in patent literature. From a broad search of patent documents claiming cryptococcosis treatment and having earliest priority between 1995 and 2015, we selected and summarized compounds/molecules (i) revealed in documents disclosing in vivo activity against Cryptococcus spp. or (ii) found in the pipeline of companies that appeared as assignees in our patent search. This information was complemented with data on compounds under development for this indication from the database Integrity (Clarivate Analytics). EXPERT OPINION This review demonstrates that drug development against cryptococcosis is discrete. However, it also shows that the existing development is not focused on a single class of molecules, but on different types of molecules with distinct fungal targets, reflecting the complexity of generating novel anti-cryptococcal tools. Given the intrinsic difficulties and high costs of drug development and the evident market failure in this field, we consider drug repurposing the most promising avenue for cryptococcosis treatment.
Collapse
Affiliation(s)
- Juliana Santos-Gandelman
- a Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças Negligenciadas (INCT-IDN), Centro de Desenvolvimento Tecnológico em Saúde (CDTS) , Fundação Oswaldo Cruz (Fiocruz) , Rio de Janeiro/RJ , Brazil
| | - Márcio Lourenço Rodrigues
- b Instituto Carlos Chagas (ICC) , Fundação Oswaldo Cruz - Fiocruz. Rua Prof , Algacyr Munhoz Mader, Curitiba/PR , Brazil.,c Instituto de Microbiologia Paulo de Góes , Universidade Federal do Rio de Janeiro - UFRJ , Av. Carlos Chagas Filho, Rio de Janeiro/RJ , Brazil
| | - Alice Machado Silva
- a Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças Negligenciadas (INCT-IDN), Centro de Desenvolvimento Tecnológico em Saúde (CDTS) , Fundação Oswaldo Cruz (Fiocruz) , Rio de Janeiro/RJ , Brazil.,d Instituto René Rachou , Fundação Oswaldo Cruz - Fiocruz Minas , Av. Augusto de Lima, Belo Horizonte , MG , Brazil
| |
Collapse
|
28
|
Jiang G, Nguyen D, Archin NM, Yukl SA, Méndez-Lagares G, Tang Y, Elsheikh MM, Thompson GR, Hartigan-O'Connor DJ, Margolis DM, Wong JK, Dandekar S. HIV latency is reversed by ACSS2-driven histone crotonylation. J Clin Invest 2018; 128:1190-1198. [PMID: 29457784 DOI: 10.1172/jci98071] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/09/2018] [Indexed: 12/21/2022] Open
Abstract
Eradication of HIV-1 (HIV) is hindered by stable viral reservoirs. Viral latency is epigenetically regulated. While the effects of histone acetylation and methylation at the HIV long-terminal repeat (LTR) have been described, our knowledge of the proviral epigenetic landscape is incomplete. We report that a previously unrecognized epigenetic modification of the HIV LTR, histone crotonylation, is a regulator of HIV latency. Reactivation of latent HIV was achieved following the induction of histone crotonylation through increased expression of the crotonyl-CoA-producing enzyme acyl-CoA synthetase short-chain family member 2 (ACSS2). This reprogrammed the local chromatin at the HIV LTR through increased histone acetylation and reduced histone methylation. Pharmacologic inhibition or siRNA knockdown of ACSS2 diminished histone crotonylation-induced HIV replication and reactivation. ACSS2 induction was highly synergistic in combination with either a protein kinase C agonist (PEP005) or a histone deacetylase inhibitor (vorinostat) in reactivating latent HIV. In the SIV-infected nonhuman primate model of AIDS, the expression of ACSS2 was significantly induced in intestinal mucosa in vivo, which correlated with altered fatty acid metabolism. Our study links the HIV/SIV infection-induced fatty acid enzyme ACSS2 to HIV latency and identifies histone lysine crotonylation as a novel epigenetic regulator for HIV transcription that can be targeted for HIV eradication.
Collapse
Affiliation(s)
- Guochun Jiang
- Department of Medical Microbiology and Immunology, UCD, Davis, California, USA
| | - Don Nguyen
- Department of Medical Microbiology and Immunology, UCD, Davis, California, USA
| | - Nancie M Archin
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Steven A Yukl
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Gema Méndez-Lagares
- Department of Medical Microbiology and Immunology, UCD, Davis, California, USA
| | - Yuyang Tang
- Department of Medical Microbiology and Immunology, UCD, Davis, California, USA
| | - Maher M Elsheikh
- Department of Medical Microbiology and Immunology, UCD, Davis, California, USA
| | - George R Thompson
- Department of Medical Microbiology and Immunology, UCD, Davis, California, USA
| | | | - David M Margolis
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joseph K Wong
- Department of Medicine, UCSF, and San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Satya Dandekar
- Department of Medical Microbiology and Immunology, UCD, Davis, California, USA
| |
Collapse
|
29
|
Mucke HA. Patent highlights August-September 2017. Pharm Pat Anal 2018; 7:7-14. [PMID: 29219751 DOI: 10.4155/ppa-2017-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/07/2017] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
30
|
McCarthy MW, Kontoyiannis DP, Cornely OA, Perfect JR, Walsh TJ. Novel Agents and Drug Targets to Meet the Challenges of Resistant Fungi. J Infect Dis 2017; 216:S474-S483. [PMID: 28911042 DOI: 10.1093/infdis/jix130] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The emergence of drug-resistant fungi poses a major threat to human health. Despite advances in preventive, diagnostic, and therapeutic interventions, resistant fungal infections continue to cause significant morbidity and mortality in patients with compromised immunity, underscoring the urgent need for new antifungal agents. In this article, we review the challenges associated with identifying broad-spectrum antifungal drugs and highlight novel targets that could enhance the armamentarium of agents available to treat drug-resistant invasive fungal infections.
Collapse
Affiliation(s)
- Matthew W McCarthy
- Division of General Internal Medicine, Weill Cornell Medicine, New York, New York
| | | | - Oliver A Cornely
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Department I of Internal Medicine, Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, Germany
| | - John R Perfect
- Division of Infectious Diseases, Duke University, Durham, North Carolina
| | - Thomas J Walsh
- Transplantation-Oncology Infectious Diseases Program, Weill Cornell Medicine, New York, New York
| |
Collapse
|
31
|
McCarthy MW, Walsh TJ. Drugs currently under investigation for the treatment of invasive candidiasis. Expert Opin Investig Drugs 2017; 26:825-831. [PMID: 28617137 DOI: 10.1080/13543784.2017.1341488] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION The widespread implementation of immunosuppressants, immunomodulators, hematopoietic stem cell transplantation and solid organ transplantation in clinical practice has led to an expanding population of patients who are at risk for invasive candidiasis, which is the most common form of fungal disease among hospitalized patients in the developed world. The emergence of drug-resistant Candida spp. has added to the morbidity associated with invasive candidiasis and novel therapeutic strategies are urgently needed. Areas covered: In this paper, we explore investigational agents for the treatment of invasive candidiasis, with particular attention paid to compounds that have recently entered phase I or phase II clinical trials. Expert opinion: The antifungal drug development pipeline has been severely limited due to regulatory hurdles and a systemic lack of investment in novel compounds. However, several promising drug development strategies have recently emerged, including chemical screens involving Pathogen Box compounds, combination antifungal therapy, and repurposing of existing agents that were initially developed to treat other conditions, all of which have the potential to redefine the treatment of invasive candidiasis.
Collapse
Affiliation(s)
- Matthew W McCarthy
- a Medicine, Weill Cornell Medical Center , Division of General Internal Medicine , New York , NY , USA
| | - Thomas J Walsh
- b Transplantation-Oncology Infectious Diseases Program, Medical Mycology Research Laboratory, Medicine, Pediatrics, and Microbiology & Immunology Weill Cornell Medical Center , Henry Schueler Foundation Scholar, Sharpe Family Foundation Scholar in Pediatric Infectious Diseases , New York , NY , USA
| |
Collapse
|
32
|
|
33
|
Abstract
Invasive fungal infections continue to appear in record numbers as the immunocompromised population of the world increases, owing partially to the increased number of individuals who are infected with HIV and partially to the successful treatment of serious underlying diseases. The effectiveness of current antifungal therapies - polyenes, flucytosine, azoles and echinocandins (as monotherapies or in combinations for prophylaxis, or as empiric, pre-emptive or specific therapies) - in the management of these infections has plateaued. Although these drugs are clinically useful, they have several limitations, such as off-target toxicity, and drug-resistant fungi are now emerging. New antifungals are therefore needed. In this Review, I discuss the robust and dynamic antifungal pipeline, including results from preclinical academic efforts through to pharmaceutical industry products, and describe the targets, strategies, compounds and potential outcomes.
Collapse
Affiliation(s)
- John R Perfect
- Duke University Medical Center, 200 Trent Drive, Durham, North Carolina 27710, USA
| |
Collapse
|
34
|
Chang CC, Slavin MA, Chen SCA. New developments and directions in the clinical application of the echinocandins. Arch Toxicol 2017; 91:1613-1621. [DOI: 10.1007/s00204-016-1916-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/13/2016] [Indexed: 01/05/2023]
|
35
|
The Celecoxib Derivative AR-12 Has Broad-Spectrum Antifungal Activity In Vitro and Improves the Activity of Fluconazole in a Murine Model of Cryptococcosis. Antimicrob Agents Chemother 2016; 60:7115-7127. [PMID: 27645246 DOI: 10.1128/aac.01061-16] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/04/2016] [Indexed: 12/24/2022] Open
Abstract
Only one new class of antifungal drugs has been introduced into clinical practice in the last 30 years, and thus the identification of small molecules with novel mechanisms of action is an important goal of current anti-infective research. Here, we describe the characterization of the spectrum of in vitro activity and in vivo activity of AR-12, a celecoxib derivative which has been tested in a phase I clinical trial as an anticancer agent. AR-12 inhibits fungal acetyl coenzyme A (acetyl-CoA) synthetase in vitro and is fungicidal at concentrations similar to those achieved in human plasma. AR-12 has a broad spectrum of activity, including activity against yeasts (e.g., Candida albicans, non-albicans Candida spp., Cryptococcus neoformans), molds (e.g., Fusarium, Mucor), and dimorphic fungi (Blastomyces, Histoplasma, and Coccidioides) with MICs of 2 to 4 μg/ml. AR-12 is also active against azole- and echinocandin-resistant Candida isolates, and subinhibitory AR-12 concentrations increase the susceptibility of fluconazole- and echinocandin-resistant Candida isolates. Finally, AR-12 also increases the activity of fluconazole in a murine model of cryptococcosis. Taken together, these data indicate that AR-12 represents a promising class of small molecules with broad-spectrum antifungal activity.
Collapse
|
36
|
Pianalto KM, Alspaugh JA. New Horizons in Antifungal Therapy. J Fungi (Basel) 2016; 2:jof2040026. [PMID: 29376943 PMCID: PMC5715934 DOI: 10.3390/jof2040026] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 12/20/2022] Open
Abstract
Recent investigations have yielded both profound insights into the mechanisms required by pathogenic fungi for virulence within the human host, as well as novel potential targets for antifungal therapeutics. Some of these studies have resulted in the identification of novel compounds that act against these pathways and also demonstrate potent antifungal activity. However, considerable effort is required to move from pre-clinical compound testing to true clinical trials, a necessary step toward ultimately bringing new drugs to market. The rising incidence of invasive fungal infections mandates continued efforts to identify new strategies for antifungal therapy. Moreover, these life-threatening infections often occur in our most vulnerable patient populations. In addition to finding completely novel antifungal compounds, there is also a renewed effort to redirect existing drugs for use as antifungal agents. Several recent screens have identified potent antifungal activity in compounds previously indicated for other uses in humans. Together, the combined efforts of academic investigators and the pharmaceutical industry is resulting in exciting new possibilities for the treatment of invasive fungal infections.
Collapse
Affiliation(s)
- Kaila M Pianalto
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - J Andrew Alspaugh
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA.
- Department of Medicine/Infectious Diseases, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
37
|
Abstract
Dimorphic fungi cause several endemic mycoses which range from subclinical respiratory infections to life-threatening systemic disease. Pathogenic-phase cells of Histoplasma, Blastomyces, Paracoccidioides and Coccidioides escape elimination by the innate immune response with control ultimately requiring activation of cell-mediated immunity. Clinical management of disease relies primarily on antifungal compounds; however, dimorphic fungal pathogens create a number of challenges for antifungal drug therapy. In addition to the drug toxicity issues known for current antifungals, barriers to efficient drug treatment of dimorphic fungal infections include natural resistance to the echinocandins, residence of fungal cells within immune cells, the requirement for systemic delivery of drugs, prolonged treatment times, potential for latent infections, and lack of optimized standardized methodology for in vitro testing of drug susceptibilities. This review will highlight recent advances, current therapeutic options, and new compounds on the horizon for treating infections by dimorphic fungal pathogens.
Collapse
Affiliation(s)
| | - Chad A Rappleye
- a Department of Microbiology , Ohio State University , Columbus , OH , USA
| |
Collapse
|