1
|
Ampomah-Wireko M, Chen S, Li R, Gao C, Wang M, Qu Y, Kong H, Nininahazwe L, Zhang E. Recent advances in the exploration of oxazolidinone scaffolds from compound development to antibacterial agents and other bioactivities. Eur J Med Chem 2024; 269:116326. [PMID: 38513340 DOI: 10.1016/j.ejmech.2024.116326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/26/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
Bacterial infections cause a variety of life-threatening diseases, and the continuous evolution of drug-resistant bacteria poses an increasing threat to current antimicrobial regimens. Gram-positive bacteria (GPB) have a wide range of genetic capabilities that allow them to adapt to and develop resistance to practically all existing antibiotics. Oxazolidinones, a class of potent bacterial protein synthesis inhibitors with a unique mechanism of action involving inhibition of bacterial ribosomal translation, has emerged as the antibiotics of choice for the treatment of drug-resistant GPB infections. In this review, we discussed the oxazolidinone antibiotics that are currently on the market and in clinical development, as well as an updated synopsis of current advances on their analogues, with an emphasis on innovative strategies for structural optimization of linezolid, structure-activity relationship (SAR), and safety properties. We also discussed recent efforts aimed at extending the activity of oxazolidinones to gram-negative bacteria (GNB), antitumor, and coagulation factor Xa. Oxazolidinone antibiotics can accumulate in GNB by a conjugation to siderophore-mediated β-lactamase-triggered release, making them effective against GNB.
Collapse
Affiliation(s)
- Maxwell Ampomah-Wireko
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Shengcong Chen
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ruirui Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Chen Gao
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Meng Wang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ye Qu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Hongtao Kong
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Lauraine Nininahazwe
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - En Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China; Pingyuan Laboratory (Zhengzhou University), PR China.
| |
Collapse
|
2
|
Abstract
Gram-negative bacteria are intrinsically resistant to many antibiotics, due in large part to the permeability barrier formed by their cell envelope. The complex and synergistic interplay of the two Gram-negative membranes and active efflux prevents the accumulation of a diverse range of compounds that are effective against Gram-positive bacteria. A lack of detailed information on how components of the cell envelope contribute to this has been identified as a key barrier to the rational development of new antibiotics with efficacy against Gram-negative species. This review describes the current understanding of the role of the different components of the Gram-negative cell envelope in preventing compound accumulation and the state of efforts to describe properties that allow compounds to overcome this barrier and apply them to the development of new broad-spectrum antibiotics.
Collapse
Affiliation(s)
- Claire Maher
- College of Engineering, Science and Environment, University of Newcastle, Newcastle, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Karl A. Hassan
- College of Engineering, Science and Environment, University of Newcastle, Newcastle, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| |
Collapse
|
3
|
Fernandes GFS, Scarim CB, Kim SH, Wu J, Castagnolo D. Oxazolidinones as versatile scaffolds in medicinal chemistry. RSC Med Chem 2023; 14:823-847. [PMID: 37252095 PMCID: PMC10211318 DOI: 10.1039/d2md00415a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/06/2023] [Indexed: 11/19/2023] Open
Abstract
Oxazolidinone is a five-member heterocyclic ring with several biological applications in medicinal chemistry. Among the three possible isomers, 2-oxazolidinone is the most investigated in drug discovery. Linezolid was pioneered as the first approved drug containing an oxazolidinone ring as the pharmacophore group. Numerous analogues have been developed since its arrival on the market in 2000. Some have succeeded in reaching the advanced stages of clinical studies. However, most oxazolidinone derivatives reported in recent decades have not reached the initial stages of drug development, despite their promising pharmacological applications in a variety of therapeutic areas, including antibacterial, antituberculosis, anticancer, anti-inflammatory, neurologic, and metabolic diseases, among other areas. Therefore, this review article aims to compile the efforts of medicinal chemists who have explored this scaffold over the past decades and highlight the potential of the class for medicinal chemistry.
Collapse
Affiliation(s)
| | - Cauê Benito Scarim
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University Araraquara 14800903 Brazil
| | - Seong-Heun Kim
- Department of Chemistry, University College London 20 Gordon Street WC1H 0AJ London UK
- School of Cancer and Pharmaceutical Sciences, King's College London 150 Stamford Street SE1 9NH London UK
| | - Jingyue Wu
- Department of Chemistry, University College London 20 Gordon Street WC1H 0AJ London UK
| | - Daniele Castagnolo
- Department of Chemistry, University College London 20 Gordon Street WC1H 0AJ London UK
| |
Collapse
|
4
|
Hu Z, Leus IV, Chandar B, Sherborne BS, Avila QP, Rybenkov VV, Zgurskaya HI, Duerfeldt AS. Structure-Uptake Relationship Studies of Oxazolidinones in Gram-Negative ESKAPE Pathogens. J Med Chem 2022; 65:14144-14179. [PMID: 36257060 PMCID: PMC9942527 DOI: 10.1021/acs.jmedchem.2c01349] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The clinical success of linezolid for treating Gram-positive infections paired with the high conservation of bacterial ribosomes predicts that if oxazolidinones were engineered to accumulate in Gram-negative bacteria, then this pharmacological class would find broad utility in eradicating infections. Here, we report an investigative study of a strategically designed library of oxazolidinones to determine the effects of molecular structure on accumulation and biological activity. Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa strains with varying degrees of compromise (in efflux and outer membrane) were used to identify motifs that hinder permeation across the outer membrane and/or enhance efflux susceptibility broadly and specifically between species. The results illustrate that small changes in molecular structure are enough to overcome the efflux and/or permeation issues of this scaffold. Three oxazolidinone analogues (3e, 8d, and 8o) were identified that exhibit activity against all three pathogens assessed, a biological profile not observed for linezolid.
Collapse
Affiliation(s)
- Ziwei Hu
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Inga V Leus
- Department of Chemistry & Biochemistry, University of Oklahoma, Stephenson Life Sciences Research Center, Norman, Oklahoma 73019, United States
| | - Brinda Chandar
- Department of Chemistry & Biochemistry, University of Oklahoma, Stephenson Life Sciences Research Center, Norman, Oklahoma 73019, United States
| | | | - Quentin P Avila
- Department of Chemistry & Biochemistry, University of Oklahoma, Stephenson Life Sciences Research Center, Norman, Oklahoma 73019, United States
| | - Valentin V Rybenkov
- Department of Chemistry & Biochemistry, University of Oklahoma, Stephenson Life Sciences Research Center, Norman, Oklahoma 73019, United States
| | - Helen I Zgurskaya
- Department of Chemistry & Biochemistry, University of Oklahoma, Stephenson Life Sciences Research Center, Norman, Oklahoma 73019, United States
| | - Adam S Duerfeldt
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55414, United States
| |
Collapse
|
5
|
Oxazolidinone Antibiotics: Chemical, Biological and Analytical Aspects. Molecules 2021; 26:molecules26144280. [PMID: 34299555 PMCID: PMC8305375 DOI: 10.3390/molecules26144280] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 11/17/2022] Open
Abstract
This review covers the main aspects concerning the chemistry, the biological activity and the analytical determination of oxazolidinones, the only new class of synthetic antibiotics advanced in clinical use over the past 50 years. They are characterized by a chemical structure including the oxazolidone ring with the S configuration of substituent at C5, the acylaminomethyl group linked to C5 and the N-aryl substituent. The synthesis of oxazolidinones has gained increasing interest due to their unique mechanism of action that assures high antibiotic efficiency and low susceptibility to resistance mechanisms. Here, the main features of oxazolidinone antibiotics licensed or under development, such as Linezolid, Sutezolid, Eperezolid, Radezolid, Contezolid, Posizolid, Tedizolid, Delpazolid and TBI-223, are discussed. As they are protein synthesis inhibitors active against a wide spectrum of multidrug-resistant Gram-positive bacteria, their biological activity is carefully analyzed, together with the drug delivery systems recently developed to overcome the poor oxazolidinone water solubility. Finally, the most employed analytical techniques for oxazolidinone determination in different matrices, such as biological fluids, tissues, drugs and natural waters, are reviewed. Most are based on HPLC (High Performance Liquid Chromatography) coupled with UV-Vis or mass spectrometer detectors, but, to a lesser extent are also based on spectrofluorimetry or voltammetry.
Collapse
|
6
|
Muñoz KA, Hergenrother PJ. Facilitating Compound Entry as a Means to Discover Antibiotics for Gram-Negative Bacteria. Acc Chem Res 2021; 54:1322-1333. [PMID: 33635073 DOI: 10.1021/acs.accounts.0c00895] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
It has been over half a century since the last class of antibiotics active against the most problematic Gram-negative bacteria was approved by the Food and Drug Administration (FDA). The major challenge with developing antibiotics to treat these infections is not drug-target engagement but rather the inability of most small molecules to traverse the Gram-negative membranes, be retained, and accumulate within the cell. Despite an abundance of lead compounds, limited understanding of the physicochemical properties needed for compound accumulation (or avoidance of efflux) in Gram-negative bacteria has precluded a generalizable approach for developing Gram-negative antibiotics. Indeed, in many instances, despite years of intensive derivatization efforts and the synthesis of hundreds of compounds aimed at building in Gram-negative activity, little or no progress has been made in expanding the spectrum of activity for many Gram-positive-only antibiotics. In this Account, we describe the discovery and successful applications of a promising strategy for enhancing the accumulation of Gram-positive-only antibiotics as a means of imbuing compounds with broad-spectrum activity.Utilizing a prospective approach examining the accumulation in Escherichia coli for more than 180 diverse compounds, we found that small molecules have an increased likelihood to accumulate in E. coli when they contain an ionizable Nitrogen, have low Three-dimensionality, and are Rigid. Implementing these guidelines, codified as the "eNTRy rules" and assisted by web application www.entry-way.org, we have facilitated compound entry and systematically built Gram-negative activity into Gram-positive-only antibiotics. Though each antibiotic will have case-specific considerations, we describe a set of important criteria to consider when selecting candidate Gram-positive-only antibiotics for conversion to Gram-negative-active versions via the eNTRy rules. As detailed herein, using this blueprint the spectrum of activity was expanded for three antibiotic classes that engage three different biological targets: DNA gyrase inhibitor 6DNM, FabI inhibitor Debio-1452, and FMN riboswitch inhibitor Ribocil C. In each scenario, the eNTRy rules guided the synthesis of key analogues predisposed to accumulate in Gram-negative bacteria leading to compounds that display antibiotic activity (minimum inhibitory concentrations (MIC) ≤8 μg mL-1) against E. coli and other Gram-negative ESKAPE pathogens. While the eNTRy rules will continue to be refined and enhanced as more accumulation data is gathered, on the basis of these collective results and on other examples not covered herein it is clear that the eNTRy rules are actionable for the development of novel broad-spectrum antibiotics from Gram-positive-only compounds. By enabling the prediction of compound accumulation, the eNTRy rules should facilitate the process of discovering and developing novel antibiotics active against Gram-negative bacteria.
Collapse
Affiliation(s)
- Kristen A. Muñoz
- Department of Chemistry Institute for Genomic Biology, University of Illinois, Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Paul J. Hergenrother
- Department of Chemistry Institute for Genomic Biology, University of Illinois, Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
7
|
Zhang L, He J, Bai L, Ruan S, Yang T, Luo Y. Ribosome-targeting antibacterial agents: Advances, challenges, and opportunities. Med Res Rev 2021; 41:1855-1889. [PMID: 33501747 DOI: 10.1002/med.21780] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/08/2020] [Accepted: 12/19/2020] [Indexed: 02/05/2023]
Abstract
Ribosomes, which synthesize proteins, are critical organelles for the survival and growth of bacteria. About 60% of approved antibiotics discovered so far combat pathogenic bacteria by targeting ribosomes. However, several issues, such as drug resistance and toxicity, have impeded the clinical use of ribosome-targeting antibiotics. Moreover, the complexity of the bacteria ribosome structure has retarded the discovery of new ribosome-targeting agents that are considered as the key to the drug-resistance and toxicity. To deal with these challenges, efforts such as medicinal chemistry optimization, combination treatment, and new drug delivery system have been developed. But not enough, the development of structural biology and new screening methods bring powerful tools, such as cryo-electron microscopy technology, advanced computer-aided drug design, and cell-free in vitro transcription/translation systems, for the discovery of novel ribosome-targeting antibiotics. Thus, in this paper, we overview the research on different aspects of bacterial ribosomes, especially focus on discussing the challenges in the discovery of ribosome-targeting antibacterial drugs and advances made to address issues such as drug-resistance and selectivity, which, we believe, provide perspectives for the discovery of novel antibiotics.
Collapse
Affiliation(s)
- Laiying Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Jun He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Lang Bai
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Shihua Ruan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Tao Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China.,Laboratory of Human Diseases and Immunotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China.,Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Cruz CD, Wrigstedt P, Moslova K, Iashin V, Mäkkylä H, Ghemtio L, Heikkinen S, Tammela P, Perea-Buceta JE. Installation of an aryl boronic acid function into the external section of N-aryl-oxazolidinones: Synthesis and antimicrobial evaluation. Eur J Med Chem 2020; 211:113002. [PMID: 33223262 DOI: 10.1016/j.ejmech.2020.113002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 10/23/2022]
Abstract
N-aryl-oxazolidinones is a prominent family of antimicrobials used for treating infections caused by clinically prevalent Gram-positive bacteria. Recently, boron-containing compounds have displayed intriguing potential in the antibiotic discovery setting. Herein, we report the unprecedented introduction of a boron-containing moiety such as an aryl boronic acid in the external region of the oxazolidinone structure via a chemoselective acyl coupling reaction. As a result, we accessed a series of analogues with a distal aryl boronic pharmacophore on the oxazolidinone scaffold. We identified that a peripheric linear conformation coupled with freedom of rotation and no further substitution on the external aryl boronic ring, an amido linkage with hydrogen bonding character, in addition to a para-relative disposition between boronic group and linker, are the optimal combination of structural features in this series for antimicrobial activity. In comparison to linezolid, the analogue comprising all those features, compound 20b, displayed levels of antimicrobial activity augmented by an eight-fold to a thirty-two-fold against a panel of Gram-positive strains, and a near one hundred-fold against Escherichia coli JW5503, a Gram-negative mutant strain with a defective efflux capability.
Collapse
Affiliation(s)
- Cristina D Cruz
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Finland
| | - Pauli Wrigstedt
- Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55, 00014, Finland
| | - Karina Moslova
- Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55, 00014, Finland
| | - Vladimir Iashin
- Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55, 00014, Finland
| | - Heidi Mäkkylä
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Finland
| | - Léo Ghemtio
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Finland
| | - Sami Heikkinen
- Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55, 00014, Finland
| | - Päivi Tammela
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Finland
| | - Jesus E Perea-Buceta
- Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55, 00014, Finland.
| |
Collapse
|
9
|
Jiang J, Hou Y, Duan M, Wang B, Wu Y, Ding X, Zhao Y. Design, synthesis and antibacterial evaluation of novel oxazolidinone derivatives nitrogen-containing fused heterocyclic moiety. Bioorg Med Chem Lett 2020; 32:127660. [PMID: 33144245 DOI: 10.1016/j.bmcl.2020.127660] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/21/2020] [Accepted: 10/27/2020] [Indexed: 02/01/2023]
Abstract
A series of novel oxazolidinone derivatives with nitrogen-containing fused heterocyclic moiety were designed and synthesized in this article. Their antibacterial activities were measured against S. aureus, MRSA and MSSA by MIC assay. Most of them exhibited potent activity against Gram-positive pathogens comparable to Linezolid and Radezolid. Compound 3b, which exhibited significant antibacterial activity with MIC values ranging 0.5-1.0 μg/mL, might be a promising drug candidate for further investigation.
Collapse
Affiliation(s)
- Jia Jiang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yunlei Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Meibo Duan
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Baihang Wang
- Department of Clinical Laboratory, The 309th Hospital of Chinese People's Liberation Army, Beijing 100091, China
| | - Yachuang Wu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Xiudong Ding
- Department of Clinical Laboratory, The 309th Hospital of Chinese People's Liberation Army, Beijing 100091, China.
| | - Yanfang Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| |
Collapse
|
10
|
Hou Y, Dong Y, Ye T, Jiang J, Ding L, Qin M, Ding X, Zhao Y. Synthesis and antibacterial evaluation of novel oxazolidinone derivatives containing a piperidinyl moiety. Bioorg Med Chem Lett 2019; 29:126746. [PMID: 31676225 DOI: 10.1016/j.bmcl.2019.126746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/29/2019] [Accepted: 10/08/2019] [Indexed: 12/18/2022]
Abstract
In this article, a series of novel oxazolidinone derivatives containing a piperidinyl moiety was designed and synthesized. Their antibacterial activities were measured against S. aureus, MRSA, MSSA, LREF and VRE by MIC assay. Most of them exhibited potent activity against Gram-positive pathogens comparable to linezolid. Among them, compound 9h exhibited comparable activity with linezolid against human MAO-A for safety evaluation and showed moderate metabolism in human liver microsome. The most promising compound 9h, which showed remarkable antibacterial activity against S. aureus, MRSA, MSSA, LREF and VRE pathogens with MIC value of 0.25-1 μg/mL, was an interesting candidate for further investigation.
Collapse
Affiliation(s)
- Yunlei Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Yuhong Dong
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Tianyu Ye
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Jia Jiang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Liang Ding
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Mingze Qin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Xiudong Ding
- Department of Clinical Laboratory, The 309th Hospital of Chinese People's Liberation Army, Beijing 100091, China.
| | - Yanfang Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China.
| |
Collapse
|
11
|
Jackson N, Czaplewski L, Piddock LJV. Discovery and development of new antibacterial drugs: learning from experience? J Antimicrob Chemother 2019; 73:1452-1459. [PMID: 29438542 DOI: 10.1093/jac/dky019] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Antibiotic (antibacterial) resistance is a serious global problem and the need for new treatments is urgent. The current antibiotic discovery model is not delivering new agents at a rate that is sufficient to combat present levels of antibiotic resistance. This has led to fears of the arrival of a 'post-antibiotic era'. Scientific difficulties, an unfavourable regulatory climate, multiple company mergers and the low financial returns associated with antibiotic drug development have led to the withdrawal of many pharmaceutical companies from the field. The regulatory climate has now begun to improve, but major scientific hurdles still impede the discovery and development of novel antibacterial agents. To facilitate discovery activities there must be increased understanding of the scientific problems experienced by pharmaceutical companies. This must be coupled with addressing the current antibiotic resistance crisis so that compounds and ultimately drugs are delivered to treat the most urgent clinical challenges. By understanding the causes of the failures and successes of the pharmaceutical industry's research history, duplication of discovery programmes will be reduced, increasing the productivity of the antibiotic drug discovery pipeline by academia and small companies. The most important scientific issues to address are getting molecules into the Gram-negative bacterial cell and avoiding their efflux. Hence screening programmes should focus their efforts on whole bacterial cells rather than cell-free systems. Despite falling out of favour with pharmaceutical companies, natural product research still holds promise for providing new molecules as a basis for discovery.
Collapse
Affiliation(s)
- Nicole Jackson
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Lloyd Czaplewski
- Chemical Biology Ventures Ltd, 123 Alexander Close, Abingdon, Oxfordshire OX14 1XD, UK
| | - Laura J V Piddock
- Antimicrobials Research Group, Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
12
|
Anuj SA, Gajera HP, Hirpara DG, Golakiya BA. Bacterial membrane destabilization with cationic particles of nano-silver to combat efflux-mediated antibiotic resistance in Gram-negative bacteria. Life Sci 2019; 230:178-187. [PMID: 31152810 DOI: 10.1016/j.lfs.2019.05.072] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 10/26/2022]
Abstract
AIMS With the purpose of exploring combinatorial options that could enhance the bactericide efficacy of linezolid against Gram-negative bacteria, we assessed the extent of combination of nano-silver and linezolid. MAIN METHODS In this study, we selected Escherichia coli MTCC 443 as a model to study the combinatorial effect of nano-silver and linezolid to combat efflux-mediated resistance in Gram-negative bacteria. The acting mechanism of nano-silver on E. coli MTCC 443 was investigated by evaluating interaction of nano-silver with bacterial membrane as well as bacterial surface charge, morphology, intracellular leakages and biological activities of membrane bound respiratory chain dehydrogenase and deoxyribonucleic acids (DNA) of the cells following treatment with nano-silver. KEY FINDINGS The alternation of zeta potential due to the interaction of nano-silver towards bacterial membrane proteins was correlated with enhancement of membrane permeability, which allows the penetration of linezolid into the cells. In addition, the binding affinity of nano-silver towards bacterial membrane depressed biological activities of membrane bound respiratory chain dehydrogenases and DNA integrity. SIGNIFICANCE Our findings suggested that nano-silver could not only obstruct the activities of efflux pumps, but also altered membrane integrity at the same time and thus increased the cytoplasmic concentration of the linezolid to the effective level.
Collapse
Affiliation(s)
- Samir A Anuj
- School of Science, RK University, Rajkot, Gujarat, India.
| | - Harsukh P Gajera
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - Darshna G Hirpara
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - Baljibhai A Golakiya
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh, Gujarat, India
| |
Collapse
|
13
|
Fukuhara S, Yugandar S, Fuse S, Nakamura H. Synthesis of 3-Hydroxy-4-Substituted Picolinonitriles from 4-Propargylaminoisoxazoles via Stepwise and One-Pot Isoxazolopyridine Formation/N-O Bond Cleavage Sequence. ACS OMEGA 2018; 3:16472-16476. [PMID: 31458282 PMCID: PMC6644211 DOI: 10.1021/acsomega.8b03114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 11/26/2018] [Indexed: 06/10/2023]
Abstract
A unique synthetic approach to 3-hydroxy-4-substituted picolinonitriles is achieved via gold(I)-catalyzed cyclization of 4-propargylaminoisoxazoles and subsequent N-O bond cleavage of isoxazolopyridines under mild reaction conditions in a stepwise and one-pot fashion.
Collapse
Affiliation(s)
- Shintaro Fukuhara
- Laboratory
for Chemistry and Life Science, Institute of Innovative
Research, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Somaraju Yugandar
- Laboratory
for Chemistry and Life Science, Institute of Innovative
Research, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Shinichiro Fuse
- Laboratory
for Chemistry and Life Science, Institute of Innovative
Research, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Hiroyuki Nakamura
- Laboratory
for Chemistry and Life Science, Institute of Innovative
Research, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
14
|
Lakemeyer M, Zhao W, Mandl FA, Hammann P, Sieber SA. Thinking Outside the Box-Novel Antibacterials To Tackle the Resistance Crisis. Angew Chem Int Ed Engl 2018; 57:14440-14475. [PMID: 29939462 DOI: 10.1002/anie.201804971] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Indexed: 12/13/2022]
Abstract
The public view on antibiotics as reliable medicines changed when reports about "resistant superbugs" appeared in the news. While reasons for this resistance development are easily spotted, solutions for re-establishing effective antibiotics are still in their infancy. This Review encompasses several aspects of the antibiotic development pipeline from very early strategies to mature drugs. An interdisciplinary overview is given of methods suitable for mining novel antibiotics and strategies discussed to unravel their modes of action. Select examples of antibiotics recently identified by using these platforms not only illustrate the efficiency of these measures, but also highlight promising clinical candidates with therapeutic potential. Furthermore, the concept of molecules that disarm pathogens by addressing gatekeepers of virulence will be covered. The Review concludes with an evaluation of antibacterials currently in clinical development. Overall, this Review aims to connect select innovative antimicrobial approaches to stimulate interdisciplinary partnerships between chemists from academia and industry.
Collapse
Affiliation(s)
- Markus Lakemeyer
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Weining Zhao
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Franziska A Mandl
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Peter Hammann
- R&D Therapeutic Area Infectious Diseases, Sanofi-Aventis (Deutschland) GmbH, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Stephan A Sieber
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| |
Collapse
|
15
|
Lakemeyer M, Zhao W, Mandl FA, Hammann P, Sieber SA. Über bisherige Denkweisen hinaus - neue Wirkstoffe zur Überwindung der Antibiotika-Krise. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804971] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Markus Lakemeyer
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Weining Zhao
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Franziska A. Mandl
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Peter Hammann
- R&D Therapeutic Area Infectious Diseases; Sanofi-Aventis (Deutschland) GmbH; Industriepark Höchst 65926 Frankfurt am Main Deutschland
| | - Stephan A. Sieber
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| |
Collapse
|
16
|
Graef F, Richter R, Fetz V, Murgia X, De Rossi C, Schneider-Daum N, Allegretta G, Elgaher W, Haupenthal J, Empting M, Beckmann F, Brönstrup M, Hartmann R, Gordon S, Lehr CM. In Vitro Model of the Gram-Negative Bacterial Cell Envelope for Investigation of Anti-Infective Permeation Kinetics. ACS Infect Dis 2018; 4:1188-1196. [PMID: 29750862 DOI: 10.1021/acsinfecdis.7b00165] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The cell envelope of Gram-negative bacteria is a formidable biological barrier, inhibiting the action of antibiotics by impeding their permeation into the intracellular environment. In-depth understanding of permeation through this barrier remains a challenge, despite its critical role in antibiotic activity. We therefore designed a divisible in vitro permeation model of the Gram-negative bacterial cell envelope, mimicking its three essential structural elements, the inner membrane and the periplasmic space as well as the outer membrane, on a Transwell setup. The model was characterized by contemporary imaging techniques and employed to generate reproducible quantitative and time-resolved permeation data for various fluorescent probes and anti-infective molecules of different structure and physicochemical properties. For a set of three fluorescent probes, the permeation through the overall membrane model was found to correlate with in bacterio permeation. Even more interestingly, for a set of six Pseudomonas quorum sensing inhibitors, such permeability data were found to be predictive for their corresponding in bacterio activities. Further exploration of the capabilities of the overall model yielded a correlation between the permeability of porin-independent antibiotics and published in bacterio accumulation data; a promising ability to provide structure-permeability information was also demonstrated. Such a model may therefore constitute a valuable tool for the development of novel anti-infective drugs.
Collapse
Affiliation(s)
- Florian Graef
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany
| | - Robert Richter
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany
| | - Verena Fetz
- Department of Chemical Biology, HZI, German Center for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Xabier Murgia
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany
| | - Chiara De Rossi
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany
| | - Nicole Schneider-Daum
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany
| | - Giuseppe Allegretta
- Department of Drug Design and Optimization, HIPS, HZI, Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany
| | - Walid Elgaher
- Department of Drug Design and Optimization, HIPS, HZI, Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany
| | - Jörg Haupenthal
- Department of Drug Design and Optimization, HIPS, HZI, Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany
| | - Martin Empting
- Department of Pharmacy, Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany
- Department of Drug Design and Optimization, HIPS, HZI, Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany
| | - Felix Beckmann
- Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - Mark Brönstrup
- Department of Chemical Biology, HZI, German Center for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Rolf Hartmann
- Department of Pharmacy, Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany
- Department of Drug Design and Optimization, HIPS, HZI, Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany
| | - Sarah Gordon
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, L3 3AF Liverpool, United Kingdom
| | - Claus-Michael Lehr
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany
| |
Collapse
|
17
|
Antibiotic Hybrids: the Next Generation of Agents and Adjuvants against Gram-Negative Pathogens? Clin Microbiol Rev 2018. [PMID: 29540434 DOI: 10.1128/cmr.00077-17] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The global incidence of drug-resistant Gram-negative bacillary infections has been increasing, and there is a dire need to develop novel strategies to overcome this problem. Intrinsic resistance in Gram-negative bacteria, such as their protective outer membrane and constitutively overexpressed efflux pumps, is a major survival weapon that renders them refractory to current antibiotics. Several potential avenues to overcome this problem have been at the heart of antibiotic drug discovery in the past few decades. We review some of these strategies, with emphasis on antibiotic hybrids either as stand-alone antibacterial agents or as adjuvants that potentiate a primary antibiotic in Gram-negative bacteria. Antibiotic hybrid is defined in this review as a synthetic construct of two or more pharmacophores belonging to an established agent known to elicit a desired antimicrobial effect. The concepts, advances, and challenges of antibiotic hybrids are elaborated in this article. Moreover, we discuss several antibiotic hybrids that were or are in clinical evaluation. Mechanistic insights into how tobramycin-based antibiotic hybrids are able to potentiate legacy antibiotics in multidrug-resistant Gram-negative bacilli are also highlighted. Antibiotic hybrids indeed have a promising future as a therapeutic strategy to overcome drug resistance in Gram-negative pathogens and/or expand the usefulness of our current antibiotic arsenal.
Collapse
|
18
|
Richter MF, Hergenrother PJ. The challenge of converting Gram-positive-only compounds into broad-spectrum antibiotics. Ann N Y Acad Sci 2018; 1435:18-38. [PMID: 29446459 DOI: 10.1111/nyas.13598] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/07/2017] [Accepted: 12/14/2017] [Indexed: 12/14/2022]
Abstract
Multidrug resistant Gram-negative bacterial infections are on the rise, and there is a lack of new classes of drugs to treat these pathogens. This drug shortage is largely due to the challenge of finding antibiotics that can permeate and persist inside Gram-negative species. Efforts to understand the molecular properties that enable certain compounds to accumulate in Gram-negative bacteria based on retrospective studies of known antibiotics have not been generally actionable in the development of new antibiotics. A recent assessment of the ability of >180 diverse small molecules to accumulate in Escherichia coli led to predictive guidelines for compound accumulation in E. coli. These "eNTRy rules" state that compounds are most likely to accumulate if they contain a nonsterically encumbered ionizable Nitrogen (primary amines are the best), have low Three-dimensionality (globularity ≤ 0.25), and are relatively Rigid (rotatable bonds ≤ 5). In this review, we look back through 50+ years of antibacterial research and 1000s of derivatives and assess this historical data set through the lens of these predictive guidelines. The results are consistent with the eNTRy rules, suggesting that the eNTRy rules may provide an actionable and general roadmap for the conversion of Gram-positive-only compounds into broad-spectrum antibiotics.
Collapse
Affiliation(s)
- Michelle F Richter
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Paul J Hergenrother
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
19
|
Xu B, Ding X, Wu Y, Cui L, Qian P, Wang D, Zhao Y. Synthesis and antibacterial activity of oxazolidinone derivatives containing nitro heteroaromatic moiety. Chem Res Chin Univ 2018. [DOI: 10.1007/s40242-018-7302-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Spaulding A, Takrouri K, Mahalingam P, Cleary DC, Cooper HD, Zucchi P, Tear W, Koleva B, Beuning PJ, Hirsch EB, Aggen JB. Compound design guidelines for evading the efflux and permeation barriers of Escherichia coli with the oxazolidinone class of antibacterials: Test case for a general approach to improving whole cell Gram-negative activity. Bioorg Med Chem Lett 2017; 27:5310-5321. [DOI: 10.1016/j.bmcl.2017.10.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/26/2017] [Accepted: 10/07/2017] [Indexed: 11/30/2022]
|
21
|
Deshmukh MS, Jain N. Design, Synthesis, and Antibacterial Evaluation of Oxazolidinones with Fused Heterocyclic C-Ring Substructure. ACS Med Chem Lett 2017; 8:1153-1158. [PMID: 29152047 DOI: 10.1021/acsmedchemlett.7b00263] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/28/2017] [Indexed: 01/30/2023] Open
Abstract
A series of novel oxazolidinone antibacterials with diverse fused heteroaryl C-rings bearing hydrogen bond donor and hydrogen bond acceptor functionalities were designed and synthesized. The compound with benzoxazinone C-ring substructure (8c) exhibited superior activity compared to linezolid against a panel of Gram-positive and Gram-negative bacteria. Structural modifications at C5-side chain of 8c resulted in identification of several potent compounds (12a, 12b, 12g, and 12h). Selected compounds 8c and 12a showed very good microsomal stability and no CYP450 liability, thus clearing preliminary safety hurdles. A docking model of 12a binding to 23S rRNA suggested that the increased potency of 12a is due to additional ligand-receptor interaction.
Collapse
Affiliation(s)
- Mahesh S. Deshmukh
- Daiichi Sankyo India Pharma Pvt. Ltd., Sector-18, Gurgaon, Haryana 122015, India
- Department
of Chemistry, Indian Institute of Technology, New Delhi 110016, India
| | - Nidhi Jain
- Department
of Chemistry, Indian Institute of Technology, New Delhi 110016, India
| |
Collapse
|
22
|
|
23
|
Graef F, Vukosavljevic B, Michel JP, Wirth M, Ries O, De Rossi C, Windbergs M, Rosilio V, Ducho C, Gordon S, Lehr CM. The bacterial cell envelope as delimiter of anti-infective bioavailability - An in vitro permeation model of the Gram-negative bacterial inner membrane. J Control Release 2016; 243:214-224. [PMID: 27769806 DOI: 10.1016/j.jconrel.2016.10.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/11/2016] [Accepted: 10/15/2016] [Indexed: 11/26/2022]
Abstract
Gram-negative bacteria possess a unique and complex cell envelope, composed of an inner and outer membrane separated by an intermediate cell wall-containing periplasm. This tripartite structure acts intrinsically as a significant biological barrier, often limiting the permeation of anti-infectives, and so preventing such drugs from reaching their target. Furthermore, identification of the specific permeation-limiting envelope component proves difficult in the case of many anti-infectives, due to the challenges associated with isolation of individual cell envelope structures in bacterial culture. The development of an in vitro permeation model of the Gram-negative inner membrane, prepared by repeated coating of physiologically-relevant phospholipids on Transwell® filter inserts, is therefore reported, as a first step in the development of an overall cell envelope model. Characterization and permeability investigations of model compounds as well as anti-infectives confirmed the suitability of the model for quantitative and kinetically-resolved permeability assessment, and additionally confirmed the importance of employing bacteria-specific base materials for more accurate mimicking of the inner membrane lipid composition - both advantages compared to the majority of existing in vitro approaches. Additional incorporation of further elements of the Gram-negative bacterial cell envelope could ultimately facilitate model application as a screening tool in anti-infective drug discovery or formulation development.
Collapse
Affiliation(s)
- Florian Graef
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Department of Drug Delivery, Campus E8 1, 66123 Saarbrücken, Germany.
| | - Branko Vukosavljevic
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Department of Drug Delivery, Campus E8 1, 66123 Saarbrücken, Germany.
| | - Jean-Philippe Michel
- Institut Galien Paris Sud, UMR 8612, Univ Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.B. Clément, F-92290 Châtenay-Malabry, France.
| | - Marius Wirth
- Saarland University, Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Campus C2 3, 66123 Saarbrücken, Germany.
| | - Oliver Ries
- Saarland University, Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Campus C2 3, 66123 Saarbrücken, Germany
| | - Chiara De Rossi
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Department of Drug Delivery, Campus E8 1, 66123 Saarbrücken, Germany.
| | - Maike Windbergs
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Department of Drug Delivery, Campus E8 1, 66123 Saarbrücken, Germany.
| | - Véronique Rosilio
- Institut Galien Paris Sud, UMR 8612, Univ Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.B. Clément, F-92290 Châtenay-Malabry, France.
| | - Christian Ducho
- Saarland University, Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Campus C2 3, 66123 Saarbrücken, Germany.
| | - Sarah Gordon
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Department of Drug Delivery, Campus E8 1, 66123 Saarbrücken, Germany.
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Department of Drug Delivery, Campus E8 1, 66123 Saarbrücken, Germany; Saarland University, Department of Pharmacy, Biopharmacy and Pharmaceutical Technology, Campus E8 1, 66123 Saarbrücken, Germany.
| |
Collapse
|
24
|
Ask the experts: how to curb antibiotic resistance and plug the antibiotics gap? Future Med Chem 2016; 8:1027-32. [PMID: 27327784 DOI: 10.4155/fmc-2014-0032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The mid-20th century was witness to the most prolific antibiotic discovery era yet, however, in the years since, interest in the field has waned and there is now a dramatic shortage of new classes of antibiotics under development. With the rise of antibacterial drug resistance, there has been much debate across the scientific community regarding how best to bolster the antibacterial drug pipeline. While there is an increasing focus on the search for new scaffolds and drug targets, efforts are also being channelled towards more short-term solutions, such as rejuvenating current antibiotics and drug repurposing. In addition, leaders in the field are calling for an urgent shake-up with regards to funding, regulatory restrictions, intellectual property and pricing models for the sale of new drugs, in order to help stimulate the discovery and development of novel antibacterial agents. Future Medicinal Chemistry invited a selection of experts to express their views on the major hurdles in plugging the antibiotic gap, possible approaches to curbing a potential antibiotic crisis, and how they perceive the field of antibacterial drug discovery will develop over the coming years. Their enlightening responses provide an insight into the complexities of this issue and a snapshot of the strategies that are being put into place to help catalyze antibacterial drug research.
Collapse
|