1
|
Ykema M, Ye K, Xun M, Harper J, Betancourt-Solis MA, Arias CF, McNew JA, Tao YJ. Human astrovirus capsid protein releases a membrane lytic peptide upon trypsin maturation. J Virol 2023; 97:e0080223. [PMID: 37504573 PMCID: PMC10506485 DOI: 10.1128/jvi.00802-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 07/29/2023] Open
Abstract
The human astrovirus (HAstV) is a non-enveloped, single-stranded RNA virus that is a common cause of gastroenteritis. Most non-enveloped viruses use membrane disruption to deliver the viral genome into a host cell after virus uptake. The virus-host factors that allow for HAstV cell entry are currently unknown but thought to be associated with the host-protease-mediated viral maturation. Using in vitro liposome disruption analysis, we identified a trypsin-dependent lipid disruption activity in the capsid protein of HAstV serotype 8. This function was further localized to the P1 domain of the viral capsid core, which was both necessary and sufficient for membrane disruption. Site-directed mutagenesis identified a cluster of four trypsin cleavage sites necessary to retain the lipid disruption activity, which is likely attributed to a short stretch of sequence ending at arginine 313 based on mass spectrometry of liposome-associated peptides. The membrane disruption activity was conserved across several other HAstVs, including the emerging VA2 strain, and effective against a wide range of lipid identities. This work provides key functional insight into the protease maturation process essential to HAstV infectivity and presents a method to investigate membrane penetration by non-enveloped viruses in vitro. IMPORTANCE Human astroviruses (HAstVs) are an understudied family of viruses that cause mild gastroenteritis but have recent cases associated with a more severe neural pathogenesis. Many important elements of the HAstV life cycle are not well understood, and further elucidating them can help understand the various forms of HAstV pathogenesis. In this study, we utilized an in vitro liposome-based assay to describe and characterize a previously unreported lipid disruption activity. This activity is dependent on the protease cleavage of key sites in HAstV capsid core and can be controlled by site-directed mutagenesis. Our group observed this activity in multiple strains of HAstV and in multiple lipid conditions, indicating this may be a conserved activity across the AstV family. The discovery of this function provides insight into HAstV cellular entry, pathogenesis, and a possible target for future therapeutics.
Collapse
Affiliation(s)
- Matthew Ykema
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Kai Ye
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Meng Xun
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Justin Harper
- Department of BioSciences, Rice University, Houston, Texas, USA
| | | | - Carlos F. Arias
- Departamento de Genética del Desarrollo y Fisiología Molecular, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - James A. McNew
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Yizhi Jane Tao
- Department of BioSciences, Rice University, Houston, Texas, USA
| |
Collapse
|
2
|
Xing C, Liu C, Kong Z, Wei K, Li P, Li G, Yuan J, Yan W. De novo assisted AFB1-Specific monoclonal antibody sequence assembly and comprehensive molecular characterization. Anal Biochem 2022; 656:114883. [PMID: 36063915 DOI: 10.1016/j.ab.2022.114883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 11/01/2022]
Abstract
Despite their widely used and access as biological reagents in analytical methods, the detailed structural features for most of the antibodies were rarely known. Here, a new antibody for AFB1 with high specificity in constructing ELISA was studied in detail. The molecular structure and modification were elucidated mainly by nano-electrospray ionization mass spectrometry. The mass experiments, including MALDI-TOF MS, revealed complete and specific fragments, including antibody molecular weight, peptides, glycopeptide, and N-glycoform. By proteolytic treatment of pepsin and trypsin and high-resolution tandem-MS, the primary structure of the newly developed anti-AFB1 antibody was assembled by several rounds of Database search process assisted with the de novo results. The antibody CDR annotation and constraint-based multiple alignment tool were used to differentiate and align the sequences. The method uses only two proteases to generate numerous peptides for de novo sequencing. This artificial assembled AFB1-specific monoclonal antibody sequence was validated by comparison with the sequencing results of the immunoglobulin gene. The results showed that this method achieves full sequence coverage of anti-AFB1 monoclonal antibody, with an accuracy of 100% in the CDR regions of light chain and four amino acid mismatch in heavy chain. This simple and low-cost method was confirmed by treating a public dataset. The secondary structure information of intact antibody was also elucidated from the results of circular dichroism spectrum.
Collapse
Affiliation(s)
- Changrui Xing
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China.
| | - Chongjing Liu
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Zhikang Kong
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Kaidong Wei
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Peng Li
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Guanglei Li
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Jian Yuan
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Wenjing Yan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
3
|
Gadush MV, Sautto GA, Chandrasekaran H, Bensussan A, Ross TM, Ippolito GC, Person MD. Template-Assisted De Novo Sequencing of SARS-CoV-2 and Influenza Monoclonal Antibodies by Mass Spectrometry. J Proteome Res 2022; 21:1616-1627. [PMID: 35653804 DOI: 10.1021/acs.jproteome.1c00913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, we used multiple enzyme digestions, coupled with higher-energy collisional dissociation (HCD) and electron-transfer/higher-energy collision dissociation (EThcD) fragmentation to develop a mass-spectrometric (MS) method for determining the complete protein sequence of monoclonal antibodies (mAbs). The method was refined on an mAb of a known sequence, a SARS-CoV-1 antireceptor binding domain (RBD) spike monoclonal antibody. The data were searched using Supernovo to generate a complete template-assisted de novo sequence for this and two SARS-CoV-2 mAbs of known sequences resulting in correct sequences for the variable regions and correct distinction of Ile and Leu residues. We then used the method on a set of 25 antihemagglutinin (HA) influenza antibodies of unknown sequences and determined high confidence sequences for >99% of the complementarity determining regions (CDRs). The heavy-chain and light-chain genes were cloned and transfected into cells for recombinant expression followed by affinity purification. The recombinant mAbs displayed binding curves matching the original mAbs with specificity to the HA influenza antigen. Our findings indicate that this methodology results in almost complete antibody sequence coverage with high confidence results for CDR regions on diverse mAb sequences.
Collapse
Affiliation(s)
- Michelle V Gadush
- Center for Biomedical Research Support, Biological Mass Spectrometry Facility, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Giuseppe A Sautto
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia 30602, United States
| | - Hamssika Chandrasekaran
- Center for Biomedical Research Support, Biological Mass Spectrometry Facility, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Alena Bensussan
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia 30602, United States.,Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, United States
| | - Gregory C Ippolito
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Maria D Person
- Center for Biomedical Research Support, Biological Mass Spectrometry Facility, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
4
|
Ykema M, Tao YJ. Structural Insights into the Human Astrovirus Capsid. Viruses 2021; 13:v13050821. [PMID: 34062934 PMCID: PMC8147390 DOI: 10.3390/v13050821] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
Astroviruses (AstVs) are non-enveloped, positive single-stranded RNA viruses that cause a wide range of inflammatory diseases in mammalian and avian hosts. The T = 3 viral capsid is unique in its ability to infect host cells in a process driven by host proteases. Intercellular protease cleavages allow for viral egress from a cell, while extracellular cleavages allow for the virus to enter a new host cell to initiate infection. High-resolution models of the capsid core indicate a large, exposed region enriched with protease cleavage sites. The virus spike protein allows for binding to target cells and is the major target for naturally occurring and engineered neutralizing antibodies. During maturation, the capsid goes through significant structural changes including the loss of many surface spikes. The capsid interacts with host membranes during the virus life cycle at multiple stages such as assembly, host cell entry and exit. This review will cover recent findings and insights related to the structure of the capsid and its function. Further understanding of the viral capsid structure and maturation process can contribute to new vaccines, gastric therapeutics, and viral engineering applications.
Collapse
|
5
|
Abstract
Mass spectrometry (MS)-based proteomics is currently the most successful approach to measure and compare peptides and proteins in a large variety of biological samples. Modern mass spectrometers, equipped with high-resolution analyzers, provide large amounts of data output. This is the case of shotgun/bottom-up proteomics, which consists in the enzymatic digestion of protein into peptides that are then measured by MS-instruments through a data dependent acquisition (DDA) mode. Dedicated bioinformatic tools and platforms have been developed to face the increasing size and complexity of raw MS data that need to be processed and interpreted for large-scale protein identification and quantification. This chapter illustrates the most popular bioinformatics solution for the analysis of shotgun MS-proteomics data. A general description will be provided on the data preprocessing options and the different search engines available, including practical suggestions on how to optimize the parameters for peptide search, based on hands-on experience.
Collapse
Affiliation(s)
- Avinash Yadav
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Federica Marini
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Alessandro Cuomo
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan, Italy.
| |
Collapse
|
6
|
Yang H, Chi H, Zeng WF, Zhou WJ, He SM. pNovo 3: precise de novo peptide sequencing using a learning-to-rank framework. Bioinformatics 2020; 35:i183-i190. [PMID: 31510687 PMCID: PMC6612832 DOI: 10.1093/bioinformatics/btz366] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
MOTIVATION De novo peptide sequencing based on tandem mass spectrometry data is the key technology of shotgun proteomics for identifying peptides without any database and assembling unknown proteins. However, owing to the low ion coverage in tandem mass spectra, the order of certain consecutive amino acids cannot be determined if all of their supporting fragment ions are missing, which results in the low precision of de novo sequencing. RESULTS In order to solve this problem, we developed pNovo 3, which used a learning-to-rank framework to distinguish similar peptide candidates for each spectrum. Three metrics for measuring the similarity between each experimental spectrum and its corresponding theoretical spectrum were used as important features, in which the theoretical spectra can be precisely predicted by the pDeep algorithm using deep learning. On seven benchmark datasets from six diverse species, pNovo 3 recalled 29-102% more correct spectra, and the precision was 11-89% higher than three other state-of-the-art de novo sequencing algorithms. Furthermore, compared with the newly developed DeepNovo, which also used the deep learning approach, pNovo 3 still identified 21-50% more spectra on the nine datasets used in the study of DeepNovo. In summary, the deep learning and learning-to-rank techniques implemented in pNovo 3 significantly improve the precision of de novo sequencing, and such machine learning framework is worth extending to other related research fields to distinguish the similar sequences. AVAILABILITY AND IMPLEMENTATION pNovo 3 can be freely downloaded from http://pfind.ict.ac.cn/software/pNovo/index.html. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Hao Yang
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing. Technology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hao Chi
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing. Technology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Feng Zeng
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing. Technology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Jing Zhou
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing. Technology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Si-Min He
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing. Technology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Meyer L, López T, Espinosa R, Arias CF, Vollmers C, DuBois RM. A simplified workflow for monoclonal antibody sequencing. PLoS One 2019; 14:e0218717. [PMID: 31233538 PMCID: PMC6590890 DOI: 10.1371/journal.pone.0218717] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/07/2019] [Indexed: 11/19/2022] Open
Abstract
The diversity of antibody variable regions makes cDNA sequencing challenging, and conventional monoclonal antibody cDNA amplification requires the use of degenerate primers. Here, we describe a simplified workflow for amplification of IgG antibody variable regions from hybridoma RNA by a specialized RT-PCR followed by Sanger sequencing. We perform three separate reactions for each hybridoma: one each for kappa, lambda, and heavy chain transcripts. We prime reverse transcription with a primer specific to the respective constant region and use a template-switch oligonucleotide, which creates a custom sequence at the 5’ end of the antibody cDNA. This template-switching circumvents the issue of low sequence homology and the need for degenerate primers. Instead, subsequent PCR amplification of the antibody cDNA molecules requires only two primers: one primer specific for the template-switch oligonucleotide sequence and a nested primer to the respective constant region. We successfully sequenced the variable regions of five mouse monoclonal IgG antibodies using this method, which enabled us to design chimeric mouse/human antibody expression plasmids for recombinant antibody production in mammalian cell culture expression systems. All five recombinant antibodies bind their respective antigens with high affinity, confirming that the amino acid sequences determined by our method are correct and demonstrating the high success rate of our method. Furthermore, we also designed RT-PCR primers and amplified the variable regions from RNA of cells transfected with chimeric mouse/human antibody expression plasmids, showing that our approach is also applicable to IgG antibodies of human origin. Our monoclonal antibody sequencing method is highly accurate, user-friendly, and very cost-effective.
Collapse
Affiliation(s)
- Lena Meyer
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Tomás López
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Rafaela Espinosa
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Carlos F. Arias
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Christopher Vollmers
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail: (RMD); (CV)
| | - Rebecca M. DuBois
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail: (RMD); (CV)
| |
Collapse
|
8
|
Muth T, Renard BY. Evaluating de novo sequencing in proteomics: already an accurate alternative to database-driven peptide identification? Brief Bioinform 2019; 19:954-970. [PMID: 28369237 DOI: 10.1093/bib/bbx033] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Indexed: 01/24/2023] Open
Abstract
While peptide identifications in mass spectrometry (MS)-based shotgun proteomics are mostly obtained using database search methods, high-resolution spectrum data from modern MS instruments nowadays offer the prospect of improving the performance of computational de novo peptide sequencing. The major benefit of de novo sequencing is that it does not require a reference database to deduce full-length or partial tag-based peptide sequences directly from experimental tandem mass spectrometry spectra. Although various algorithms have been developed for automated de novo sequencing, the prediction accuracy of proposed solutions has been rarely evaluated in independent benchmarking studies. The main objective of this work is to provide a detailed evaluation on the performance of de novo sequencing algorithms on high-resolution data. For this purpose, we processed four experimental data sets acquired from different instrument types from collision-induced dissociation and higher energy collisional dissociation (HCD) fragmentation mode using the software packages Novor, PEAKS and PepNovo. Moreover, the accuracy of these algorithms is also tested on ground truth data based on simulated spectra generated from peak intensity prediction software. We found that Novor shows the overall best performance compared with PEAKS and PepNovo with respect to the accuracy of correct full peptide, tag-based and single-residue predictions. In addition, the same tool outpaced the commercial competitor PEAKS in terms of running time speedup by factors of around 12-17. Despite around 35% prediction accuracy for complete peptide sequences on HCD data sets, taken as a whole, the evaluated algorithms perform moderately on experimental data but show a significantly better performance on simulated data (up to 84% accuracy). Further, we describe the most frequently occurring de novo sequencing errors and evaluate the influence of missing fragment ion peaks and spectral noise on the accuracy. Finally, we discuss the potential of de novo sequencing for now becoming more widely used in the field.
Collapse
Affiliation(s)
- Thilo Muth
- Research Group Bioinformatics, Robert Koch Institute, Berlin, Germany
| | - Bernhard Y Renard
- Research Group Bioinformatics, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
9
|
Muth T, Hartkopf F, Vaudel M, Renard BY. A Potential Golden Age to Come-Current Tools, Recent Use Cases, and Future Avenues for De Novo Sequencing in Proteomics. Proteomics 2018; 18:e1700150. [PMID: 29968278 DOI: 10.1002/pmic.201700150] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/23/2018] [Indexed: 01/15/2023]
Abstract
In shotgun proteomics, peptide and protein identification is most commonly conducted using database search engines, the method of choice when reference protein sequences are available. Despite its widespread use the database-driven approach is limited, mainly because of its static search space. In contrast, de novo sequencing derives peptide sequence information in an unbiased manner, using only the fragment ion information from the tandem mass spectra. In recent years, with the improvements in MS instrumentation, various new methods have been proposed for de novo sequencing. This review article provides an overview of existing de novo sequencing algorithms and software tools ranging from peptide sequencing to sequence-to-protein mapping. Various use cases are described for which de novo sequencing was successfully applied. Finally, limitations of current methods are highlighted and new directions are discussed for a wider acceptance of de novo sequencing in the community.
Collapse
Affiliation(s)
- Thilo Muth
- Bioinformatics Unit (MF 1), Department for Methods Development and Research Infrastructure, Robert Koch Institute, 13353, Berlin, Germany
| | - Felix Hartkopf
- Bioinformatics Unit (MF 1), Department for Methods Development and Research Infrastructure, Robert Koch Institute, 13353, Berlin, Germany
| | - Marc Vaudel
- K.G. Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, 5020, Bergen, Norway.,Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, 5020, Bergen, Norway
| | - Bernhard Y Renard
- Bioinformatics Unit (MF 1), Department for Methods Development and Research Infrastructure, Robert Koch Institute, 13353, Berlin, Germany
| |
Collapse
|
10
|
Háda V, Bagdi A, Bihari Z, Timári SB, Fizil Á, Szántay C. Recent advancements, challenges, and practical considerations in the mass spectrometry-based analytics of protein biotherapeutics: A viewpoint from the biosimilar industry. J Pharm Biomed Anal 2018; 161:214-238. [PMID: 30205300 DOI: 10.1016/j.jpba.2018.08.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 01/22/2023]
Abstract
The extensive analytical characterization of protein biotherapeutics, especially of biosimilars, is a critical part of the product development and registration. High-resolution mass spectrometry became the primary analytical tool used for the structural characterization of biotherapeutics. Its high instrumental sensitivity and methodological versatility made it possible to use this technique to characterize both the primary and higher-order structure of these proteins. However, even by using high-end instrumentation, analysts face several challenges with regard to how to cope with industrial and regulatory requirements, that is, how to obtain accurate and reliable analytical data in a time- and cost-efficient way. New sample preparation approaches, measurement techniques and data evaluation strategies are available to meet those requirements. The practical considerations of these methods are discussed in the present review article focusing on hot topics, such as reliable and efficient sequencing strategies, minimization of artefact formation during sample preparation, quantitative peptide mapping, the potential of multi-attribute methodology, the increasing role of mass spectrometry in higher-order structure characterization and the challenges of MS-based identification of host cell proteins. On the basis of the opportunities in new instrumental techniques, methodological advancements and software-driven data evaluation approaches, for the future one can envision an even wider application area for mass spectrometry in the biopharmaceutical industry.
Collapse
Affiliation(s)
- Viktor Háda
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary.
| | - Attila Bagdi
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary
| | - Zsolt Bihari
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary
| | | | - Ádám Fizil
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary
| | - Csaba Szántay
- Spectroscopic Research Department, Gedeon Richter Plc, Hungary.
| |
Collapse
|
11
|
Structural Basis for Escape of Human Astrovirus from Antibody Neutralization: Broad Implications for Rational Vaccine Design. J Virol 2017; 92:JVI.01546-17. [PMID: 29070688 DOI: 10.1128/jvi.01546-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/11/2017] [Indexed: 02/02/2023] Open
Abstract
Human astroviruses are recognized as a leading cause of viral diarrhea worldwide in children, immunocompromised patients, and the elderly. There are currently no vaccines available to prevent astrovirus infection; however, antibodies developed by healthy individuals during previous infection correlate with protection from reinfection, suggesting that an effective vaccine could be developed. In this study, we investigated the molecular mechanism by which several strains of human astrovirus serotype 2 (HAstV-2) are resistant to the potent HAstV-2-neutralizing monoclonal antibody PL-2 (MAb PL-2). Sequencing of the HAstV-2 capsid genes reveals mutations in the PL-2 epitope within the capsid's spike domain. To understand the molecular basis for resistance from MAb PL-2 neutralization, we determined the 1.35-Å-resolution crystal structure of the capsid spike from one of these HAstV-2 strains. Our structure reveals a dramatic conformational change in a loop within the PL-2 epitope due to a serine-to-proline mutation, locking the loop in a conformation that sterically blocks binding and neutralization by MAb PL-2. We show that mutation to serine permits loop flexibility and recovers MAb PL-2 binding. Importantly, we find that HAstV-2 capsid spike containing a serine in this loop is immunogenic and elicits antibodies that neutralize all HAstV-2 strains. Taken together, our results have broad implications for rational selection of vaccine strains that do not contain prolines in antigenic loops, so as to elicit antibodies against diverse loop conformations.IMPORTANCE Human astroviruses (HAstVs) infect nearly every person in the world during childhood and cause diarrhea, vomiting, and fever. In this study, we investigated how several strains of HAstV are resistant to a virus-neutralizing monoclonal antibody. We determined the crystal structure of the capsid protein spike domain from one of these HAstV strains and found that a single amino acid mutation induces a structural change in a loop that is responsible for antibody binding. Our findings reveal how viruses can escape antibody neutralization and provide insight for the rational design of vaccines to elicit diverse antibodies that provide broader protection from infection.
Collapse
|
12
|
Sen KI, Tang WH, Nayak S, Kil YJ, Bern M, Ozoglu B, Ueberheide B, Davis D, Becker C. Automated Antibody De Novo Sequencing and Its Utility in Biopharmaceutical Discovery. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:803-810. [PMID: 28105549 PMCID: PMC5392168 DOI: 10.1007/s13361-016-1580-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/02/2016] [Accepted: 12/04/2016] [Indexed: 05/12/2023]
Abstract
Applications of antibody de novo sequencing in the biopharmaceutical industry range from the discovery of new antibody drug candidates to identifying reagents for research and determining the primary structure of innovator products for biosimilar development. When murine, phage display, or patient-derived monoclonal antibodies against a target of interest are available, but the cDNA or the original cell line is not, de novo protein sequencing is required to humanize and recombinantly express these antibodies, followed by in vitro and in vivo testing for functional validation. Availability of fully automated software tools for monoclonal antibody de novo sequencing enables efficient and routine analysis. Here, we present a novel method to automatically de novo sequence antibodies using mass spectrometry and the Supernovo software. The robustness of the algorithm is demonstrated through a series of stress tests. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- K Ilker Sen
- Protein Metrics Inc, 1622 San Carlos Ave, Suite C, San Carlos, CA, 94070, USA.
| | - Wilfred H Tang
- Protein Metrics Inc, 1622 San Carlos Ave, Suite C, San Carlos, CA, 94070, USA
| | - Shruti Nayak
- Langone Medical Center, New York University, 430 East 29th street, 8th floor room 860, New York, NY, 10016, USA
| | - Yong J Kil
- Protein Metrics Inc, 1622 San Carlos Ave, Suite C, San Carlos, CA, 94070, USA
| | - Marshall Bern
- Protein Metrics Inc, 1622 San Carlos Ave, Suite C, San Carlos, CA, 94070, USA
| | - Berk Ozoglu
- Janssen Research and Development, LLC, 1400 McKean Road, Spring House, PA, 19477, USA
| | - Beatrix Ueberheide
- Langone Medical Center, New York University, 430 East 29th street, 8th floor room 860, New York, NY, 10016, USA
| | - Darryl Davis
- Janssen Research and Development, LLC, 1400 McKean Road, Spring House, PA, 19477, USA
| | - Christopher Becker
- Protein Metrics Inc, 1622 San Carlos Ave, Suite C, San Carlos, CA, 94070, USA
| |
Collapse
|
13
|
The Astrovirus Capsid: A Review. Viruses 2017; 9:v9010015. [PMID: 28106836 PMCID: PMC5294984 DOI: 10.3390/v9010015] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/12/2017] [Accepted: 01/12/2017] [Indexed: 12/28/2022] Open
Abstract
Astroviruses are enterically transmitted viruses that cause infections in mammalian and avian species. Astroviruses are nonenveloped, icosahedral viruses comprised of a capsid protein shell and a positive-sense, single-stranded RNA genome. The capsid protein undergoes dramatic proteolytic processing both inside and outside of the host cell, resulting in a coordinated maturation process that affects cellular localization, virus structure, and infectivity. After maturation, the capsid protein controls the initial phases of virus infection, including virus attachment, endocytosis, and genome release into the host cell. The astrovirus capsid is the target of host antibodies including virus-neutralizing antibodies. The capsid protein also mediates the binding of host complement proteins and inhibits complement activation. Here, we will review our knowledge on the astrovirus capsid protein (CP), with particular attention to the recent structural, biochemical, and virological studies that have advanced our understanding of the astrovirus life cycle.
Collapse
|
14
|
Structure of a Human Astrovirus Capsid-Antibody Complex and Mechanistic Insights into Virus Neutralization. J Virol 2017; 91:JVI.01859-16. [PMID: 27807234 DOI: 10.1128/jvi.01859-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/26/2016] [Indexed: 11/20/2022] Open
Abstract
Human astroviruses (HAstVs) are a leading cause of viral diarrhea in young children, the immunocompromised, and the elderly. There are no vaccines or antiviral therapies against HAstV disease. Several lines of evidence point to the presence of protective antibodies in healthy adults as a mechanism governing protection against reinfection by HAstV. However, development of anti-HAstV therapies is hampered by the gap in knowledge of protective antibody epitopes on the HAstV capsid surface. Here, we report the structure of the HAstV capsid spike domain bound to the neutralizing monoclonal antibody PL-2. The antibody uses all six complementarity-determining regions to bind to a quaternary epitope on each side of the dimeric capsid spike. We provide evidence that the HAstV capsid spike is a receptor-binding domain and that the antibody neutralizes HAstV by blocking virus attachment to cells. We identify patches of conserved amino acids that overlap the antibody epitope and may comprise a receptor-binding site. Our studies provide a foundation for the development of therapies to prevent and treat HAstV diarrheal disease. IMPORTANCE Human astroviruses (HAstVs) infect nearly every person in the world during childhood and cause diarrhea, vomiting, and fever. Despite the prevalence of this virus, little is known about how antibodies in healthy adults protect them against reinfection. Here, we determined the crystal structure of a complex of the HAstV capsid protein and a virus-neutralizing antibody. We show that the antibody binds to the outermost spike domain of the capsid, and we provide evidence that the antibody blocks virus attachment to human cells. Importantly, our findings suggest that a subunit-based vaccine focusing the immune system on the HAstV capsid spike domain could be effective in protecting children against HAstV disease.
Collapse
|