1
|
Mišković MZ, Wojtyś M, Winiewska-Szajewska M, Wielgus-Kutrowska B, Matković M, Domazet Jurašin D, Štefanić Z, Bzowska A, Leščić Ašler I. Location Is Everything: Influence of His-Tag Fusion Site on Properties of Adenylosuccinate Synthetase from Helicobacter pylori. Int J Mol Sci 2024; 25:7613. [PMID: 39062851 PMCID: PMC11276676 DOI: 10.3390/ijms25147613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
The requirement for fast and dependable protein purification methods is constant, either for functional studies of natural proteins or for the production of biotechnological protein products. The original procedure has to be formulated for each individual protein, and this demanding task was significantly simplified by the introduction of affinity tags. Helicobacter pylori adenylosuccinate synthetase (AdSS) is present in solution in a dynamic equilibrium of monomers and biologically active homodimers. The addition of the His6-tag on the C-terminus (C-His-AdSS) was proven to have a negligible effect on the characteristics of this enzyme. This paper shows that the same enzyme with the His6-tag fused on its N-terminus (N-His-AdSS) has a high tendency to precipitate. Circular dichroism and X-ray diffraction studies do not detect any structural change that could explain this propensity. However, the dynamic light scattering, differential scanning fluorimetry, and analytical ultracentrifugation measurements indicate that the monomer of this construct is prone to aggregation, which shifts the equilibrium towards the insoluble precipitant. In agreement, enzyme kinetics measurements showed reduced enzyme activity, but preserved affinity for the substrates, in comparison with the wild-type and C-His-AdSS. The presented results reinforce the notion that testing the influence of the tag on protein properties should not be overlooked.
Collapse
Affiliation(s)
- Marija Zora Mišković
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia;
| | - Marta Wojtyś
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland; (M.W.); (M.W.-S.); (B.W.-K.)
| | - Maria Winiewska-Szajewska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland; (M.W.); (M.W.-S.); (B.W.-K.)
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Beata Wielgus-Kutrowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland; (M.W.); (M.W.-S.); (B.W.-K.)
| | - Marija Matković
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia;
| | - Darija Domazet Jurašin
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia; (D.D.J.); (Z.Š.)
| | - Zoran Štefanić
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia; (D.D.J.); (Z.Š.)
| | - Agnieszka Bzowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland; (M.W.); (M.W.-S.); (B.W.-K.)
| | - Ivana Leščić Ašler
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia; (D.D.J.); (Z.Š.)
| |
Collapse
|
2
|
Jiang S, Lin Y, Zheng S. Development of the IMP biosensor for rapid and stable analysis of IMP concentrations in fermentation broth. Biotechnol J 2024; 19:e2400040. [PMID: 38863123 DOI: 10.1002/biot.202400040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 06/13/2024]
Abstract
IMP (inosinic acid) is a crucial intermediate in the purine metabolic pathway and is continuously synthesized in all cells. Besides its role as a precursor for DNA and RNA, IMP also plays a critical or essential role in cell growth, energy storage, conversion, and metabolism. In our study, we utilized the circularly permuted fluorescent protein (cpFP) and IMP dehydrogenase to screen and develop the IMP biosensor, IMPCP1. By introducing a mutation in the catalytically active site of IMPCP1, from Cys to Ala, we disrupted its ability to catalyze IMP while retaining its capability to bind to IMP without affecting the IMP concentration in the sample. To immobilize IMPCP1, we employed the SpyCatcher/SpyTag system and securely attached it to Magarose-Epoxy, resulting in the development of the IMP rapid test kit, referred to as IMPTK. The biosensor integrated into IMPTK offers enhanced stability, resistance to degradation activity, and specific recognition of IMP. It is also resistant to peroxides and temperature changes. IMPTK serves as a rapid and stable assay for analyzing IMP concentrations in fermentation broth. Within the linear range of IMP concentrations, it can be utilized as a substitute for HPLC. The IMPTK biosensor provides a reliable and efficient alternative for monitoring IMP levels, offering advantages such as speed, stability, and resistance to environmental factors.
Collapse
Affiliation(s)
- Shibo Jiang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, P.R. China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, P.R. China
| | - Ying Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, P.R. China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, P.R. China
| | - Suiping Zheng
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, P.R. China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, P.R. China
| |
Collapse
|
3
|
Li Y, Wood TK, Zhang W, Li C. Purine metabolism regulates Vibrio splendidus persistence associated with protein aggresome formation and intracellular tetracycline efflux. Front Microbiol 2023; 14:1127018. [PMID: 37007472 PMCID: PMC10060992 DOI: 10.3389/fmicb.2023.1127018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/16/2023] [Indexed: 03/18/2023] Open
Abstract
A small subpopulation of Vibrio splendidus AJ01 that was exposed to tetracycline at 10 times the minimal inhibitory concentration (MIC) still survived, named tetracycline-induced persister cells in our previous work. However, the formation mechanisms of persister is largely unknown. Here, we investigated tetracycline-induced AJ01 persister cells by transcriptome analysis and found that the purine metabolism pathway was significantly downregulated, which was consistent with lower levels of ATP, purine, and purine derivatives in our metabolome analysis. Inhibition of the purine metabolism pathway by 6-mercaptopurine (6-MP, inhibits ATP production), increased persister cell formation and accompanied with the decreasing intracellular ATP levels and increasing cells with protein aggresome. On the other hand, the persister cells had reduced intracellular tetracycline concentrations and higher membrane potential after 6-MP treatment. Inhibition of the membrane potential by carbonyl cyanide m-chlorophenyl hydrazone reversed 6-MP-induced persistence and resulted in higher levels of intracellular tetracycline accumulation. Meanwhile, cells with 6-MP treatment increased the membrane potential by dissipating the transmembrane proton pH gradient, which activated efflux to decrease the intracellular tetracycline concentration. Together, our findings show that reduction of purine metabolism regulates AJ01 persistence and is associated with protein aggresome formation and intracellular tetracycline efflux.
Collapse
Affiliation(s)
- Yanan Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Thomas K. Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, United States
| | - Weiwei Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Chenghua Li,
| |
Collapse
|
4
|
Wizrah MS, Chua SM, Luo Z, Manik MK, Pan M, Whyte JM, Robertson AA, Kappler U, Kobe B, Fraser JA. AICAR transformylase/IMP cyclohydrolase (ATIC) is essential for de novo purine biosynthesis and infection by Cryptococcus neoformans. J Biol Chem 2022; 298:102453. [PMID: 36063996 PMCID: PMC9525906 DOI: 10.1016/j.jbc.2022.102453] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 01/27/2023] Open
Abstract
The fungal pathogen Cryptococcus neoformans is a leading cause of meningoencephalitis in the immunocompromised. As current antifungal treatments are toxic to the host, costly, limited in their efficacy, and associated with drug resistance, there is an urgent need to identify vulnerabilities in fungal physiology to accelerate antifungal discovery efforts. Rational drug design was pioneered in de novo purine biosynthesis as the end products of the pathway, ATP and GTP, are essential for replication, transcription, and energy metabolism, and the same rationale applies when considering the pathway as an antifungal target. Here, we describe the identification and characterization of C. neoformans 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase/5'-inosine monophosphate cyclohydrolase (ATIC), a bifunctional enzyme that catalyzes the final two enzymatic steps in the formation of the first purine base inosine monophosphate. We demonstrate that mutants lacking the ATIC-encoding ADE16 gene are adenine and histidine auxotrophs that are unable to establish an infection in a murine model of virulence. In addition, our assays employing recombinantly expressed and purified C. neoformans ATIC enzyme revealed Km values for its substrates AICAR and 5-formyl-AICAR are 8-fold and 20-fold higher, respectively, than in the human ortholog. Subsequently, we performed crystallographic studies that enabled the determination of the first fungal ATIC protein structure, revealing a key serine-to-tyrosine substitution in the active site, which has the potential to assist the design of fungus-specific inhibitors. Overall, our results validate ATIC as a promising antifungal drug target.
Collapse
Affiliation(s)
- Maha S.I. Wizrah
- Australian Infectious Diseases Research Centre, University of Queensland, St Lucia, Queensland, Australia,School of Chemistry & Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Sheena M.H. Chua
- Australian Infectious Diseases Research Centre, University of Queensland, St Lucia, Queensland, Australia,School of Chemistry & Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Zhenyao Luo
- School of Chemistry & Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia,Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland, Australia
| | - Mohammad K. Manik
- Australian Infectious Diseases Research Centre, University of Queensland, St Lucia, Queensland, Australia,School of Chemistry & Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia,Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland, Australia
| | - Mengqi Pan
- Australian Infectious Diseases Research Centre, University of Queensland, St Lucia, Queensland, Australia,School of Chemistry & Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia,Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland, Australia
| | - Jessica M.L. Whyte
- Australian Infectious Diseases Research Centre, University of Queensland, St Lucia, Queensland, Australia,School of Chemistry & Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Avril A.B. Robertson
- Australian Infectious Diseases Research Centre, University of Queensland, St Lucia, Queensland, Australia,School of Chemistry & Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia,Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland, Australia
| | - Ulrike Kappler
- Australian Infectious Diseases Research Centre, University of Queensland, St Lucia, Queensland, Australia,School of Chemistry & Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Bostjan Kobe
- Australian Infectious Diseases Research Centre, University of Queensland, St Lucia, Queensland, Australia,School of Chemistry & Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia,Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland, Australia
| | - James A. Fraser
- Australian Infectious Diseases Research Centre, University of Queensland, St Lucia, Queensland, Australia,School of Chemistry & Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia,For correspondence: James A. Fraser
| |
Collapse
|
5
|
Synthesis, Structural Characterization, and In Vitro and In Silico Antifungal Evaluation of Azo-Azomethine Pyrazoles (PhN 2(PhOH)CHN(C 3N 2(CH 3) 3)PhR, R = H or NO 2). Molecules 2021; 26:molecules26247435. [PMID: 34946516 PMCID: PMC8708670 DOI: 10.3390/molecules26247435] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
The azo-azomethine imines, R1-N=N-R2-CH=N-R3, are a class of active pharmacological ligands that have been prominent antifungal, antibacterial, and antitumor agents. In this study, four new azo-azomethines, R1 = Ph, R2 = phenol, and R3 = pyrazol-Ph-R’ (R = H or NO2), have been synthesized, structurally characterized using X-ray, IR, NMR and UV–Vis techniques, and their antifungal activity evaluated against certified strains of Candida albicans and Cryptococcus neoformans. The antifungal tests revealed a high to moderate inhibitory activity towards both strains, which is regulated as a function of both the presence and the location of the nitro group in the aromatic ring of the series. These biological assays were further complemented with molecular docking studies against three different molecular targets from each fungus strain. Molecular dynamics simulations and binding free energy calculations were performed on the two best molecular docking results for each fungus strain. Better affinity for active sites for nitro compounds at the “meta” and “para” positions was found, making them promising building blocks for the development of new Schiff bases with high antifungal activity.
Collapse
|
6
|
Chua SMH, Wizrah MSI, Luo Z, Lim BYJ, Kappler U, Kobe B, Fraser JA. Structural features of Cryptococcus neoformans bifunctional GAR/AIR synthetase may present novel antifungal drug targets. J Biol Chem 2021; 297:101091. [PMID: 34416230 PMCID: PMC8449271 DOI: 10.1016/j.jbc.2021.101091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/06/2021] [Accepted: 08/16/2021] [Indexed: 11/18/2022] Open
Abstract
Cryptococcus neoformans is a fungus that causes life-threatening systemic mycoses. During infection of the human host, this pathogen experiences a major change in the availability of purines; the fungus can scavenge the abundant purines in its environmental niche of pigeon excrement, but must employ de novo biosynthesis in the purine-poor human CNS. Eleven sequential enzymatic steps are required to form the first purine base, IMP, an intermediate in the formation of ATP and GTP. Over the course of evolution, several gene fusion events led to the formation of multifunctional purine biosynthetic enzymes in most organisms, particularly the higher eukaryotes. In C. neoformans, phosphoribosyl-glycinamide synthetase (GARs) and phosphoribosyl-aminoimidazole synthetase (AIRs) are fused into a bifunctional enzyme, while the human ortholog is a trifunctional enzyme that also includes GAR transformylase. Here we functionally, biochemically, and structurally characterized C. neoformans GARs and AIRs to identify drug targetable features. GARs/AIRs are essential for de novo purine production and virulence in a murine inhalation infection model. Characterization of GARs enzymatic functional parameters showed that C. neoformans GARs/AIRs have lower affinity for substrates glycine and PRA compared with the trifunctional metazoan enzyme. The crystal structure of C. neoformans GARs revealed differences in the glycine- and ATP-binding sites compared with the Homo sapiens enzyme, while the crystal structure of AIRs shows high structural similarity compared with its H. sapiens ortholog as a monomer but differences as a dimer. The alterations in functional and structural characteristics between fungal and human enzymes could potentially be exploited for antifungal development.
Collapse
Affiliation(s)
- Sheena M H Chua
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia; School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Maha S I Wizrah
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia; School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Zhenyao Luo
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia; Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Bryan Y J Lim
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia; School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia; Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Ulrike Kappler
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia; School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Bostjan Kobe
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia; School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia; Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - James A Fraser
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia; School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia.
| |
Collapse
|
7
|
|
8
|
Ribeiro FDOS, de Araújo GS, Mendes MGA, Daboit TC, Brito LM, Pessoa C, de Lima LRM, de Paula RCM, Bastos RS, Rocha JA, de Brito Sa E, de Oliveira TC, de Jesus Oliveira AC, Sobrinho JLS, de Souza de Almeida Leite JR, de Araújo AR, da Silva DA. Structural characterization, antifungal and cytotoxic profiles of quaternized heteropolysaccharide from Anadenanthera colubrina. Int J Biol Macromol 2020; 165:279-290. [DOI: 10.1016/j.ijbiomac.2020.09.087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 12/17/2022]
|
9
|
Chua SM, Fraser JA. Surveying purine biosynthesis across the domains of life unveils promising drug targets in pathogens. Immunol Cell Biol 2020; 98:819-831. [PMID: 32748425 DOI: 10.1111/imcb.12389] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022]
Abstract
Purines play an integral role in cellular processes such as energy metabolism, cell signaling and encoding the genetic makeup of all living organisms-ensuring that the purine metabolic pathway is maintained across all domains of life. To gain a deeper understanding of purine biosynthesis via the de novo biosynthetic pathway, the genes encoding purine metabolic enzymes from 35 archaean, 69 bacterial and 99 eukaryotic species were investigated. While the classic elements of the canonical purine metabolic pathway were utilized in all domains, a subset of familiar biochemical roles was found to be performed by unrelated proteins in some members of the Archaea and Bacteria. In the Bacteria, a major differentiating feature of de novo purine biosynthesis is the increasing prevalence of gene fusions, where two or more purine biosynthesis enzymes that perform consecutive biochemical functions in the pathway are encoded by a single gene. All species in the Eukaryota exhibited the most common fusions seen in the Bacteria, in addition to new gene fusions to potentially increase metabolic flux. This complexity is taken further in humans, where a reversible biomolecular assembly of enzymes known as the purinosome has been identified, allowing short-term regulation in response to metabolic cues while expanding on the benefits that can come from gene fusion. By surveying purine metabolism across all domains of life, we have identified important features of the purine biosynthetic pathway that can potentially be exploited as prospective drug targets.
Collapse
Affiliation(s)
- Sheena Mh Chua
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - James A Fraser
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
10
|
amdS as a dominant recyclable marker in Cryptococcus neoformans. Fungal Genet Biol 2019; 131:103241. [PMID: 31220607 DOI: 10.1016/j.fgb.2019.103241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 02/04/2023]
Abstract
While the fungal pathogen Cryptoccocus neoformans is a leading cause of death in immunocompromised individuals, the molecular toolkit currently available to study this important pathogen is extremely limited. To enable an unprecedented level of control over manipulation of the genome, we have developed a dominant recyclable marker by expanding on the classic studies of the amdS gene by Michael J. Hynes and John Pateman. The ascomycete Aspergillus nidulans employs the acetamidase AmdS to hydrolyse acetamide to ammonium and acetate, which serve as a nitrogen and carbon source, respectively. Acetamidase activity has never been reported in the Basidiomycota. Here we have successfully demonstrated that acetamide can be utilized as a good nitrogen source in C. neoformans heterologously expressing amdS and that this activity does not influence virulence, enabling it to be used as a basic dominant selectable marker. The expression of this gene in C. neoformans also causes sensitivity to fluoroacetamide, permitting counterselection. Taking advantage of this toxicity we have modified our basic marker to create a comprehensive series of powerful and reliable tools to successfully delete multiple genes in the one strain, generate markerless strains with modifications such as fluorescent protein fusions at native genomic loci, and establish whether a gene is essential in C. neoformans.
Collapse
|
11
|
Quantitation of Purines from Pigeon Guano and Implications for Cryptococcus neoformans Survival During Infection. Mycopathologia 2019; 184:273-281. [PMID: 30707338 DOI: 10.1007/s11046-018-0315-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 12/22/2018] [Indexed: 10/27/2022]
Abstract
The fertilizing properties of bird manure, or guano, have played an important role in plant cultivation for thousands of years. Research into its chemical composition by Unger in 1846 identified a novel compound, now known as guanine, a purine base that is essential for DNA and RNA biosynthesis and cell signalling. Nitrogen-rich guano can also harbour human pathogens, one significant example being the fungal pathogen Cryptococcus neoformans. Historically associated with pigeon droppings, C. neoformans is able to infect immunocompromised individuals with the aid of a number of adaptive virulence traits. To gain insight into this niche, a quantitative analysis of pigeon guano was performed by LC/MS to determine the concentrations of purines present. Guanine was found in abundance, in particular, in aged guano samples that contained 156-296 μg/g [w/w] compared to 75 μg/g in fresh guano. Adenine concentrations were more consistent between fresh and aged samples, 13 μg/g compared to 10-15 μg/g, respectively. C. neoformans strains that lack key enzymes of the de novo purine synthesis pathway and are guanine or adenine auxotrophs displayed differences in their ability to exploit this substrate: growth of a guanine auxotrophic mutant (gua1Δ) was partially restored on 30% pigeon guano media, but an adenine auxotrophic mutant (ade13Δ) was unable to grow. We conclude that while purine salvage is likely a useful resource-saving mechanism, alone it is not sufficient to fully provide the purines required by wild-type C. neoformans growing in its guano niche.
Collapse
|
12
|
Feng M, Yin H, Peng H, Lu G, Liu Z, Dang Z. iTRAQ-based proteomic profiling of Pycnoporus sanguineus in response to co-existed tetrabromobisphenol A (TBBPA) and hexavalent chromium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:1758-1767. [PMID: 30061077 DOI: 10.1016/j.envpol.2018.07.093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/17/2018] [Accepted: 07/21/2018] [Indexed: 06/08/2023]
Abstract
In current study, we investigated the changes of proteome profiles of Pycnoporus sanguineus after a single exposure of Cr(VI), TBBPA and a combined exposure of TBBPA and Cr(VI), with the goal of illuminating the cellular mechanisms involved in the interactions of co-existed TBBPA and Cr(VI) with the cells of P. sanguineus at the protein level. The results revealed that some ATP-binding cassette (ABC) transporters were obviously induced by these pollutants to accelerate the transportation, transformation and detoxification of TBBPA and Cr(VI). Cr(VI) could inhibit the bioremoval of its organic co-pollutants TBBPA through suppressing the expression of several key proteins related to the metabolism of TBBPA by P. sanguineus, including two cytochrome P450s, pentachlorophenol 4-monooxygenase and glutathione S-transferases. Furthermore, Cr(VI) possibly reduced the cell vitality and growth of P. sanguineus by enhancing the expression of imidazole glycerol phosphate synthase as well as by decreasing the abundances of proteins associated with the intracellular metabolic processes, such as the tricarboxylic acid cycle, purine metabolism and glutathione biosynthesis, thereby adversely affecting the biotransformation of TBBPA. Cr(VI) also inhibited the expression of peptidyl prolyl cis/trans isomerases, thus causing the damage of cell membrane integrity. In addition, some important proteins participated in the resistance to Cr(VI) toxicity were observed to up-regulate, including heat shock proteins, 26S proteasome, peroxiredoxins and three critical proteins implicated in S-adenosyl methionine synthesis, which contributed to reducing the hazard of Cr(VI) to P. sanguineus. The results of this study provide novel insights into the physiological responses and molecular mechanism of white rot fungi P. sanguineus to the stress of concomitant TBBPA and Cr(VI).
Collapse
Affiliation(s)
- Mi Feng
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China; College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, Guangxi, China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China.
| | - Hui Peng
- Department of Chemistry, Jinan University, Guangzhou 510632, Guangdong, China
| | - Guining Lu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Zehua Liu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| |
Collapse
|
13
|
Liu N, Tu J, Dong G, Wang Y, Sheng C. Emerging New Targets for the Treatment of Resistant Fungal Infections. J Med Chem 2018; 61:5484-5511. [DOI: 10.1021/acs.jmedchem.7b01413] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Na Liu
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Jie Tu
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Guoqiang Dong
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Yan Wang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| |
Collapse
|
14
|
Chitty JL, Fraser JA. Purine Acquisition and Synthesis by Human Fungal Pathogens. Microorganisms 2017; 5:microorganisms5020033. [PMID: 28594372 PMCID: PMC5488104 DOI: 10.3390/microorganisms5020033] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/06/2017] [Accepted: 06/06/2017] [Indexed: 01/13/2023] Open
Abstract
While members of the Kingdom Fungi are found across many of the world's most hostile environments, only a limited number of species can thrive within the human host. The causative agents of the most common invasive fungal infections are Candida albicans, Aspergillus fumigatus, and Cryptococcus neoformans. During the infection process, these fungi must not only combat the host immune system while adapting to dramatic changes in temperature and pH, but also acquire sufficient nutrients to enable growth and dissemination in the host. One class of nutrients required by fungi, which is found in varying concentrations in their environmental niches and the human host, is the purines. These nitrogen-containing heterocycles are one of the most abundant organic molecules in nature and are required for roles as diverse as signal transduction, energy metabolism and DNA synthesis. The most common life-threatening fungal pathogens can degrade, salvage and synthesize de novo purines through a number of enzymatic steps that are conserved. While these enable them to adapt to the changing purine availability in the environment, only de novo purine biosynthesis is essential during infection and therefore an attractive antimycotic target.
Collapse
Affiliation(s)
- Jessica L Chitty
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, the University of Queensland, St Lucia, Queensland 4072, Australia.
- Institute for Molecular Bioscience, the University of Queensland, St Lucia, Queensland 4072, Australia.
| | - James A Fraser
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, the University of Queensland, St Lucia, Queensland 4072, Australia.
| |
Collapse
|
15
|
Chitty JL, Blake KL, Blundell RD, Koh YQAE, Thompson M, Robertson AAB, Butler MS, Cooper MA, Kappler U, Williams SJ, Kobe B, Fraser JA. Cryptococcus neoformans ADS lyase is an enzyme essential for virulence whose crystal structure reveals features exploitable in antifungal drug design. J Biol Chem 2017; 292:11829-11839. [PMID: 28559277 DOI: 10.1074/jbc.m117.787994] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/03/2017] [Indexed: 01/09/2023] Open
Abstract
There is significant clinical need for new antifungal agents to manage infections with pathogenic species such as Cryptococcus neoformans Because the purine biosynthesis pathway is essential for many metabolic processes, such as synthesis of DNA and RNA and energy generation, it may represent a potential target for developing new antifungals. Within this pathway, the bifunctional enzyme adenylosuccinate (ADS) lyase plays a role in the formation of the key intermediates inosine monophosphate and AMP involved in the synthesis of ATP and GTP, prompting us to investigate ADS lyase in C. neoformans. Here, we report that ADE13 encodes ADS lyase in C. neoformans. We found that an ade13Δ mutant is an adenine auxotroph and is unable to successfully cause infections in a murine model of virulence. Plate assays revealed that production of a number of virulence factors essential for dissemination and survival of C. neoformans in a host environment was compromised even with the addition of exogenous adenine. Purified recombinant C. neoformans ADS lyase shows catalytic activity similar to its human counterpart, and its crystal structure, the first fungal ADS lyase structure determined, shows a high degree of structural similarity to that of human ADS lyase. Two potentially important amino acid differences are identified in the C. neoformans crystal structure, in particular a threonine residue that may serve as an additional point of binding for a fungal enzyme-specific inhibitor. Besides serving as an antimicrobial target, C. neoformans ADS lyase inhibitors may also serve as potential therapeutics for metabolic disease; rather than disrupt ADS lyase, compounds that improve the stability the enzyme may be used to treat ADS lyase deficiency disease.
Collapse
Affiliation(s)
- Jessica L Chitty
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, University of Queensland, St. Lucia, Queensland 4072; Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072
| | - Kirsten L Blake
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, University of Queensland, St. Lucia, Queensland 4072
| | - Ross D Blundell
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, University of Queensland, St. Lucia, Queensland 4072
| | - Y Q Andre E Koh
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, University of Queensland, St. Lucia, Queensland 4072
| | - Merinda Thompson
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, University of Queensland, St. Lucia, Queensland 4072
| | - Avril A B Robertson
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072
| | - Mark S Butler
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072
| | - Matthew A Cooper
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, University of Queensland, St. Lucia, Queensland 4072; Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072
| | - Ulrike Kappler
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, University of Queensland, St. Lucia, Queensland 4072; Centre for Metals in Biology, University of Queensland, St. Lucia, Queensland 4072
| | - Simon J Williams
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, University of Queensland, St. Lucia, Queensland 4072; Research School of Biology, Australian National University, Acton, Australian Capital Territory 2601 Australia
| | - Bostjan Kobe
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, University of Queensland, St. Lucia, Queensland 4072; Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072
| | - James A Fraser
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, University of Queensland, St. Lucia, Queensland 4072.
| |
Collapse
|
16
|
Arras SDM, Chitty JL, Wizrah MSI, Erpf PE, Schulz BL, Tanurdzic M, Fraser JA. Sirtuins in the phylum Basidiomycota: A role in virulence in Cryptococcus neoformans. Sci Rep 2017; 7:46567. [PMID: 28429797 PMCID: PMC5399365 DOI: 10.1038/srep46567] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/17/2017] [Indexed: 02/07/2023] Open
Abstract
Virulence of Cryptococcus neoformans is regulated by a range of transcription factors, and is also influenced by the acquisition of adaptive mutations during infection. Beyond the temporal regulation of virulence factor production by transcription factors and these permanent microevolutionary changes, heritable epigenetic modifications such as histone deacetylation may also play a role during infection. Here we describe the first comprehensive analysis of the sirtuin class of NAD+ dependent histone deacetylases in the phylum Basidiomycota, identifying five sirtuins encoded in the C. neoformans genome. Each sirtuin gene was deleted and a wide range of phenotypic tests performed to gain insight into the potential roles they play. Given the pleiotropic nature of sirtuins in other species, it was surprising that only two of the five deletion strains revealed mutant phenotypes in vitro. However, cryptic consequences of the loss of each sirtuin were identified through whole cell proteomics, and mouse infections revealed a role in virulence for SIR2, HST3 and HST4. The most intriguing phenotype was the repeated inability to complement mutant phenotypes through the reintroduction of the wild-type gene. These data support the model that regulation of sirtuin activity may be employed to enable a drastic alteration of the epigenetic landscape and virulence of C. neoformans.
Collapse
Affiliation(s)
- Samantha D M Arras
- Australian Infectious Diseases Research Centre, Queensland, Australia.,School of Chemistry &Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Jessica L Chitty
- Australian Infectious Diseases Research Centre, Queensland, Australia.,School of Chemistry &Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Maha S I Wizrah
- Australian Infectious Diseases Research Centre, Queensland, Australia.,School of Chemistry &Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Paige E Erpf
- Australian Infectious Diseases Research Centre, Queensland, Australia.,School of Chemistry &Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Benjamin L Schulz
- School of Chemistry &Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Milos Tanurdzic
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - James A Fraser
- Australian Infectious Diseases Research Centre, Queensland, Australia.,School of Chemistry &Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
17
|
Chitty JL, Tatzenko TL, Williams SJ, Koh YQAE, Corfield EC, Butler MS, Robertson AAB, Cooper MA, Kappler U, Kobe B, Fraser JA. GMP Synthase Is Required for Virulence Factor Production and Infection by Cryptococcus neoformans. J Biol Chem 2017; 292:3049-3059. [PMID: 28062578 DOI: 10.1074/jbc.m116.767533] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/04/2017] [Indexed: 11/06/2022] Open
Abstract
Over the last four decades the HIV pandemic and advances in medical treatments that also cause immunosuppression have produced an ever-growing cohort of individuals susceptible to opportunistic pathogens. Of these, AIDS patients are particularly vulnerable to infection by the encapsulated yeast Cryptococcus neoformans Most commonly found in the environment in purine-rich bird guano, C. neoformans experiences a drastic change in nutrient availability during host infection, ultimately disseminating to colonize the purine-poor central nervous system. Investigating the consequences of this challenge, we have characterized C. neoformans GMP synthase, the second enzyme in the guanylate branch of de novo purine biosynthesis. We show that in the absence of GMP synthase, C. neoformans becomes a guanine auxotroph, the production of key virulence factors is compromised, and the ability to infect nematodes and mice is abolished. Activity assays performed using recombinant protein unveiled differences in substrate binding between the C. neoformans and human enzymes, with structural insights into these kinetic differences acquired via homology modeling. Collectively, these data highlight the potential of GMP synthase to be exploited in the development of new therapeutic agents for the treatment of disseminated, life-threatening fungal infections.
Collapse
Affiliation(s)
- Jessica L Chitty
- From the Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences.,the Institute for Molecular Bioscience, and
| | - Tayla L Tatzenko
- From the Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences
| | - Simon J Williams
- From the Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences.,the ANU Research School of Biology, Australian National University, Acton, ACT 2601, Australia
| | - Y Q Andre E Koh
- From the Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences
| | - Elizabeth C Corfield
- From the Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences
| | | | | | - Matthew A Cooper
- From the Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences.,the Institute for Molecular Bioscience, and
| | - Ulrike Kappler
- From the Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences.,the Centre for Metals in Biology, University of Queensland, St. Lucia, Queensland 4072, Australia and
| | - Bostjan Kobe
- From the Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences.,the Institute for Molecular Bioscience, and
| | - James A Fraser
- From the Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences,
| |
Collapse
|