1
|
Qin L, Xu J, Chen J, Wang S, Zheng R, Cui Z, Liu Z, Wu X, Wang J, Huang X, Wang Z, Wang M, Pan R, Kaufmann SHE, Meng X, Zhang L, Sha W, Liu H. Cell-autonomous targeting of arabinogalactan by host immune factors inhibits mycobacterial growth. eLife 2024; 13:RP92737. [PMID: 39495223 PMCID: PMC11534329 DOI: 10.7554/elife.92737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
Deeper understanding of the crosstalk between host cells and Mycobacterium tuberculosis (Mtb) provides crucial guidelines for the rational design of novel intervention strategies against tuberculosis (TB). Mycobacteria possess a unique complex cell wall with arabinogalactan (AG) as a critical component. AG has been identified as a virulence factor of Mtb which is recognized by host galectin-9. Here, we demonstrate that galectin-9 directly inhibited mycobacterial growth through AG-binding property of carbohydrate-recognition domain 2. Furthermore, IgG antibodies with AG specificity were detected in the serum of TB patients. Based on the interaction between galectin-9 and AG, we developed a monoclonal antibody (mAb) screening assay and identified AG-specific mAbs which profoundly inhibit Mtb growth. Mechanistically, proteomic profiling and morphological characterizations revealed that AG-specific mAbs regulate AG biosynthesis, thereby inducing cell wall swelling. Thus, direct AG-binding by galectin-9 or antibodies contributes to protection against TB. Our findings pave the way for the rational design of novel immunotherapeutic strategies for TB control.
Collapse
Affiliation(s)
- Lianhua Qin
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of MedicineShanghaiChina
| | - Junfang Xu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of MedicineShanghaiChina
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of MedicineShanghaiChina
| | - Jianxia Chen
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of MedicineShanghaiChina
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of MedicineShanghaiChina
| | - Sen Wang
- Department of Infectious Diseases, National Medical Centre for Infectious Diseases, National Clinical Research Centre for Aging and Medicine, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan UniversityShanghaiChina
| | - Ruijuan Zheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of MedicineShanghaiChina
| | - Zhenling Cui
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of MedicineShanghaiChina
| | - Zhonghua Liu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of MedicineShanghaiChina
| | - Xiangyang Wu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of MedicineShanghaiChina
| | - Jie Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of MedicineShanghaiChina
| | - Xiaochen Huang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of MedicineShanghaiChina
| | | | | | | | - Stefan HE Kaufmann
- Max Planck Institute for Infection BiologyBerlinGermany
- Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
- Hagler Institute for Advanced Study, Texas A&M UniversityCollege StationUnited States
| | - Xun Meng
- Abmart IncShanghaiChina
- Multitude TherapeuticsShanghaiChina
| | - Lu Zhang
- School of Life Science, Fudan UniversityShanghaiChina
| | - Wei Sha
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of MedicineShanghaiChina
- Department of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of MedicineShanghaiChina
| | - Haipeng Liu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of MedicineShanghaiChina
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of MedicineShanghaiChina
| |
Collapse
|
2
|
Veale CGL, Chakraborty A, Mhlanga R, Albericio F, de la Torre BG, Edkins AL, Clarke DJ. A native mass spectrometry approach to qualitatively elucidate interfacial epitopes of transient protein-protein interactions. Chem Commun (Camb) 2024; 60:5844-5847. [PMID: 38752317 PMCID: PMC11139139 DOI: 10.1039/d4cc01251h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
Native mass spectrometric analysis of TPR2A and GrpE with unpurified peptides derived from limited proteolysis of their respective PPI partners (HSP90 C-terminus and DnaK) facilitated efficient, qualitative identification of interfacial epitopes involved in transient PPI formation. Application of this approach can assist in elucidating interfaces of currently uncharacterised transient PPIs.
Collapse
Affiliation(s)
- Clinton G L Veale
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa.
| | - Abir Chakraborty
- The Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Richwell Mhlanga
- The Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Fernando Albericio
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville, South Africa
| | - Beatriz G de la Torre
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, South Africa
| | - Adrienne L Edkins
- The Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - David J Clarke
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH93FJ, UK.
| |
Collapse
|
3
|
Bosch B, DeJesus MA, Schnappinger D, Rock JM. Weak links: Advancing target-based drug discovery by identifying the most vulnerable targets. Ann N Y Acad Sci 2024; 1535:10-19. [PMID: 38595325 DOI: 10.1111/nyas.15139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Mycobacterium tuberculosis remains the most common infectious killer worldwide despite decades of antitubercular drug development. Effectively controlling the tuberculosis (TB) pandemic will require innovation in drug discovery. In this review, we provide a brief overview of the two main approaches to discovering new TB drugs-phenotypic screens and target-based drug discovery-and outline some of the limitations of each method. We then explore recent advances in genetic tools that aim to overcome some of these limitations. In particular, we highlight a novel metric to prioritize essential targets, termed vulnerability. Stratifying targets based on their vulnerability presents new opportunities for future target-based drug discovery campaigns.
Collapse
Affiliation(s)
- Barbara Bosch
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, New York, USA
| | - Michael A DeJesus
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, New York, USA
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA
| | - Jeremy M Rock
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, New York, USA
| |
Collapse
|
4
|
Dartois V, Dick T. Therapeutic developments for tuberculosis and nontuberculous mycobacterial lung disease. Nat Rev Drug Discov 2024; 23:381-403. [PMID: 38418662 PMCID: PMC11078618 DOI: 10.1038/s41573-024-00897-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Tuberculosis (TB) drug discovery and development has undergone nothing short of a revolution over the past 20 years. Successful public-private partnerships and sustained funding have delivered a much-improved understanding of mycobacterial disease biology and pharmacology and a healthy pipeline that can tolerate inevitable attrition. Preclinical and clinical development has evolved from decade-old concepts to adaptive designs that permit rapid evaluation of regimens that might greatly shorten treatment duration over the next decade. But the past 20 years also saw the rise of a fatal and difficult-to-cure lung disease caused by nontuberculous mycobacteria (NTM), for which the drug development pipeline is nearly empty. Here, we discuss the similarities and differences between TB and NTM lung diseases, compare the preclinical and clinical advances, and identify major knowledge gaps and areas of cross-fertilization. We argue that applying paradigms and networks that have proved successful for TB, from basic research to clinical trials, will help to populate the pipeline and accelerate curative regimen development for NTM disease.
Collapse
Affiliation(s)
- Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA.
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA.
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA
- Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| |
Collapse
|
5
|
Gager C, Flores-Mireles AL. Blunted blades: new CRISPR-derived technologies to dissect microbial multi-drug resistance and biofilm formation. mSphere 2024; 9:e0064223. [PMID: 38511958 PMCID: PMC11036814 DOI: 10.1128/msphere.00642-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
The spread of multi-drug-resistant (MDR) pathogens has rapidly outpaced the development of effective treatments. Diverse resistance mechanisms further limit the effectiveness of our best treatments, including multi-drug regimens and last line-of-defense antimicrobials. Biofilm formation is a powerful component of microbial pathogenesis, providing a scaffold for efficient colonization and shielding against anti-microbials, which further complicates drug resistance studies. Early genetic knockout tools didn't allow the study of essential genes, but clustered regularly interspaced palindromic repeat inference (CRISPRi) technologies have overcome this challenge via genetic silencing. These tools rapidly evolved to meet new demands and exploit native CRISPR systems. Modern tools range from the creation of massive CRISPRi libraries to tunable modulation of gene expression with CRISPR activation (CRISPRa). This review discusses the rapid expansion of CRISPRi/a-based technologies, their use in investigating MDR and biofilm formation, and how this drives further development of a potent tool to comprehensively examine multi-drug resistance.
Collapse
Affiliation(s)
- Christopher Gager
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Ana L. Flores-Mireles
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
6
|
Berisio R, Barra G, Napolitano V, Privitera M, Romano M, Squeglia F, Ruggiero A. HtpG-A Major Virulence Factor and a Promising Vaccine Antigen against Mycobacterium tuberculosis. Biomolecules 2024; 14:471. [PMID: 38672487 PMCID: PMC11048413 DOI: 10.3390/biom14040471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Tuberculosis (TB) is the leading global cause of death f rom an infectious bacterial agent. Therefore, limiting its epidemic spread is a pressing global health priority. The chaperone-like protein HtpG of M. tuberculosis (Mtb) is a large dimeric and multi-domain protein with a key role in Mtb pathogenesis and promising antigenic properties. This dual role, likely associated with the ability of Heat Shock proteins to act both intra- and extra-cellularly, makes HtpG highly exploitable both for drug and vaccine development. This review aims to gather the latest updates in HtpG structure and biological function, with HtpG operating in conjunction with a large number of chaperone molecules of Mtb. Altogether, these molecules help Mtb recovery after exposure to host-like stress by assisting the whole path of protein folding rescue, from the solubilisation of aggregated proteins to their refolding. Also, we highlight the role of structural biology in the development of safer and more effective subunit antigens. The larger availability of structural information on Mtb antigens and a better understanding of the host immune response to TB infection will aid the acceleration of TB vaccine development.
Collapse
Affiliation(s)
- Rita Berisio
- Institute of Biostructures and Bioimaging, IBB, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy; (G.B.); (V.N.); (M.P.); (M.R.); (F.S.)
| | | | | | | | | | | | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, IBB, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy; (G.B.); (V.N.); (M.P.); (M.R.); (F.S.)
| |
Collapse
|
7
|
Boshoff HI, Malhotra N, Barry CE, Oh S. The Antitubercular Activities of Natural Products with Fused-Nitrogen-Containing Heterocycles. Pharmaceuticals (Basel) 2024; 17:211. [PMID: 38399426 PMCID: PMC10892018 DOI: 10.3390/ph17020211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Tuberculosis (TB) is notorious as the leading cause of death worldwide due to a single infectious entity and its causative agent, Mycobacterium tuberculosis (Mtb), has been able to evolve resistance to all existing drugs in the treatment arsenal complicating disease management programs. In drug discovery efforts, natural products are important starting points in generating novel scaffolds that have evolved to specifically bind to vulnerable targets not only in pathogens such as Mtb, but also in mammalian targets associated with human diseases. Structural diversity is one of the most attractive features of natural products. This review provides a summary of fused-nitrogen-containing heterocycles found in the natural products reported in the literature that are known to have antitubercular activities. The structurally targeted natural products discussed in this review could provide a revealing insight into novel chemical aspects with novel biological functions for TB drug discovery efforts.
Collapse
Affiliation(s)
| | | | | | - Sangmi Oh
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (H.I.B.); (N.M.); (C.E.B.III)
| |
Collapse
|
8
|
Ichimura A, Miyazaki Y, Nagatomo H, Kawabe T, Nakajima N, Kim GE, Tomizawa M, Okamoto N, Komazaki S, Kakizawa S, Nishi M, Takeshima H. Atypical cell death and insufficient matrix organization in long-bone growth plates from Tric-b-knockout mice. Cell Death Dis 2023; 14:848. [PMID: 38123563 PMCID: PMC10733378 DOI: 10.1038/s41419-023-06285-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 12/23/2023]
Abstract
TRIC-A and TRIC-B proteins form homotrimeric cation-permeable channels in the endoplasmic reticulum (ER) and nuclear membranes and are thought to contribute to counterionic flux coupled with store Ca2+ release in various cell types. Serious mutations in the TRIC-B (also referred to as TMEM38B) locus cause autosomal recessive osteogenesis imperfecta (OI), which is characterized by insufficient bone mineralization. We have reported that Tric-b-knockout mice can be used as an OI model; Tric-b deficiency deranges ER Ca2+ handling and thus reduces extracellular matrix (ECM) synthesis in osteoblasts, leading to poor mineralization. Here we report irregular cell death and insufficient ECM in long-bone growth plates from Tric-b-knockout embryos. In the knockout growth plate chondrocytes, excess pro-collagen fibers were occasionally accumulated in severely dilated ER elements. Of the major ER stress pathways, activated PERK/eIF2α (PKR-like ER kinase/ eukaryotic initiation factor 2α) signaling seemed to inordinately alter gene expression to induce apoptosis-related proteins including CHOP (CCAAT/enhancer binding protein homologous protein) and caspase 12 in the knockout chondrocytes. Ca2+ imaging detected aberrant Ca2+ handling in the knockout chondrocytes; ER Ca2+ release was impaired, while cytoplasmic Ca2+ level was elevated. Our observations suggest that Tric-b deficiency directs growth plate chondrocytes to pro-apoptotic states by compromising cellular Ca2+-handling and exacerbating ER stress response, leading to impaired ECM synthesis and accidental cell death.
Collapse
Affiliation(s)
- Atsuhiko Ichimura
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Yuu Miyazaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Hiroki Nagatomo
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Takaaki Kawabe
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Nobuhisa Nakajima
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Ga Eun Kim
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Masato Tomizawa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Naoki Okamoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | | | - Sho Kakizawa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Miyuki Nishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Hiroshi Takeshima
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
9
|
Levendosky K, Janisch N, Quadri LEN. Comprehensive essentiality analysis of the Mycobacterium kansasii genome by saturation transposon mutagenesis and deep sequencing. mBio 2023; 14:e0057323. [PMID: 37350613 PMCID: PMC10470612 DOI: 10.1128/mbio.00573-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/01/2023] [Indexed: 06/24/2023] Open
Abstract
Mycobacterium kansasii (Mk) is an opportunistic pathogen that is frequently isolated from urban water systems, posing a health risk to susceptible individuals. Despite its ability to cause tuberculosis-like pulmonary disease, very few studies have probed the genetics of this opportunistic pathogen. Here, we report a comprehensive essentiality analysis of the Mk genome. Deep sequencing of a high-density library of Mk Himar1 transposon mutants revealed that 86.8% of the chromosomal thymine-adenine (TA) dinucleotide target sites were permissive to insertion, leaving 13.2% TA sites unoccupied. Our analysis identified 394 of the 5,350 annotated open reading frames (ORFs) as essential. The majority of these essential ORFs (84.8%) share essential mutual orthologs with Mycobacterium tuberculosis (Mtb). A comparative genomics analysis identified 139 Mk essential ORFs that share essential orthologs in four other species of mycobacteria. Thirteen Mk essential ORFs share orthologs in all four species that were identified as being not essential, while only two Mk essential ORFs are absent in all species compared. We used the essentiality data and a comparative genomics analysis reported here to highlight differences in essentiality between candidate Mtb drug targets and the corresponding Mk orthologs. Our findings suggest that the Mk genome encodes redundant or additional pathways that may confound validation of potential Mtb drugs and drug target candidates against the opportunistic pathogen. Additionally, we identified 57 intergenic regions containing four or more consecutive unoccupied TA sites. A disproportionally large number of these regions were located upstream of pe/ppe genes. Finally, we present an essentiality and orthology analysis of the Mk pRAW-like plasmid, pMK1248. IMPORTANCE Mk is one of the most common nontuberculous mycobacterial pathogens associated with tuberculosis-like pulmonary disease. Drug resistance emergence is a threat to the control of Mk infections, which already requires long-term, multidrug courses. A comprehensive understanding of Mk biology is critical to facilitate the development of new and more efficacious therapeutics against Mk. We combined transposon-based mutagenesis with analysis of insertion site identification data to uncover genes and other genomic regions required for Mk growth. We also compared the gene essentiality data set of Mk to those available for several other mycobacteria. This analysis highlighted key similarities and differences in the biology of Mk compared to these other species. Altogether, the genome-wide essentiality information generated and the results of the cross-species comparative genomics analysis represent valuable resources to assist the process of identifying and prioritizing potential Mk drug target candidates and to guide future studies on Mk biology.
Collapse
Affiliation(s)
- Keith Levendosky
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, New York, USA
- Biology Program, Graduate Center, Biology Program, Graduate Center, City University of New York, New York, New York, USA
| | - Niklas Janisch
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, New York, USA
- Biology Program, Graduate Center, Biology Program, Graduate Center, City University of New York, New York, New York, USA
| | - Luis E. N. Quadri
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, New York, USA
- Biology Program, Graduate Center, Biology Program, Graduate Center, City University of New York, New York, New York, USA
- Biochemistry Program, Graduate Center, City University of New York, New York, New York, USA
| |
Collapse
|
10
|
Shaban AK, Gebretsadik G, Hakamata M, Takihara H, Inouchi E, Nishiyama A, Ozeki Y, Tateishi Y, Nishiuchi Y, Yamaguchi T, Ohara N, Okuda S, Matsumoto S. Mycobacterial DNA-binding protein 1 is critical for BCG survival in stressful environments and simultaneously regulates gene expression. Sci Rep 2023; 13:14157. [PMID: 37644087 PMCID: PMC10465568 DOI: 10.1038/s41598-023-40941-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023] Open
Abstract
Survival of the live attenuated Bacillus Calmette-Guérin (BCG) vaccine amidst harsh host environments is key for BCG effectiveness as it allows continuous immune response induction and protection against tuberculosis. Mycobacterial DNA binding protein 1 (MDP1), a nucleoid associated protein, is essential in BCG. However, there is limited knowledge on the extent of MDP1 gene regulation and how this influences BCG survival. Here, we demonstrate that MDP1 conditional knockdown (cKD) BCG grows slower than vector control in vitro, and dies faster upon exposure to antibiotics (bedaquiline) and oxidative stress (H2O2 and menadione). MDP1-cKD BCG also exhibited low infectivity and survival in THP-1 macrophages and mice indicating possible susceptibility to host mediated stress. Consequently, low in vivo survival resulted in reduced cytokine (IFN-gamma and TNF-alpha) production by splenocytes. Temporal transcriptome profiling showed more upregulated (81-240) than downregulated (5-175) genes in response to MDP1 suppression. Pathway analysis showed suppression of biosynthetic pathways that coincide with low in vitro growth. Notable was the deferential expression of genes involved in stress response (sigI), maintenance of DNA integrity (mutT1), REDOX balance (WhiB3), and host interactions (PE/PE_PGRS). Thus, this study shows MDP1's importance in BCG survival and highlights MDP1-dependent gene regulation suggesting its role in growth and stress adaptation.
Collapse
Affiliation(s)
- Amina K Shaban
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan.
| | - Gebremichal Gebretsadik
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
- Department of Biology, Assosa University, Assosa, Ethiopia
| | - Mariko Hakamata
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
- Department of Respiratory Medicine and Infectious Disease, School of Medicine, Niigata University, Niigata, Japan
| | - Hayato Takihara
- Bioinformatics Department, School of Medicine, Niigata University, Niigata, Japan
| | - Erina Inouchi
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
| | - Akihito Nishiyama
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
| | - Yuriko Ozeki
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
| | - Yoshitaka Tateishi
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
| | - Yukiko Nishiuchi
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
- Toneyama Tuberculosis Research Institute, Osaka Metropolitan University, Osaka, Japan
- Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Hiroshima, Japan
| | - Takehiro Yamaguchi
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
- Department of Pharmacology, Osaka Metropolitan University, Osaka, Japan
| | - Naoya Ohara
- Department of Oral Microbiology, Okayama University, Okayama, Japan
| | - Shujiro Okuda
- Bioinformatics Department, School of Medicine, Niigata University, Niigata, Japan
| | - Sohkichi Matsumoto
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan.
- Laboratory of Tuberculosis, Institute of Tropical Disease, Universitas Airlangga, Surabaya, East Java, Indonesia.
- Division of Research Aids, Hokkaido University Institute for Vaccine Research & Development, Sapporo, Japan.
| |
Collapse
|
11
|
Hoi DM, Junker S, Junk L, Schwechel K, Fischel K, Podlesainski D, Hawkins PME, van Geelen L, Kaschani F, Leodolter J, Morreale FE, Kleine S, Guha S, Rumpel K, Schmiedel VM, Weinstabl H, Meinhart A, Payne RJ, Kaiser M, Hartl M, Boehmelt G, Kazmaier U, Kalscheuer R, Clausen T. Clp-targeting BacPROTACs impair mycobacterial proteostasis and survival. Cell 2023; 186:2176-2192.e22. [PMID: 37137307 DOI: 10.1016/j.cell.2023.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/24/2023] [Accepted: 04/05/2023] [Indexed: 05/05/2023]
Abstract
The ClpC1:ClpP1P2 protease is a core component of the proteostasis system in mycobacteria. To improve the efficacy of antitubercular agents targeting the Clp protease, we characterized the mechanism of the antibiotics cyclomarin A and ecumicin. Quantitative proteomics revealed that the antibiotics cause massive proteome imbalances, including upregulation of two unannotated yet conserved stress response factors, ClpC2 and ClpC3. These proteins likely protect the Clp protease from excessive amounts of misfolded proteins or from cyclomarin A, which we show to mimic damaged proteins. To overcome the Clp security system, we developed a BacPROTAC that induces degradation of ClpC1 together with its ClpC2 caretaker. The dual Clp degrader, built from linked cyclomarin A heads, was highly efficient in killing pathogenic Mycobacterium tuberculosis, with >100-fold increased potency over the parent antibiotic. Together, our data reveal Clp scavenger proteins as important proteostasis safeguards and highlight the potential of BacPROTACs as future antibiotics.
Collapse
Affiliation(s)
- David M Hoi
- Research Institute of Molecular Pathology, Vienna BioCenter, 1030 Vienna, Austria; Max Perutz Labs, Vienna BioCenter, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria; University of Vienna, Center for Molecular Biology, Department for Biochemistry and Cell Biology, 1030 Vienna, Austria
| | - Sabryna Junker
- Research Institute of Molecular Pathology, Vienna BioCenter, 1030 Vienna, Austria
| | - Lukas Junk
- Saarland University, Organic Chemistry I, 66123 Saarbrücken, Germany; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), 66123 Saarbrücken, Germany.
| | - Kristin Schwechel
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | | | - David Podlesainski
- University of Duisburg-Essen, Center of Medical Biotechnology, Faculty of Biology, 45141 Essen, Germany
| | - Paige M E Hawkins
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, NSW 2006, Australia
| | - Lasse van Geelen
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Farnusch Kaschani
- University of Duisburg-Essen, Center of Medical Biotechnology, Faculty of Biology, 45141 Essen, Germany
| | - Julia Leodolter
- Research Institute of Molecular Pathology, Vienna BioCenter, 1030 Vienna, Austria
| | | | - Stefan Kleine
- University of Duisburg-Essen, Center of Medical Biotechnology, Faculty of Biology, 45141 Essen, Germany
| | - Somraj Guha
- Saarland University, Organic Chemistry I, 66123 Saarbrücken, Germany
| | - Klaus Rumpel
- Boehringer Ingelheim RCV GmbH & Co KG, 1120 Vienna, Austria
| | | | | | - Anton Meinhart
- Research Institute of Molecular Pathology, Vienna BioCenter, 1030 Vienna, Austria
| | - Richard J Payne
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, NSW 2006, Australia
| | - Markus Kaiser
- University of Duisburg-Essen, Center of Medical Biotechnology, Faculty of Biology, 45141 Essen, Germany
| | - Markus Hartl
- Max Perutz Labs, Vienna BioCenter, 1030 Vienna, Austria; University of Vienna, Center for Molecular Biology, Department for Biochemistry and Cell Biology, 1030 Vienna, Austria
| | - Guido Boehmelt
- Boehringer Ingelheim RCV GmbH & Co KG, 1120 Vienna, Austria
| | - Uli Kazmaier
- Saarland University, Organic Chemistry I, 66123 Saarbrücken, Germany; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), 66123 Saarbrücken, Germany
| | - Rainer Kalscheuer
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Tim Clausen
- Research Institute of Molecular Pathology, Vienna BioCenter, 1030 Vienna, Austria; Medical University of Vienna, 1030 Vienna, Austria.
| |
Collapse
|
12
|
Taylor G, Cui H, Leodolter J, Giese C, Weber-Ban E. ClpC2 protects mycobacteria against a natural antibiotic targeting ClpC1-dependent protein degradation. Commun Biol 2023; 6:301. [PMID: 36944713 PMCID: PMC10030653 DOI: 10.1038/s42003-023-04658-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 03/02/2023] [Indexed: 03/23/2023] Open
Abstract
Mycobacterium tuberculosis Clp proteases are targeted by several antitubercular compounds, including cyclomarin A (CymA). CymA exerts its toxicity by binding to AAA + chaperone ClpC1. Here, we show that CymA can also bind a partial homologue of ClpC1, known as ClpC2, and we reveal the molecular basis of these interactions by determining the structure of the M. tuberculosis ClpC2:CymA complex. Furthermore, we show deletion of clpC2 in Mycobacterium smegmatis increases sensitivity to CymA. We find CymA exposure leads to a considerable upregulation of ClpC2 via a mechanism in which binding of CymA to ClpC2 prevents binding of ClpC2 to its own promoter, resulting in upregulation of its own transcription in response to CymA. Our study reveals that ClpC2 not only senses CymA, but that through this interaction it can act as a molecular sponge to counteract the toxic effects of CymA and possibly other toxins targeting essential protease component ClpC1 in mycobacteria.
Collapse
Affiliation(s)
- Gabrielle Taylor
- ETH Zurich, Institute of Molecular Biology & Biophysics, CH-8093, Zurich, Switzerland
| | - Hengjun Cui
- ETH Zurich, Institute of Molecular Biology & Biophysics, CH-8093, Zurich, Switzerland
| | - Julia Leodolter
- ETH Zurich, Institute of Molecular Biology & Biophysics, CH-8093, Zurich, Switzerland
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | - Christoph Giese
- ETH Zurich, Institute of Molecular Biology & Biophysics, CH-8093, Zurich, Switzerland
| | - Eilika Weber-Ban
- ETH Zurich, Institute of Molecular Biology & Biophysics, CH-8093, Zurich, Switzerland.
| |
Collapse
|
13
|
Mishra S, Saito K. Clinically encountered growth phenotypes of tuberculosis-causing bacilli and their in vitro study: A review. Front Cell Infect Microbiol 2022; 12:1029111. [PMID: 36439231 PMCID: PMC9684195 DOI: 10.3389/fcimb.2022.1029111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/20/2022] [Indexed: 07/11/2024] Open
Abstract
The clinical manifestations of tuberculosis (TB) vary widely in severity, site of infection, and outcomes of treatment-leading to simultaneous efforts to individualize therapy safely and to search for shorter regimens that can be successfully used across the clinical spectrum. In these endeavors, clinicians and researchers alike employ mycobacterial culture in rich media. However, even within the same patient, individual bacilli among the population can exhibit substantial variability in their culturability. Bacilli in vitro also demonstrate substantial heterogeneity in replication rate and cultivation requirements, as well as susceptibility to killing by antimicrobials. Understanding parallels in clinical, ex vivo and in vitro growth phenotype diversity may be key to identifying those phenotypes responsible for treatment failure, relapse, and the reactivation of bacilli that progresses TB infection to disease. This review briefly summarizes the current role of mycobacterial culture in the care of patients with TB and the ex vivo evidence of variability in TB culturability. We then discuss current advances in in vitro models that study heterogenous subpopulations within a genetically identical bulk culture, with an emphasis on the effect of oxidative stress on bacillary cultivation requirements. The review highlights the complexity that heterogeneity in mycobacterial growth brings to the interpretation of culture in clinical settings and research. It also underscores the intricacies present in the interplay between growth phenotypes and antimicrobial susceptibility. Better understanding of population dynamics and growth requirements over time and space promises to aid both the attempts to individualize TB treatment and to find uniformly effective therapies.
Collapse
Affiliation(s)
- Saurabh Mishra
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, United States
| | - Kohta Saito
- Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
14
|
Diéguez-Santana K, Casañola-Martin GM, Torres R, Rasulev B, Green JR, González-Díaz H. Machine Learning Study of Metabolic Networks vs ChEMBL Data of Antibacterial Compounds. Mol Pharm 2022; 19:2151-2163. [PMID: 35671399 PMCID: PMC9986951 DOI: 10.1021/acs.molpharmaceut.2c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antibacterial drugs (AD) change the metabolic status of bacteria, contributing to bacterial death. However, antibiotic resistance and the emergence of multidrug-resistant bacteria increase interest in understanding metabolic network (MN) mutations and the interaction of AD vs MN. In this study, we employed the IFPTML = Information Fusion (IF) + Perturbation Theory (PT) + Machine Learning (ML) algorithm on a huge dataset from the ChEMBL database, which contains >155,000 AD assays vs >40 MNs of multiple bacteria species. We built a linear discriminant analysis (LDA) and 17 ML models centered on the linear index and based on atoms to predict antibacterial compounds. The IFPTML-LDA model presented the following results for the training subset: specificity (Sp) = 76% out of 70,000 cases, sensitivity (Sn) = 70%, and Accuracy (Acc) = 73%. The same model also presented the following results for the validation subsets: Sp = 76%, Sn = 70%, and Acc = 73.1%. Among the IFPTML nonlinear models, the k nearest neighbors (KNN) showed the best results with Sn = 99.2%, Sp = 95.5%, Acc = 97.4%, and Area Under Receiver Operating Characteristic (AUROC) = 0.998 in training sets. In the validation series, the Random Forest had the best results: Sn = 93.96% and Sp = 87.02% (AUROC = 0.945). The IFPTML linear and nonlinear models regarding the ADs vs MNs have good statistical parameters, and they could contribute toward finding new metabolic mutations in antibiotic resistance and reducing time/costs in antibacterial drug research.
Collapse
Affiliation(s)
- Karel Diéguez-Santana
- Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, 48940 Leioa, Spain.,Universidad Regional Amazónica IKIAM, Tena, Napo 150150, Ecuador
| | - Gerardo M Casañola-Martin
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58102, United States.,Department of Systems and Computer Engineering, Carleton University, K1S5B6 Ottawa, Ontario, Canada
| | - Roldan Torres
- Universidad Regional Amazónica IKIAM, Tena, Napo 150150, Ecuador
| | - Bakhtiyor Rasulev
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58102, United States
| | - James R Green
- Department of Systems and Computer Engineering, Carleton University, K1S5B6 Ottawa, Ontario, Canada
| | - Humbert González-Díaz
- Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, 48940 Leioa, Spain.,BIOFISIKA, Basque Center for Biophysics CSIC-UPVEH, 48940 Leioa, Spain.,IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Biscay, Spain
| |
Collapse
|
15
|
Nelson B, Hong SH, Lupoli TJ. Protein Cofactor Mimics Disrupt Essential Chaperone Function in Stressed Mycobacteria. ACS Infect Dis 2022; 8:901-910. [PMID: 35412813 DOI: 10.1021/acsinfecdis.1c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacterial DnaK is an ATP-dependent molecular chaperone important for maintaining cellular proteostasis in concert with cofactor proteins. The cofactor DnaJ delivers non-native client proteins to DnaK and activates its ATPase activity, which is required for protein folding. In the bacterial pathogen Mycobacterium tuberculosis, DnaK is assisted by two DnaJs, DnaJ1 and DnaJ2. Functional protein-protein interactions (PPIs) between DnaK and at least one DnaJ are essential for survival of mycobacteria; hence, these PPIs represent untapped antibacterial targets. Here, we synthesize peptide-based mimetics of DnaJ1 and DnaJ2 N-terminal domains as rational inhibitors of DnaK-cofactor interactions. We find that covalently stabilized DnaJ mimetics are capable of disrupting DnaK-cofactor activity in vitro and prevent mycobacterial recovery from proteotoxic stress in vivo, leading to cell death. Since chaperones and cofactors are highly conserved, we anticipate these results will inform the design of other mimetics to modulate chaperone function across cell types.
Collapse
Affiliation(s)
- Brock Nelson
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Seong Ho Hong
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Tania J. Lupoli
- Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
16
|
d’Andrea FB, Poulton NC, Froom R, Tam K, Campbell EA, Rock JM. The essential M. tuberculosis Clp protease is functionally asymmetric in vivo. SCIENCE ADVANCES 2022; 8:eabn7943. [PMID: 35507665 PMCID: PMC9067928 DOI: 10.1126/sciadv.abn7943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
The Clp protease system is a promising, noncanonical drug target against Mycobacterium tuberculosis (Mtb). Unlike in Escherichia coli, the Mtb Clp protease consists of two distinct proteolytic subunits, ClpP1 and ClpP2, which hydrolyze substrates delivered by the chaperones ClpX and ClpC1. While biochemical approaches uncovered unique aspects of Mtb Clp enzymology, its essentiality complicates in vivo studies. To address this gap, we leveraged new genetic tools to mechanistically interrogate the in vivo essentiality of the Mtb Clp protease. While validating some aspects of the biochemical model, we unexpectedly found that only the proteolytic activity of ClpP1, but not of ClpP2, is essential for substrate degradation and Mtb growth and infection. Our observations not only support a revised model of Mtb Clp biology, where ClpP2 scaffolds chaperone binding while ClpP1 provides the essential proteolytic activity of the complex; they also have important implications for the ongoing development of inhibitors toward this emerging therapeutic target.
Collapse
Affiliation(s)
- Felipe B. d’Andrea
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, Weill Cornell Medicine, New York, NY, USA
| | - Nicholas C. Poulton
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Ruby Froom
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA
| | - Kayan Tam
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | | | - Jeremy M. Rock
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
17
|
Hawkins PME, Hoi DM, Cheung CY, Wang T, Quan D, Sasi VM, Liu DY, Linington RG, Jackson CJ, Oehlers SH, Cook GM, Britton WJ, Clausen T, Payne RJ. Potent Bactericidal Antimycobacterials Targeting the Chaperone ClpC1 Based on the Depsipeptide Natural Products Ecumicin and Ohmyungsamycin A. J Med Chem 2022; 65:4893-4908. [PMID: 35293761 DOI: 10.1021/acs.jmedchem.1c02122] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ohmyungsamycin A and ecumicin are structurally related cyclic depsipeptide natural products that possess activity against Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB). Herein, we describe the design and synthesis of a library of analogues of these two natural products using an efficient solid-phase synthesis and late-stage macrolactamization strategy. Lead analogues possessed potent activity against Mtb in vitro (minimum inhibitory concentration 125-500 nM) and were shown to inhibit protein degradation by the mycobacterial ClpC1-ClpP1P2 protease with an associated enhancement of ClpC1 ATPase activity. The most promising analogue from the series exhibited rapid bactericidal killing activity against Mtb, capable of sterilizing cultures after 7 days, and retained bactericidal activity against hypoxic non-replicating Mtb. This natural product analogue was also active in an in vivo zebrafish model of infection.
Collapse
Affiliation(s)
- Paige M E Hawkins
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - David M Hoi
- Research Institute of Molecular Pathology (IMP), Dr-Bohr-Gasse 7, Vienna 1030, Austria
| | - Chen-Yi Cheung
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin 9016, New Zealand
| | - Trixie Wang
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Diana Quan
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Vishnu Mini Sasi
- Research School of Chemistry, Australian National University, Acton, 2601 Australian Capital Territory, Australia
| | - Dennis Y Liu
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Roger G Linington
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Acton, 2601 Australian Capital Territory, Australia
| | - Stefan H Oehlers
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Gregory M Cook
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin 9016, New Zealand
| | - Warwick J Britton
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Sydney, New South Wales 2006, Australia.,Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Tim Clausen
- Research Institute of Molecular Pathology (IMP), Dr-Bohr-Gasse 7, Vienna 1030, Austria
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
18
|
Lobritz MA, Andrews IW, Braff D, Porter CBM, Gutierrez A, Furuta Y, Cortes LBG, Ferrante T, Bening SC, Wong F, Gruber C, Bakerlee C, Lambert G, Walker GC, Dwyer DJ, Collins JJ. Increased energy demand from anabolic-catabolic processes drives β-lactam antibiotic lethality. Cell Chem Biol 2022; 29:276-286.e4. [PMID: 34990601 PMCID: PMC8857051 DOI: 10.1016/j.chembiol.2021.12.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/11/2021] [Accepted: 12/06/2021] [Indexed: 12/22/2022]
Abstract
β-Lactam antibiotics disrupt the assembly of peptidoglycan (PG) within the bacterial cell wall by inhibiting the enzymatic activity of penicillin-binding proteins (PBPs). It was recently shown that β-lactam treatment initializes a futile cycle of PG synthesis and degradation, highlighting major gaps in our understanding of the lethal effects of PBP inhibition by β-lactam antibiotics. Here, we assess the downstream metabolic consequences of treatment of Escherichia coli with the β-lactam mecillinam and show that lethality from PBP2 inhibition is a specific consequence of toxic metabolic shifts induced by energy demand from multiple catabolic and anabolic processes, including accelerated protein synthesis downstream of PG futile cycling. Resource allocation into these processes is coincident with alterations in ATP synthesis and utilization, as well as a broadly dysregulated cellular redox environment. These results indicate that the disruption of normal anabolic-catabolic homeostasis by PBP inhibition is an essential factor for β-lactam antibiotic lethality.
Collapse
Affiliation(s)
- Michael A. Lobritz
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA,Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA,Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA,Present address: Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland,These authors contributed equally
| | - Ian W. Andrews
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA,Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA,These authors contributed equally
| | - Dana Braff
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA,Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA,Present address: GRO Biosciences, Cambridge, MA 02139, USA
| | - Caroline B. M. Porter
- Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Arnaud Gutierrez
- Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA,Present address: Institut Cochin, INSERM U1016 – CNRS UMR8104 – Université Paris Descartes, 75014 Paris, France
| | - Yoshikazu Furuta
- Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Present address: Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Louis B. G. Cortes
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Thomas Ferrante
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Sarah C. Bening
- Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Felix Wong
- Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Charley Gruber
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chris Bakerlee
- Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Guillaume Lambert
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Graham C. Walker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel J. Dwyer
- Department of Cell Biology and Molecular Genetics, Institute for Physical Science and Technology, Department of Biomedical Engineering, and Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA,Corresponding authors: ,
| | - James J. Collins
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA,Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA,Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA 02139, USA,Lead contact,Corresponding authors: ,
| |
Collapse
|
19
|
Hosfelt J, Richards A, Zheng M, Adura C, Nelson B, Yang A, Fay A, Resager W, Ueberheide B, Glickman JF, Lupoli TJ. An allosteric inhibitor of bacterial Hsp70 chaperone potentiates antibiotics and mitigates resistance. Cell Chem Biol 2021; 29:854-869.e9. [PMID: 34818532 DOI: 10.1016/j.chembiol.2021.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/20/2021] [Accepted: 11/02/2021] [Indexed: 12/23/2022]
Abstract
DnaK is the bacterial homolog of Hsp70, an ATP-dependent chaperone that helps cofactor proteins to catalyze nascent protein folding and salvage misfolded proteins. In the pathogen Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), DnaK and its cofactors are proposed antimycobacterial targets, yet few small-molecule inhibitors or probes exist for these families of proteins. Here, we describe the repurposing of a drug called telaprevir that is able to allosterically inhibit the ATPase activity of DnaK and to prevent chaperone function by mimicking peptide substrates. In mycobacterial cells, telaprevir disrupts DnaK- and cofactor-mediated cellular proteostasis, resulting in enhanced efficacy of aminoglycoside antibiotics and reduced resistance to the frontline TB drug rifampin. Hence, this work contributes to a small but growing collection of protein chaperone inhibitors, and it demonstrates that these molecules disrupt bacterial mechanisms of survival in the presence of different antibiotic classes.
Collapse
Affiliation(s)
- Jordan Hosfelt
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Aweon Richards
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Meng Zheng
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Carolina Adura
- High-Throughput and Spectroscopy Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Brock Nelson
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Amy Yang
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Allison Fay
- Immunology Program, Sloan Kettering Insitute, New York, NY 10065, USA
| | - William Resager
- Departments of Biochemistry and Molecular Pharmacology, Neurology and Director Proteomics Lab, Division of Advanced Research Technologies, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Beatrix Ueberheide
- Departments of Biochemistry and Molecular Pharmacology, Neurology and Director Proteomics Lab, Division of Advanced Research Technologies, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - J Fraser Glickman
- High-Throughput and Spectroscopy Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Tania J Lupoli
- Department of Chemistry, New York University, New York, NY 10003, USA.
| |
Collapse
|
20
|
Structures of prokaryotic ubiquitin-like protein Pup in complex with depupylase Dop reveal the mechanism of catalytic phosphate formation. Nat Commun 2021; 12:6635. [PMID: 34789727 PMCID: PMC8599861 DOI: 10.1038/s41467-021-26848-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
Pupylation is the post-translational modification of lysine side chains with prokaryotic ubiquitin-like protein (Pup) that targets proteins for proteasomal degradation in mycobacteria and other members of Actinobacteria. Pup ligase PafA and depupylase Dop are the two enzymes acting in this pathway. Although they share close structural and sequence homology indicative of a common evolutionary origin, they catalyze opposing reactions. Here, we report a series of high-resolution crystal structures of Dop in different functional states along the reaction pathway, including Pup-bound states in distinct conformations. In combination with biochemical analysis, the structures explain the role of the C-terminal residue of Pup in ATP hydrolysis, the process that generates the catalytic phosphate in the active site, and suggest a role for the Dop-loop as an allosteric sensor for Pup-binding and ATP cleavage. Pupylation is a bacterial post-translational protein modification, where the small ubiquitin-like protein Pup is covalently attached to lysine side chains of target proteins, which is a reversible process and depupylation is catalysed by the depupylase enzyme, Dop. Here, the authors present crystal structures of Dop in different functional states, which together with biochemical experiments provide insights into the catalytic mechanism of this enzyme.
Collapse
|
21
|
Bosch B, DeJesus MA, Poulton NC, Zhang W, Engelhart CA, Zaveri A, Lavalette S, Ruecker N, Trujillo C, Wallach JB, Li S, Ehrt S, Chait BT, Schnappinger D, Rock JM. Genome-wide gene expression tuning reveals diverse vulnerabilities of M. tuberculosis. Cell 2021; 184:4579-4592.e24. [PMID: 34297925 PMCID: PMC8382161 DOI: 10.1016/j.cell.2021.06.033] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/13/2021] [Accepted: 06/29/2021] [Indexed: 01/09/2023]
Abstract
Antibacterial agents target the products of essential genes but rarely achieve complete target inhibition. Thus, the all-or-none definition of essentiality afforded by traditional genetic approaches fails to discern the most attractive bacterial targets: those whose incomplete inhibition results in major fitness costs. In contrast, gene "vulnerability" is a continuous, quantifiable trait that relates the magnitude of gene inhibition to the effect on bacterial fitness. We developed a CRISPR interference-based functional genomics method to systematically titrate gene expression in Mycobacterium tuberculosis (Mtb) and monitor fitness outcomes. We identified highly vulnerable genes in various processes, including novel targets unexplored for drug discovery. Equally important, we identified invulnerable essential genes, potentially explaining failed drug discovery efforts. Comparison of vulnerability between the reference and a hypervirulent Mtb isolate revealed incomplete conservation of vulnerability and that differential vulnerability can predict differential antibacterial susceptibility. Our results quantitatively redefine essential bacterial processes and identify high-value targets for drug development.
Collapse
Affiliation(s)
- Barbara Bosch
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY 10065, USA
| | - Michael A DeJesus
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY 10065, USA
| | - Nicholas C Poulton
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY 10065, USA
| | - Wenzhu Zhang
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065, USA
| | - Curtis A Engelhart
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Anisha Zaveri
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Sophie Lavalette
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Nadine Ruecker
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Carolina Trujillo
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Joshua B Wallach
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Shuqi Li
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY 10065, USA
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065, USA
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Jeremy M Rock
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
22
|
Sharma D, Sharma A, Singh B, Verma SK. Pan-proteome profiling of emerging and re-emerging zoonotic pathogen Orientia tsutsugamushi for getting insight into microbial pathogenesis. Microb Pathog 2021; 158:105103. [PMID: 34298125 DOI: 10.1016/j.micpath.2021.105103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 01/21/2023]
Abstract
With the occurrence and evolution of antibiotic and multidrug resistance in bacteria most of the existing remedies are becoming ineffective. The pan-proteome exploration of the bacterial pathogens helps to identify the wide spectrum therapeutic targets which will be effective against all strains in a species. The current study is focused on the pan-proteome profiling of zoonotic pathogen Orientia tsutsugamushi (Ott) for the identification of potential therapeutic targets. The pan-proteome of Ott is estimated to be extensive in nature that has 1429 protein clusters, out of which 694 were core, 391 were accessory, and 344 were unique. It was revealed that 622 proteins were essential, 222 proteins were virulent factors, and 42 proteins were involved in antibiotic resistance. The potential therapeutic targets were further classified into eleven broad classes among which gene expression and regulation, transport, and metabolism were dominant. The biological interactome analysis of therapeutic targets revealed that an ample amount of interactions were present among the proteins involved in DNA replication, ribosome assembly, cellwall metabolism, cell division, and antimicrobial resistance. The predicted therapeutic targets from the pan-proteome of Ott are involved in various biological processes, virulence, and antibiotic resistance; hence envisioned as potential candidates for drug discovery to combat scrub typhus.
Collapse
Affiliation(s)
- Dixit Sharma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, 176206, India.
| | - Ankita Sharma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, 176206, India
| | - Birbal Singh
- ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, Himachal Pradesh, 176061, India
| | - Shailender Kumar Verma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, 176206, India
| |
Collapse
|
23
|
Bendre AD, Peters PJ, Kumar J. Recent Insights into the Structure and Function of Mycobacterial Membrane Proteins Facilitated by Cryo-EM. J Membr Biol 2021; 254:321-341. [PMID: 33954837 PMCID: PMC8099146 DOI: 10.1007/s00232-021-00179-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 03/23/2021] [Indexed: 12/26/2022]
Abstract
Mycobacterium tuberculosis (Mtb) is one of the deadliest pathogens encountered by humanity. Over the decades, its characteristic membrane organization and composition have been understood. However, there is still limited structural information and mechanistic understanding of the constituent membrane proteins critical for drug discovery pipelines. Recent advances in single-particle cryo-electron microscopy and cryo-electron tomography have provided the much-needed impetus towards structure determination of several vital Mtb membrane proteins whose structures were inaccessible via X-ray crystallography and NMR. Important insights into membrane composition and organization have been gained via a combination of electron tomography and biochemical and biophysical assays. In addition, till the time of writing this review, 75 new structures of various Mtb proteins have been reported via single-particle cryo-EM. The information obtained from these structures has improved our understanding of the mechanisms of action of these proteins and the physiological pathways they are associated with. These structures have opened avenues for structure-based drug design and vaccine discovery programs that might help achieve global-TB control. This review describes the structural features of selected membrane proteins (type VII secretion systems, Rv1819c, Arabinosyltransferase, Fatty Acid Synthase, F-type ATP synthase, respiratory supercomplex, ClpP1P2 protease, ClpB disaggregase and SAM riboswitch), their involvement in physiological pathways, and possible use as a drug target. Tuberculosis is a deadly disease caused by Mycobacterium tuberculosis. The Cryo-EM and tomography have simplified the understanding of the mycobacterial membrane organization. Some proteins are located in the plasma membrane; some span the entire envelope, while some, like MspA, are located in the mycomembrane. Cryo-EM has made the study of such membrane proteins feasible.
Collapse
Affiliation(s)
- Ameya D Bendre
- Laboratory of Membrane Protein Biology, National Centre for Cell Science, NCCS Complex, S. P. Pune University Campus, Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Peter J Peters
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Nanoscopy, Maastricht University, Maastricht, The Netherlands
| | - Janesh Kumar
- Laboratory of Membrane Protein Biology, National Centre for Cell Science, NCCS Complex, S. P. Pune University Campus, Ganeshkhind, Pune, Maharashtra, 411007, India.
| |
Collapse
|
24
|
Bordes P, Genevaux P. Control of Toxin-Antitoxin Systems by Proteases in Mycobacterium Tuberculosis. Front Mol Biosci 2021; 8:691399. [PMID: 34079824 PMCID: PMC8165232 DOI: 10.3389/fmolb.2021.691399] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/06/2021] [Indexed: 12/30/2022] Open
Abstract
Toxin-antitoxin (TA) systems are small genetic elements composed of a noxious toxin and a counteracting cognate antitoxin. Although they are widespread in bacterial chromosomes and in mobile genetic elements, their cellular functions and activation mechanisms remain largely unknown. It has been proposed that toxin activation or expression of the TA operon could rely on the degradation of generally less stable antitoxins by cellular proteases. The resulting active toxin would then target essential cellular processes and inhibit bacterial growth. Although interplay between proteases and TA systems has been observed, evidences for such activation cycle are very limited. Herein, we present an overview of the current knowledge on TA recognition by proteases with a main focus on the major human pathogen Mycobacterium tuberculosis, which harbours multiple TA systems (over 80), the essential AAA + stress proteases, ClpC1P1P2 and ClpXP1P2, and the Pup-proteasome system.
Collapse
Affiliation(s)
- Patricia Bordes
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pierre Genevaux
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
25
|
The DnaK Chaperone System Buffers the Fitness Cost of Antibiotic Resistance Mutations in Mycobacteria. mBio 2021; 12:mBio.00123-21. [PMID: 33785614 PMCID: PMC8092207 DOI: 10.1128/mbio.00123-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chaperones aid in protein folding and maintenance of protein integrity. In doing so, they have the unique ability to directly stabilize resistance-conferring amino acid substitutions in drug targets and to counter the stress imparted by these substitutions, thus supporting heritable antimicrobial resistance (AMR). We asked whether chaperones support AMR in Mycobacterium smegmatis, a saprophytic model of Mycobacterium tuberculosis, the causative agent of tuberculosis (TB). We show that DnaK associates with many drug targets and that DnaK associates more with AMR-conferring mutant RNA polymerase (RNAP) than with wild-type RNAP. In addition, frequency-of-resistance (FOR) and fitness studies reveal that the DnaK system of chaperones supports AMR in antimicrobial targets in mycobacteria, including RNAP and the ribosome. These findings highlight chaperones as potential targets for drugs to overcome AMR in mycobacteria, including M. tuberculosis, as well as in other pathogens.IMPORTANCE AMR is a global problem, especially for TB. Here, we show that mycobacterial chaperones support AMR in M. smegmatis, a nonpathogenic model of M. tuberculosis, the causative agent of TB. In particular, the mycobacterial DnaK system of chaperones supports AMR in the antimicrobial targets RNA polymerase and the ribosome. This is the first report showing a role for protein chaperones in mediating AMR in mycobacteria. Given the widespread role of protein chaperones in enabling genomic diversity, we anticipate that our findings can be extended to other microbes.
Collapse
|
26
|
Serrano-Aparicio N, Moliner V, Świderek K. Nature of Irreversible Inhibition of Human 20S Proteasome by Salinosporamide A. The Critical Role of Lys–Asp Dyad Revealed from Electrostatic Effects Analysis. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Vicent Moliner
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castellón, Spain
| | - Katarzyna Świderek
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castellón, Spain
| |
Collapse
|
27
|
Drever K, Lim ZL, Zriba S, Chen JM. Protein Synthesis and Degradation Inhibitors Potently Block Mycobacterium tuberculosis type-7 Secretion System ESX-1 Activity. ACS Infect Dis 2021; 7:273-280. [PMID: 33534536 DOI: 10.1021/acsinfecdis.0c00741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mycobacterium tuberculosis (M. tb) uses its type-7 secretion system ESX-1 to translocate key virulence effector proteins. Taking a chemical genetics approach, we demonstrate for the first time the importance of mycobacterial proteostasis to ESX-1. We show that individual treatment with inhibitors of protein synthesis (chloramphenicol and kanamycin) and protein degradation (lassomycin and bortezomib), at concentrations that only reduce M. tb growth by 50% and less, specifically block ESX-1 secretion activity in the tubercle bacillus. In contrast, the mycobacterial cell-wall synthesis inhibitor isoniazid, even at a concentration that reduces M. tb growth by 90% has no effect on ESX-1 secretion activity. We also show that chloramphenicol but not isoniazid at subinhibitory concentrations specifically attenuates ESX-1-mediated M. tb virulence in macrophages. Taken together, the results of our study identify a novel vulnerability in the ESX-1 system and offer new avenues of anti-TB drug research to neutralize this critical virulence-mediating protein secretion apparatus.
Collapse
Affiliation(s)
- Kylee Drever
- Vaccine and Infectious Disease Organization, Saskatoon, Saskatchewan S7N 5E3, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Ze Long Lim
- Vaccine and Infectious Disease Organization, Saskatoon, Saskatchewan S7N 5E3, Canada
| | - Slim Zriba
- Vaccine and Infectious Disease Organization, Saskatoon, Saskatchewan S7N 5E3, Canada
- Vaccinology and Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan S7N 2Z4, Canada
| | - Jeffrey M. Chen
- Vaccine and Infectious Disease Organization, Saskatoon, Saskatchewan S7N 5E3, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
- Vaccinology and Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan S7N 2Z4, Canada
| |
Collapse
|
28
|
Stevens M, Howe C, Ray AM, Washburn A, Chitre S, Sivinski J, Park Y, Hoang QQ, Chapman E, Johnson SM. Analogs of nitrofuran antibiotics are potent GroEL/ES inhibitor pro-drugs. Bioorg Med Chem 2020; 28:115710. [PMID: 33007545 PMCID: PMC7914298 DOI: 10.1016/j.bmc.2020.115710] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 01/14/2023]
Abstract
In two previous studies, we identified compound 1 as a moderate GroEL/ES inhibitor with weak to moderate antibacterial activity against Gram-positive and Gram-negative bacteria including Bacillus subtilis, methicillin-resistant Staphylococcus aureus, Klebsiella pneumonia, Acinetobacter baumannii, and SM101 Escherichia coli (which has a compromised lipopolysaccharide biosynthetic pathway making bacteria more permeable to drugs). Extending from those studies, we developed two series of analogs with key substructures resembling those of known antibacterials, nitroxoline (hydroxyquinoline moiety) and nifuroxazide/nitrofurantoin (bis-cyclic-N-acylhydrazone scaffolds). Through biochemical and cell-based assays, we identified potent GroEL/ES inhibitors that selectively blocked E. faecium, S. aureus, and E. coli proliferation with low cytotoxicity to human colon and intestine cells in vitro. Initially, only the hydroxyquinoline-bearing analogs were found to be potent inhibitors in our GroEL/ES-mediated substrate refolding assays; however, subsequent testing in the presence of an E. coli nitroreductase (NfsB) in situ indicated that metabolites of the nitrofuran-bearing analogs were potent GroEL/ES inhibitor pro-drugs. Consequently, this study has identified a new target of nitrofuran-containing drugs, and is the first reported instance of such a unique class of GroEL/ES chaperonin inhibitors. The intriguing results presented herein provide impetus for expanded studies to validate inhibitor mechanisms and optimize this antibacterial class using the respective GroEL/ES chaperonin systems and nitroreductases from E. coli and the ESKAPE bacteria.
Collapse
Affiliation(s)
- Mckayla Stevens
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Chris Howe
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Anne-Marie Ray
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Alex Washburn
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Siddhi Chitre
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Jared Sivinski
- The University of Arizona, College of Pharmacy, Department of Pharmacology and Toxicology, 1703 E. Mabel St., PO Box 210207, Tucson, AZ 85721, United States
| | - Yangshin Park
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States; Stark Neurosciences Research Institute, Indiana University School of Medicine. 320 W. 15th Street, Suite 414, Indianapolis, IN 46202, United States; Department of Neurology, Indiana University School of Medicine. 635 Barnhill Drive, Indianapolis, IN 46202, United States
| | - Quyen Q Hoang
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States; Stark Neurosciences Research Institute, Indiana University School of Medicine. 320 W. 15th Street, Suite 414, Indianapolis, IN 46202, United States; Department of Neurology, Indiana University School of Medicine. 635 Barnhill Drive, Indianapolis, IN 46202, United States
| | - Eli Chapman
- The University of Arizona, College of Pharmacy, Department of Pharmacology and Toxicology, 1703 E. Mabel St., PO Box 210207, Tucson, AZ 85721, United States
| | - Steven M Johnson
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States.
| |
Collapse
|
29
|
Harnagel A, Lopez Quezada L, Park SW, Baranowski C, Kieser K, Jiang X, Roberts J, Vaubourgeix J, Yang A, Nelson B, Fay A, Rubin E, Ehrt S, Nathan C, Lupoli TJ. Nonredundant functions of Mycobacterium tuberculosis chaperones promote survival under stress. Mol Microbiol 2020; 115:272-289. [PMID: 32996193 DOI: 10.1111/mmi.14615] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022]
Abstract
Bacterial chaperones ClpB and DnaK, homologs of the respective eukaryotic heat shock proteins Hsp104 and Hsp70, are essential in the reactivation of toxic protein aggregates that occur during translation or periods of stress. In the pathogen Mycobacterium tuberculosis (Mtb), the protective effect of chaperones extends to survival in the presence of host stresses, such as protein-damaging oxidants. However, we lack a full understanding of the interplay of Hsps and other stress response genes in mycobacteria. Here, we employ genome-wide transposon mutagenesis to identify the genes that support clpB function in Mtb. In addition to validating the role of ClpB in Mtb's response to oxidants, we show that HtpG, a homolog of Hsp90, plays a distinct role from ClpB in the proteotoxic stress response. While loss of neither clpB nor htpG is lethal to the cell, loss of both through genetic depletion or small molecule inhibition impairs recovery after exposure to host-like stresses, especially reactive nitrogen species. Moreover, defects in cells lacking clpB can be complemented by overexpression of other chaperones, demonstrating that Mtb's stress response network depends upon finely tuned chaperone expression levels. These results suggest that inhibition of multiple chaperones could work in concert with host immunity to disable Mtb.
Collapse
Affiliation(s)
- Alexa Harnagel
- Department of Chemistry, New York University, New York, NY, USA
| | - Landys Lopez Quezada
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Sae Woong Park
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Catherine Baranowski
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Karen Kieser
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xiuju Jiang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Julia Roberts
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Julien Vaubourgeix
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Amy Yang
- Department of Chemistry, New York University, New York, NY, USA
| | - Brock Nelson
- Department of Chemistry, New York University, New York, NY, USA
| | - Allison Fay
- Immunology Program, Sloan Kettering Institute, New York, NY, USA
| | - Eric Rubin
- Immunology Program, Sloan Kettering Institute, New York, NY, USA
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Tania J Lupoli
- Department of Chemistry, New York University, New York, NY, USA.,Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
30
|
Hawkins PME, Tran W, Nagalingam G, Cheung CY, Giltrap AM, Cook GM, Britton WJ, Payne RJ. Total Synthesis and Antimycobacterial Activity of Ohmyungsamycin A, Deoxyecumicin, and Ecumicin. Chemistry 2020; 26:15200-15205. [PMID: 32567168 DOI: 10.1002/chem.202002408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/15/2020] [Indexed: 12/24/2022]
Abstract
The ohmyungsamycin and ecumicin natural product families are structurally related cyclic depsipeptides that display potent antimycobacterial activity. Herein the total syntheses of ohmyungsamycin A, deoxyecumicin, and ecumicin are reported, together with the direct biological comparison of members of these natural product families against Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis (TB). The synthesis of each of the natural products employed a solid-phase strategy to assemble the linear peptide precursor, involving a key on-resin esterification and an optional on-resin dimethylation step, before a final solution-phase macrolactamization between the non-proteinogenic N-methyl-4-methoxy-l-tryptophan amino acid and a bulky N-methyl-l-valine residue. The synthetic natural products possessed potent antimycobacterial activity against Mtb with MIC90 's ranging from 110-360 nm and retained activity against Mtb in Mtb-infected macrophages. Deoxyecumicin also exhibited rapid bactericidal killing against Mtb, sterilizing cultures after 21 days.
Collapse
Affiliation(s)
- Paige M E Hawkins
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Wendy Tran
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | | | - Chen-Yi Cheung
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, PO Box 56, 9016, Dunedin, New Zealand
| | - Andrew M Giltrap
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Gregory M Cook
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, PO Box 56, 9016, Dunedin, New Zealand
| | - Warwick J Britton
- Centenary Institute, The University of Sydney, Sydney, NSW, 2006, Australia.,Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
31
|
Tyagi R, Srivastava M, Jain P, Pandey RP, Asthana S, Kumar D, Raj VS. Development of potential proteasome inhibitors against Mycobacterium tuberculosis. J Biomol Struct Dyn 2020; 40:2189-2203. [PMID: 33074049 DOI: 10.1080/07391102.2020.1835722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Tuberculosis (TB) has been recently declared as a health emergency because of sporadic increase in Multidrug-resistant Tuberculosis (MDR-TB) problem throughout the world. TB causing bacteria, Mycobacterium tuberculosis has become resistant to the first line of treatment along with second line of treatment and drugs, which are accessible to us. Thus, there is an urgent need of identification of key targets and development of potential therapeutic approach(s), which can overcome the Mycobacterium tuberculosis complications. In the present study, Mycobacterium tuberculosis proteasome has been taken as a potential target as it is one of the key regulatory proteins in Mycobacterium tuberculosis propagation. Further, a library of 400 compounds (small molecule) from Medicines for Malaria Venture (MMV) were screened against the target (proteasome) using molecular docking and simulation approach, and selected lead compounds were validated in in vitro model. In this study, we have identified two potent small molecules from the MMV Pathogen Box library, MMV019838 and MMV687146 with -9.8 kcal/mol and -8.7 kcal/mol binding energy respectively, which actively interact with the catalytic domain/active domain of Mycobacterium tuberculosis proteasome and inhibit the Mycobacterium tuberculosis growth in in vitro culture. Furthermore, the molecular docking and simulation study of MMV019838 and MMV687146 with proteasome show strong and stable interaction with Mycobacterium tuberculosis compared to human proteasome and show no cytotoxicity effect. A better understanding of proteasome inhibition in Mycobacterium tuberculosis in in vitro and in vivo model would eventually allow us to understand the molecular mechanism(s) and discover a novel and potent therapeutic agent against Tuberculosis. Active efflux of drugs mediated by efflux pumps that confer drug resistance is one of the mechanisms developed by bacteria to counter the adverse effects of antibiotics and chemicals. Efflux pump activity was tested for a specific compound MMV019838 which was showing good in silico results than MIC values.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rashmi Tyagi
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi, Haryana, India
| | - Mitul Srivastava
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Preeti Jain
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Ramendra Pati Pandey
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi, Haryana, India
| | - Shailendra Asthana
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Dhruv Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida, India
| | - V Samuel Raj
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi, Haryana, India
| |
Collapse
|
32
|
Singh P, Khurana H, Yadav SP, Dhiman K, Singh P, Ashish, Singh R, Sharma D. Biochemical characterization of ClpB protein from Mycobacterium tuberculosis and identification of its small-molecule inhibitors. Int J Biol Macromol 2020; 165:375-387. [PMID: 32987071 DOI: 10.1016/j.ijbiomac.2020.09.131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/25/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022]
Abstract
Tuberculosis, caused by pathogenic M. tuberculosis, remains a global health concern among various infectious diseases. Studies show that ClpB, a major disaggregase, protects the pathogen from various stresses encountered in the host environment. In the present study we have performed a detailed biophysical characterization of M. tuberculosis ClpB followed by a high throughput screening to identify small molecule inhibitors. The sedimentation velocity studies reveal that ClpB oligomerization varies with its concentration and presence of nucleotides. Further, using high throughput malachite green-based screening assay, we identified potential novel inhibitors of ClpB ATPase activity. The enzyme kinetics revealed that the lead molecule inhibits ClpB activity in a competitive manner. These drugs were also able to inhibit ATPase activity associated with E. coli ClpB and yeast Hsp104. The identified drugs inhibited the growth of intracellular bacteria in macrophages. Small angle X-ray scattering based modeling shows that ATP, and not its non-hydrolyzable analogs induce large scale conformational rearrangements in ClpB. Remarkably, the identified small molecules inhibited these ATP inducible conformational changes, suggesting that nucleotide induced shape changes are crucial for ClpB activity. The study broadens our understanding of M. tuberculosis chaperone machinery and provides the basis for designing more potent inhibitors against ClpB chaperone.
Collapse
Affiliation(s)
- Prashant Singh
- Council of Scientific and Industrial Research-Institute of Microbial Technology, India
| | - Harleen Khurana
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, India
| | - Shiv Pratap Yadav
- Council of Scientific and Industrial Research-Institute of Microbial Technology, India
| | - Kanika Dhiman
- Council of Scientific and Industrial Research-Institute of Microbial Technology, India
| | - Padam Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, India
| | - Ashish
- Council of Scientific and Industrial Research-Institute of Microbial Technology, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, India
| | - Deepak Sharma
- Council of Scientific and Industrial Research-Institute of Microbial Technology, India.
| |
Collapse
|
33
|
Majumder P, Baumeister W. Proteasomes: unfoldase-assisted protein degradation machines. Biol Chem 2020; 401:183-199. [PMID: 31665105 DOI: 10.1515/hsz-2019-0344] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/02/2019] [Indexed: 01/05/2023]
Abstract
Proteasomes are the principal molecular machines for the regulated degradation of intracellular proteins. These self-compartmentalized macromolecular assemblies selectively degrade misfolded, mistranslated, damaged or otherwise unwanted proteins, and play a pivotal role in the maintenance of cellular proteostasis, in stress response, and numerous other processes of vital importance. Whereas the molecular architecture of the proteasome core particle (CP) is universally conserved, the unfoldase modules vary in overall structure, subunit complexity, and regulatory principles. Proteasomal unfoldases are AAA+ ATPases (ATPases associated with a variety of cellular activities) that unfold protein substrates, and translocate them into the CP for degradation. In this review, we summarize the current state of knowledge about proteasome - unfoldase systems in bacteria, archaea, and eukaryotes, the three domains of life.
Collapse
Affiliation(s)
- Parijat Majumder
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| |
Collapse
|
34
|
Lopez Quezada L, Smith R, Lupoli TJ, Edoo Z, Li X, Gold B, Roberts J, Ling Y, Park SW, Nguyen Q, Schoenen FJ, Li K, Hugonnet JE, Arthur M, Sacchettini JC, Nathan C, Aubé J. Activity-Based Protein Profiling Reveals That Cephalosporins Selectively Active on Non-replicating Mycobacterium tuberculosis Bind Multiple Protein Families and Spare Peptidoglycan Transpeptidases. Front Microbiol 2020; 11:1248. [PMID: 32655524 PMCID: PMC7324553 DOI: 10.3389/fmicb.2020.01248] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 05/15/2020] [Indexed: 11/13/2022] Open
Abstract
As β-lactams are reconsidered for the treatment of tuberculosis (TB), their targets are assumed to be peptidoglycan transpeptidases, as verified by adduct formation and kinetic inhibition of Mycobacterium tuberculosis (Mtb) transpeptidases by carbapenems active against replicating Mtb. Here, we investigated the targets of recently described cephalosporins that are selectively active against non-replicating (NR) Mtb. NR-active cephalosporins failed to inhibit recombinant Mtb transpeptidases. Accordingly, we used alkyne analogs of NR-active cephalosporins to pull down potential targets through unbiased activity-based protein profiling and identified over 30 protein binders. None was a transpeptidase. Several of the target candidates are plausibly related to Mtb's survival in an NR state. However, biochemical tests and studies of loss of function mutants did not identify a unique target that accounts for the bactericidal activity of these beta-lactams against NR Mtb. Instead, NR-active cephalosporins appear to kill Mtb by collective action on multiple targets. These results highlight the ability of these β-lactams to target diverse classes of proteins.
Collapse
Affiliation(s)
- Landys Lopez Quezada
- Department of Microbiology & Immunology, Weill Cornell Medical College, New York, NY, United States
| | - Robert Smith
- Chemical Methodologies & Library Development Center, The University of Kansas, Lawrence, KS, United States
| | - Tania J. Lupoli
- Department of Microbiology & Immunology, Weill Cornell Medical College, New York, NY, United States
| | - Zainab Edoo
- Sorbonne Université, Sorbonne Paris Cité, Université de Paris, INSERM, Centre de Recherche des Cordeliers, CRC, Paris, France
| | - Xiaojun Li
- Departments of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Ben Gold
- Department of Microbiology & Immunology, Weill Cornell Medical College, New York, NY, United States
| | - Julia Roberts
- Department of Microbiology & Immunology, Weill Cornell Medical College, New York, NY, United States
| | - Yan Ling
- Department of Microbiology & Immunology, Weill Cornell Medical College, New York, NY, United States
| | - Sae Woong Park
- Department of Microbiology & Immunology, Weill Cornell Medical College, New York, NY, United States
| | - Quyen Nguyen
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Frank J. Schoenen
- Chemical Methodologies & Library Development Center, The University of Kansas, Lawrence, KS, United States
| | - Kelin Li
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jean-Emmanuel Hugonnet
- Sorbonne Université, Sorbonne Paris Cité, Université de Paris, INSERM, Centre de Recherche des Cordeliers, CRC, Paris, France
| | - Michel Arthur
- Sorbonne Université, Sorbonne Paris Cité, Université de Paris, INSERM, Centre de Recherche des Cordeliers, CRC, Paris, France
| | - James C. Sacchettini
- Departments of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Carl Nathan
- Department of Microbiology & Immunology, Weill Cornell Medical College, New York, NY, United States
| | - Jeffrey Aubé
- Chemical Methodologies & Library Development Center, The University of Kansas, Lawrence, KS, United States
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
35
|
Shetye GS, Franzblau SG, Cho S. New tuberculosis drug targets, their inhibitors, and potential therapeutic impact. Transl Res 2020; 220:68-97. [PMID: 32275897 DOI: 10.1016/j.trsl.2020.03.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 11/18/2022]
Abstract
The current tuberculosis (TB) predicament poses numerous challenges and therefore every incremental scientific work and all positive socio-political engagements, are steps taken in the right direction to eradicate TB. Progression of the late stage TB-drug pipeline into the clinics is an immediate deliverable of this global effort. At the same time, fueling basic research and pursuing early discovery work must be sustained to maintain a healthy TB-drug pipeline. This review encompasses a broad analysis of chemotherapeutic strategies that target the DNA replication, protein synthesis, cell wall biosynthesis, energy metabolism and proteolysis of Mycobacterium tuberculosis (Mtb). It includes a status check of the current TB-drug pipeline with a focus on the associated biology, emerging targets, and their promising chemical inhibitors. Potential synergies and/or gaps within or across different chemotherapeutic strategies are systematically reviewed as well.
Collapse
Affiliation(s)
- Gauri S Shetye
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Scott G Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Sanghyun Cho
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
36
|
Lunge A, Gupta R, Choudhary E, Agarwal N. The unfoldase ClpC1 of Mycobacterium tuberculosis regulates the expression of a distinct subset of proteins having intrinsically disordered termini. J Biol Chem 2020; 295:9455-9473. [PMID: 32409584 DOI: 10.1074/jbc.ra120.013456] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/07/2020] [Indexed: 12/22/2022] Open
Abstract
The human pathogen Mycobacterium tuberculosis (Mtb) harbors a well-orchestrated Clp (caseinolytic protease) proteolytic machinery consisting of two oligomeric segments, a barrel-shaped heterotetradecameric protease core comprising the ClpP1 and ClpP2 subunits, and hexameric ring-like ATP-dependent unfoldases composed of ClpX or ClpC1. The roles of the ClpP1P2 protease subunits are well-established in Mtb, but the potential roles of the associated unfoldases, such as ClpC1, remain elusive. Using a CRISPR interference-mediated gene silencing approach, here we demonstrate that clpC1 is indispensable for the extracellular growth of Mtb and for its survival in macrophages. The results from isobaric tags for relative and absolute quantitation-based quantitative proteomic experiments with clpC1- and clpP2-depleted Mtb cells suggested that the ClpC1P1P2 complex critically maintains the homeostasis of various growth-essential proteins in Mtb, several of which contain intrinsically disordered regions at their termini. We show that the Clp machinery regulates dosage-sensitive proteins such as the small heat shock protein Hsp20, which exists in a dodecameric conformation. Further, we observed that Hsp20 is poorly expressed in WT Mtb and that its expression is greatly induced upon depletion of clpC1 or clpP2 Remarkably, high Hsp20 protein levels were detected in the clpC1(-) or clpP2(-) knockdown strains but not in the parental bacteria, despite significant induction of hsp20 transcripts. In summary, the cellular levels of oligomeric proteins such as Hsp20 are maintained post-translationally through their recognition, disassembly, and degradation by ClpC1, which requires disordered ends in its protein substrates.
Collapse
Affiliation(s)
- Ajitesh Lunge
- Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, India.,Jawaharlal Nehru University, New Delhi, India
| | - Radhika Gupta
- Daulat Ram College, University of Delhi, Delhi, India.,Institute of Genomics and Integrative Biology, New Delhi, India
| | - Eira Choudhary
- Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, India.,Symbiosis International (Deemed University), Lavale, Pune, India
| | - Nisheeth Agarwal
- Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, India
| |
Collapse
|
37
|
Mycobacterium smegmatis MSMEG_0129 is a nutrition-associated regulator that interacts with CarD and ClpP2. Int J Biochem Cell Biol 2020; 124:105763. [PMID: 32389745 DOI: 10.1016/j.biocel.2020.105763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 04/14/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022]
Abstract
Mycobacterium smegmatis MSMEG_0129 and Rv0164, its homologue in Mycobacterium tuberculosis, are single START-domain proteins essential for bacterial growth and survival, but their biochemical activities and biological roles remain undetermined. Here, we probed the possible functions of MSMEG_0129 and its underlying mechanisms by determining its cellular location, searching for its interaction partners and monitoring its transcription profile. MSMEG_0129, and Rv0164 by extension, were found to be cytosolic proteins rather than secreted components as previously understood. Increases in MSMEG_0129 expression at physiological levels accelerated bacterial growth in a proportional manner, but additional growth acceleration was not observed when MSMEG_0129 was overexpressed up to 20 fold. MSMEG_0129 is a short-lived protein, unstable at both the mRNA and protein levels. Co-IP and GST pull-down assays showed that MSMEG_0129 interacts with the ClpP2 protease and a global transcription factor, CarD, their expression being correlated with that of MSMEG_0129. Nutrient deficiency led to the downregulation of MSMEG_0129 but upregulation of CarD. However, in the context of constitutive MSMEG_0129 overexpression under nutrient-rich or starvation conditions, the mRNA level of CarD was reduced 3 fold. Conversely, expression of ClpP2 decreased with MSMEG_0129 downregulation under starvation conditions, but increased 4-8 fold when MSMEG_0129 was overexpressed. Our data suggest that MSMEG_0129, and Rv0164 by analogy, are likely to be nutrition sensing factors that regulate mycobacterial growth and may be involved in signal transfer under nutrient deficiency, possibly via physical and regulatory interactions with CarD and ClpP2.
Collapse
|
38
|
Wolf NM, Lee H, Zagal D, Nam JW, Oh DC, Lee H, Suh JW, Pauli GF, Cho S, Abad-Zapatero C. Structure of the N-terminal domain of ClpC1 in complex with the antituberculosis natural product ecumicin reveals unique binding interactions. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2020; 76:458-471. [PMID: 32355042 PMCID: PMC7193532 DOI: 10.1107/s2059798320004027] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/22/2020] [Indexed: 11/10/2022]
Abstract
The biological processes related to protein homeostasis in Mycobacterium tuberculosis, the etiologic agent of tuberculosis, have recently been established as critical pathways for therapeutic intervention. Proteins of particular interest are ClpC1 and the ClpC1-ClpP1-ClpP2 proteasome complex. The structure of the potent antituberculosis macrocyclic depsipeptide ecumicin complexed with the N-terminal domain of ClpC1 (ClpC1-NTD) is presented here. Crystals of the ClpC1-NTD-ecumicin complex were monoclinic (unit-cell parameters a = 80.0, b = 130.0, c = 112.0 Å, β = 90.07°; space group P21; 12 complexes per asymmetric unit) and diffracted to 2.5 Å resolution. The structure was solved by molecular replacement using the self-rotation function to resolve space-group ambiguities. The new structure of the ecumicin complex showed a unique 1:2 (target:ligand) stoichiometry exploiting the intramolecular dyad in the α-helical fold of the target N-terminal domain. The structure of the ecumicin complex unveiled extensive interactions in the uniquely extended N-terminus, a critical binding site for the known cyclopeptide complexes. This structure, in comparison with the previously reported rufomycin I complex, revealed unique features that could be relevant for understanding the mechanism of action of these potential antituberculosis drug leads. Comparison of the ecumicin complex and the ClpC1-NTD-L92S/L96P double-mutant structure with the available structures of rufomycin I and cyclomarin A complexes revealed a range of conformational changes available to this small N-terminal helical domain and the minor helical alterations involved in the antibiotic-resistance mechanism. The different modes of binding and structural alterations could be related to distinct modes of action.
Collapse
Affiliation(s)
- Nina M Wolf
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Hyun Lee
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Daniel Zagal
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Joo Won Nam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Dong Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hanki Lee
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Cheoin-gu, Yongin-si, Gyeonggi-do 17058, Republic of Korea
| | - Joo Won Suh
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Cheoin-gu, Yongin-si, Gyeonggi-do 17058, Republic of Korea
| | - Guido F Pauli
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sanghyun Cho
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Celerino Abad-Zapatero
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
39
|
Rožman K, Alexander EM, Ogorevc E, Bozovičar K, Sosič I, Aldrich CC, Gobec S. Psoralen Derivatives as Inhibitors of Mycobacterium tuberculosis Proteasome. Molecules 2020; 25:E1305. [PMID: 32178473 PMCID: PMC7144120 DOI: 10.3390/molecules25061305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 12/19/2022] Open
Abstract
Protein degradation is a fundamental process in all living organisms. An important part of this system is a multisubunit, barrel-shaped protease complex called the proteasome. This enzyme is directly responsible for the proteolysis of ubiquitin- or pup-tagged proteins to smaller peptides. In this study, we present a series of 92 psoralen derivatives, of which 15 displayed inhibitory potency against the Mycobacterium tuberculosis proteasome in low micromolar concentrations. The best inhibitors, i.e., 8, 11, 13 and 15, exhibited a mixed type of inhibition and overall good inhibitory potency in biochemical assays. N-(cyanomethyl)acetamide 8 (Ki = 5.6 µM) and carboxaldehyde-based derivative 15 (Ki = 14.9 µM) were shown to be reversible inhibitors of the enzyme. On the other hand, pyrrolidine-2,5-dione esters 11 and 13 irreversibly inhibited the enzyme with Ki values of 4.2 µM and 1.1 µM, respectively. In addition, we showed that an established immunoproteasome inhibitor, PR-957, is a noncompetitive irreversible inhibitor of the mycobacterial proteasome (Ki = 5.2 ± 1.9 µM, kinact/Ki = 96 ± 41 M-1·s-1). These compounds represent interesting hit compounds for further optimization in the development of new drugs for the treatment of tuberculosis.
Collapse
Affiliation(s)
- Kaja Rožman
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia; (K.R.); (E.O.); (K.B.); (I.S.)
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street Southeast, Minneapolis, MN 55455, USA; (E.M.A.); (C.C.A.)
| | - Evan M. Alexander
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street Southeast, Minneapolis, MN 55455, USA; (E.M.A.); (C.C.A.)
| | - Eva Ogorevc
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia; (K.R.); (E.O.); (K.B.); (I.S.)
| | - Krištof Bozovičar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia; (K.R.); (E.O.); (K.B.); (I.S.)
| | - Izidor Sosič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia; (K.R.); (E.O.); (K.B.); (I.S.)
| | - Courtney C. Aldrich
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street Southeast, Minneapolis, MN 55455, USA; (E.M.A.); (C.C.A.)
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia; (K.R.); (E.O.); (K.B.); (I.S.)
| |
Collapse
|
40
|
Multitargeting Compounds: A Promising Strategy to Overcome Multi-Drug Resistant Tuberculosis. Molecules 2020; 25:molecules25051239. [PMID: 32182964 PMCID: PMC7179463 DOI: 10.3390/molecules25051239] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/28/2020] [Accepted: 03/08/2020] [Indexed: 12/18/2022] Open
Abstract
Tuberculosis is still an urgent global health problem, mainly due to the spread of multi-drug resistant M. tuberculosis strains, which lead to the need of new more efficient drugs. A strategy to overcome the problem of the resistance insurgence could be the polypharmacology approach, to develop single molecules that act on different targets. Polypharmacology could have features that make it an approach more effective than the classical polypharmacy, in which different drugs with high affinity for one target are taken together. Firstly, for a compound that has multiple targets, the probability of development of resistance should be considerably reduced. Moreover, such compounds should have higher efficacy, and could show synergic effects. Lastly, the use of a single molecule should be conceivably associated with a lower risk of side effects, and problems of drug–drug interaction. Indeed, the multitargeting approach for the development of novel antitubercular drugs have gained great interest in recent years. This review article aims to provide an overview of the most recent and promising multitargeting antitubercular drug candidates.
Collapse
|
41
|
Aswal M, Garg A, Singhal N, Kumar M. Comparative in-silico proteomic analysis discerns potential granuloma proteins of Yersinia pseudotuberculosis. Sci Rep 2020; 10:3036. [PMID: 32080254 PMCID: PMC7033130 DOI: 10.1038/s41598-020-59924-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 02/03/2020] [Indexed: 11/29/2022] Open
Abstract
Yersinia pseudotuberculosis is one of the three pathogenic species of the genus Yersinia. Most studies regarding pathogenesis of Y. pseudotuberculosis are based on the proteins related to Type III secretion system, which is a well-known primary virulence factor in pathogenic Gram-negative bacteria, including Y. pseudotuberculosis. Information related to the factors involved in Y. pseudotuberculosis granuloma formation is scarce. In the present study we have used a computational approach to identify proteins that might be potentially involved in formation of Y. pseudotuberculosis granuloma. A comparative proteome analysis and conserved orthologous protein identification was performed between two different genera of bacteria - Mycobacterium and Yersinia, their only common pathogenic trait being ability to form necrotizing granuloma. Comprehensive analysis of orthologous proteins was performed in proteomes of seven bacterial species. This included M. tuberculosis, M. bovis and M. avium paratuberculosis - the known granuloma forming Mycobacterium species, Y. pestis and Y. frederiksenii - the non-granuloma forming Yersinia species and, Y. enterocolitica - that forms micro-granuloma and, Y. pseudotuberculosis - a prominent granuloma forming Yersinia species. In silico proteome analysis indicated that seven proteins (UniProt id A0A0U1QT64, A0A0U1QTE0, A0A0U1QWK3, A0A0U1R1R0, A0A0U1R1Z2, A0A0U1R2S7, A7FMD4) might play some role in Y. pseudotuberculosis granuloma. Validation of the probable involvement of the seven proposed Y. pseudotuberculosis granuloma proteins was done using transcriptome data analysis and, by mapping on a composite protein-protein interaction map of experimentally proved M. tuberculosis granuloma proteins (RD1 locus proteins, ESAT-6 secretion system proteins and intra-macrophage secreted proteins). Though, additional experiments involving knocking out of each of these seven proteins are required to confirm their role in Y. pseudotuberculosis granuloma our study can serve as a basis for further studies on Y. pseudotuberculosis granuloma.
Collapse
Affiliation(s)
- Manisha Aswal
- Department of Biophysics, University of Delhi South Campus, New Delhi, 110021, India
| | - Anjali Garg
- Department of Biophysics, University of Delhi South Campus, New Delhi, 110021, India
| | - Neelja Singhal
- Department of Biophysics, University of Delhi South Campus, New Delhi, 110021, India
| | - Manish Kumar
- Department of Biophysics, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
42
|
Hunsaker EW, Franz KJ. Emerging Opportunities To Manipulate Metal Trafficking for Therapeutic Benefit. Inorg Chem 2019; 58:13528-13545. [PMID: 31247859 DOI: 10.1021/acs.inorgchem.9b01029] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The indispensable requirement for metals in life processes has led to the evolution of sophisticated mechanisms that allow organisms to maintain dynamic equilibria of these ions. This dynamic control of the level, speciation, and availability of a variety of metal ions allows organisms to sustain biological processes while avoiding toxicity. When functioning properly, these mechanisms allow cells to return to their metal homeostatic set points following shifts in the metal availability or other stressors. These periods of transition, when cells are in a state of flux in which they work to regain homeostasis, present windows of opportunity to pharmacologically manipulate targets associated with metal-trafficking pathways in ways that could either facilitate a return to homeostasis and the recovery of cellular function or further push cells outside of homeostasis and into cellular distress. The purpose of this Viewpoint is to highlight emerging opportunities for chemists and chemical biologists to develop compounds to manipulate metal-trafficking processes for therapeutic benefit.
Collapse
Affiliation(s)
- Elizabeth W Hunsaker
- Department of Chemistry , Duke University , French Family Science Center, 124 Science Drive , Durham , North Carolina 27708 , United States
| | - Katherine J Franz
- Department of Chemistry , Duke University , French Family Science Center, 124 Science Drive , Durham , North Carolina 27708 , United States
| |
Collapse
|
43
|
Wolf NM, Lee H, Choules MP, Pauli GF, Phansalkar R, Anderson JR, Gao W, Ren J, Santarsiero BD, Lee H, Cheng J, Jin YY, Ho NA, Duc NM, Suh JW, Abad-Zapatero C, Cho S. High-Resolution Structure of ClpC1-Rufomycin and Ligand Binding Studies Provide a Framework to Design and Optimize Anti-Tuberculosis Leads. ACS Infect Dis 2019; 5:829-840. [PMID: 30990022 DOI: 10.1021/acsinfecdis.8b00276] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Addressing the urgent need to develop novel drugs against drug-resistant Mycobacterium tuberculosis ( M. tb) strains, ecumicin (ECU) and rufomycin I (RUFI) are being explored as promising new leads targeting cellular proteostasis via the caseinolytic protein ClpC1. Details of the binding topology and chemical mode of (inter)action of these cyclopeptides help drive further development of novel potency-optimized entities as tuberculosis drugs. ClpC1 M. tb protein constructs with mutations driving resistance to ECU and RUFI show reduced binding affinity by surface plasmon resonance (SPR). Despite certain structural similarities, ECU and RUFI resistant mutation sites did not overlap in their SPR binding patterns. SPR competition experiments show ECU prevents RUFI binding, whereas RUFI partially inhibits ECU binding. The X-ray structure of the ClpC1-NTD-RUFI complex reveals distinct differences compared to the previously reported ClpC1-NTD-cyclomarin A structure. Surprisingly, the complex structure revealed that the epoxide moiety of RUFI opened and covalently bound to ClpC1-NTD via the sulfur atom of Met1. Furthermore, RUFI analogues indicate that the epoxy group of RUFI is critical for binding and bactericidal activity. The outcomes demonstrate the significance of ClpC1 as a novel target and the importance of SAR analysis of identified macrocyclic peptides for drug discovery.
Collapse
Affiliation(s)
- Nina M. Wolf
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - Hyun Lee
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
- Biophysics Core at the Research Resource Center, University of Illinois at Chicago, 1100 S. Ashland Street, Chicago, Illinois 60612, United States
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - Mary P. Choules
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - Guido F. Pauli
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - Rasika Phansalkar
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - Jeffrey R. Anderson
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - Wei Gao
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - Jinhong Ren
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, 900 S. Ashland Street, Chicago, Illinois 60612, United States
| | - Bernard D. Santarsiero
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, 900 S. Ashland Street, Chicago, Illinois 60612, United States
| | - Hanki Lee
- Center for Nutraceutical and Pharmaceutical Materials, College of Natural Sciences, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin-si, Gyeonggi-do 17058, Republic of Korea
| | - Jinhua Cheng
- Center for Nutraceutical and Pharmaceutical Materials, College of Natural Sciences, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin-si, Gyeonggi-do 17058, Republic of Korea
- Division of Bioscience and Bioinformatics, College of Natural Sciences, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin-si, Gyeonggi-do 17058, Republic of Korea
| | - Ying-Yu Jin
- Center for Nutraceutical and Pharmaceutical Materials, College of Natural Sciences, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin-si, Gyeonggi-do 17058, Republic of Korea
- Division of Bioscience and Bioinformatics, College of Natural Sciences, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin-si, Gyeonggi-do 17058, Republic of Korea
| | - Ngoc Anh Ho
- Center for Nutraceutical and Pharmaceutical Materials, College of Natural Sciences, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin-si, Gyeonggi-do 17058, Republic of Korea
| | - Nguyen Minh Duc
- Center for Nutraceutical and Pharmaceutical Materials, College of Natural Sciences, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin-si, Gyeonggi-do 17058, Republic of Korea
| | - Joo-Won Suh
- Center for Nutraceutical and Pharmaceutical Materials, College of Natural Sciences, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin-si, Gyeonggi-do 17058, Republic of Korea
- Division of Bioscience and Bioinformatics, College of Natural Sciences, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin-si, Gyeonggi-do 17058, Republic of Korea
| | - Celerino Abad-Zapatero
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, 900 S. Ashland Street, Chicago, Illinois 60612, United States
| | - Sanghyun Cho
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
| |
Collapse
|
44
|
Washburn A, Abdeen S, Ovechkina Y, Ray AM, Stevens M, Chitre S, Sivinski J, Park Y, Johnson J, Hoang QQ, Chapman E, Parish T, Johnson SM. Dual-targeting GroEL/ES chaperonin and protein tyrosine phosphatase B (PtpB) inhibitors: A polypharmacology strategy for treating Mycobacterium tuberculosis infections. Bioorg Med Chem Lett 2019; 29:1665-1672. [PMID: 31047750 DOI: 10.1016/j.bmcl.2019.04.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/20/2019] [Accepted: 04/23/2019] [Indexed: 12/13/2022]
Abstract
Current treatments for Mycobacterium tuberculosis infections require long and complicated regimens that can lead to patient non-compliance, increasing incidences of antibiotic-resistant strains, and lack of efficacy against latent stages of disease. Thus, new therapeutics are needed to improve tuberculosis standard of care. One strategy is to target protein homeostasis pathways by inhibiting molecular chaperones such as GroEL/ES (HSP60/10) chaperonin systems. M. tuberculosis has two GroEL homologs: GroEL1 is not essential but is important for cytokine-dependent granuloma formation, while GroEL2 is essential for survival and likely functions as the canonical housekeeping chaperonin for folding proteins. Another strategy is to target the protein tyrosine phosphatase B (PtpB) virulence factor that M. tuberculosis secretes into host cells to help evade immune responses. In the present study, we have identified a series of GroEL/ES inhibitors that inhibit M. tuberculosis growth in liquid culture and biochemical function of PtpB in vitro. With further optimization, such dual-targeting GroEL/ES and PtpB inhibitors could be effective against all stages of tuberculosis - actively replicating bacteria, bacteria evading host cell immune responses, and granuloma formation in latent disease - which would be a significant advance to augment current therapeutics that primarily target actively replicating bacteria.
Collapse
Affiliation(s)
- Alex Washburn
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Sanofar Abdeen
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Yulia Ovechkina
- Infectious Disease Research Institute, 1616 Eastlake Ave E, Seattle, WA 98102, United States
| | - Anne-Marie Ray
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Mckayla Stevens
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Siddhi Chitre
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Jared Sivinski
- The University of Arizona, College of Pharmacy, Department of Pharmacology and Toxicology, 1703 E. Mabel St., PO Box 210207, Tucson, AZ 85721, United States
| | - Yangshin Park
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States; Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W. 15th Street, Suite 414, Indianapolis, IN 46202, United States; Department of Neurology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, United States
| | - James Johnson
- Infectious Disease Research Institute, 1616 Eastlake Ave E, Seattle, WA 98102, United States
| | - Quyen Q Hoang
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States; Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W. 15th Street, Suite 414, Indianapolis, IN 46202, United States; Department of Neurology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, United States
| | - Eli Chapman
- The University of Arizona, College of Pharmacy, Department of Pharmacology and Toxicology, 1703 E. Mabel St., PO Box 210207, Tucson, AZ 85721, United States
| | - Tanya Parish
- Infectious Disease Research Institute, 1616 Eastlake Ave E, Seattle, WA 98102, United States
| | - Steven M Johnson
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States.
| |
Collapse
|
45
|
Nocedo-Mena D, Cornelio C, Camacho-Corona MDR, Garza-González E, Waksman de Torres N, Arrasate S, Sotomayor N, Lete E, González-Díaz H. Modeling Antibacterial Activity with Machine Learning and Fusion of Chemical Structure Information with Microorganism Metabolic Networks. J Chem Inf Model 2019; 59:1109-1120. [PMID: 30802402 DOI: 10.1021/acs.jcim.9b00034] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Predicting the activity of new chemical compounds over pathogenic microorganisms with different metabolic reaction networks (MRN s) is an important goal due to the different susceptibility to antibiotics. The ChEMBL database contains >160 000 outcomes of preclinical assays of antimicrobial activity for 55 931 compounds with >365 parameters of activity (MIC, IC50, etc.) and >90 bacteria strains of >25 bacterial species. In addition, the Leong and Barabàsi data set includes >40 MRNs of microorganisms. However, there are no models able to predict antibacterial activity for multiple assays considering both drug and MRN structures at the same time. In this work, we combined perturbation theory, machine learning, and information fusion techniques to develop the first PTMLIF model. The best linear model found presented values of specificity = 90.31/90.40 and sensitivity = 88.14/88.07 in training/validation series. We carried out a comparison to nonlinear artificial neural network (ANN) techniques and previous models from the literature. Next, we illustrated the practical use of the model with an experimental case of study. We reported for the first time the isolation and characterization of terpenes from the plant Cissus incisa. The antibacterial activity of the terpenes was experimentally determined. The more active compounds were phytol and α-amyrin, with MIC = 100 μg/mL for Vancomycin-resistant Enterococcus faecium and Acinetobacter baumannii resistant to carbapenems. These compounds are already known from other sources. However, they have been isolated and evaluated for the first time here against several strains of multidrug-resistant bacteria including World Health Organization (WHO) priority pathogens. Last, we used the model to predict the activity of these compounds versus other microorganisms with different MRNs in order to find other potential targets.
Collapse
Affiliation(s)
- Deyani Nocedo-Mena
- Department of Organic Chemistry II , University of the Basque Country UPV/EHU , 48940 Leioa , Spain.,Facultad de Ciencias Químicas , Universidad Autónoma de Nuevo León , CP 66455 San Nicolás de los Garza , Nuevo León , México
| | - Carlos Cornelio
- Department of Organic Chemistry II , University of the Basque Country UPV/EHU , 48940 Leioa , Spain
| | - María Del Rayo Camacho-Corona
- Facultad de Ciencias Químicas , Universidad Autónoma de Nuevo León , CP 66455 San Nicolás de los Garza , Nuevo León , México
| | - Elvira Garza-González
- Servicio de Gastroenterología, Hospital Universitario, Dr. Eleuterio González , Universidad Autónoma de Nuevo León , CP 64460 Monterrey , Nuevo León , México
| | - Noemi Waksman de Torres
- Facultad de Medicina , Universidad Autónoma de Nuevo León , CP 64460 Monterrey , Nuevo León , México
| | - Sonia Arrasate
- Department of Organic Chemistry II , University of the Basque Country UPV/EHU , 48940 Leioa , Spain
| | - Nuria Sotomayor
- Department of Organic Chemistry II , University of the Basque Country UPV/EHU , 48940 Leioa , Spain
| | - Esther Lete
- Department of Organic Chemistry II , University of the Basque Country UPV/EHU , 48940 Leioa , Spain
| | - Humbert González-Díaz
- Department of Organic Chemistry II , University of the Basque Country UPV/EHU , 48940 Leioa , Spain.,IKERBASQUE, Basque Foundation for Science , 48011 Bilbao , Biscay , Spain
| |
Collapse
|
46
|
Rufomycin Targets ClpC1 Proteolysis in Mycobacterium tuberculosis and M. abscessus. Antimicrob Agents Chemother 2019; 63:AAC.02204-18. [PMID: 30602512 PMCID: PMC6395927 DOI: 10.1128/aac.02204-18] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/14/2018] [Indexed: 11/29/2022] Open
Abstract
ClpC1 is an emerging new target for the treatment of Mycobacterium tuberculosis infections, and several cyclic peptides (ecumicin, cyclomarin A, and lassomycin) are known to act on this target. This study identified another group of peptides, the rufomycins (RUFs), as bactericidal to M. tuberculosis through the inhibition of ClpC1 and subsequent modulation of protein degradation of intracellular proteins. ClpC1 is an emerging new target for the treatment of Mycobacterium tuberculosis infections, and several cyclic peptides (ecumicin, cyclomarin A, and lassomycin) are known to act on this target. This study identified another group of peptides, the rufomycins (RUFs), as bactericidal to M. tuberculosis through the inhibition of ClpC1 and subsequent modulation of protein degradation of intracellular proteins. Rufomycin I (RUFI) was found to be a potent and selective lead compound for both M. tuberculosis (MIC, 0.02 μM) and Mycobacterium abscessus (MIC, 0.4 μM). Spontaneously generated mutants resistant to RUFI involved seven unique single nucleotide polymorphism (SNP) mutations at three distinct codons within the N-terminal domain of clpC1 (V13, H77, and F80). RUFI also significantly decreased the proteolytic capabilities of the ClpC1/P1/P2 complex to degrade casein, while having no significant effect on the ATPase activity of ClpC1. This represents a marked difference from ecumicin, which inhibits ClpC1 proteolysis but stimulates the ATPase activity, thereby providing evidence that although these peptides share ClpC1 as a macromolecular target, their downstream effects are distinct, likely due to differences in binding.
Collapse
|
47
|
|
48
|
ATP hydrolysis-coupled peptide translocation mechanism of Mycobacterium tuberculosis ClpB. Proc Natl Acad Sci U S A 2018; 115:E9560-E9569. [PMID: 30257943 PMCID: PMC6187150 DOI: 10.1073/pnas.1810648115] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The Mycobacterium tuberculosis (Mtb) ClpB is a ring-shaped, ATP-driven disaggregase. The ability to rescue aggregated proteins is crucial for Mtb to grow and persist in the host. Despite extensive studies in the past two decades, it is still not well understood how a bacterial disaggregase couples ATP binding and hydrolysis to peptide translocation. Our cryo-EM study of the Mtb ClpB in the presence of a peptide substrate and the slowly hydrolysable adenosine 5′-[γ-thio]triphosphate revealed two active conformations in the midst of the substrate-threading process. This, together with the resolved nucleotide state in each of the 12 nucleotide-binding domains of the ClpB hexamer, helps define a detailed atomic trajectory that couples ATP binding and hydrolysis to mechanical protein translocation. The protein disaggregase ClpB hexamer is conserved across evolution and has two AAA+-type nucleotide-binding domains, NBD1 and NBD2, in each protomer. In M. tuberculosis (Mtb), ClpB facilitates asymmetric distribution of protein aggregates during cell division to help the pathogen survive and persist within the host, but a mechanistic understanding has been lacking. Here we report cryo-EM structures at 3.8- to 3.9-Å resolution of Mtb ClpB bound to a model substrate, casein, in the presence of the weakly hydrolyzable ATP mimic adenosine 5′-[γ-thio]triphosphate. Mtb ClpB existed in solution in two closed-ring conformations, conformers 1 and 2. In both conformers, the 12 pore-loops on the 12 NTDs of the six protomers (P1–P6) were arranged similarly to a staircase around the bound peptide. Conformer 1 is a low-affinity state in which three of the 12 pore-loops (the protomer P1 NBD1 and NBD2 loops and the protomer P2 NBD1 loop) are not engaged with peptide. Conformer 2 is a high-affinity state because only one pore-loop (the protomer P2 NBD1 loop) is not engaged with the peptide. The resolution of the two conformations, along with their bound substrate peptides and nucleotides, enabled us to propose a nucleotide-driven peptide translocation mechanism of a bacterial ClpB that is largely consistent with several recent unfoldase structures, in particular with the eukaryotic Hsp104. However, whereas Hsp104’s two NBDs move in opposing directions during one step of peptide translocation, in Mtb ClpB the two NBDs move only in the direction of translocation.
Collapse
|