1
|
Islamuddin M, Ali A, Khan WH, Ali A, Hasan SK, Abdullah M, Kato K, Abdin MZ, Parveen S. Development of Highly Sensitive Sandwich ELISA for the Early-Phase Diagnosis of Chikungunya Virus Utilizing rE2-E1 Protein. Infect Drug Resist 2022; 15:4065-4078. [PMID: 35924014 PMCID: PMC9342874 DOI: 10.2147/idr.s347545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/03/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Chikungunya is caused by an alpha virus transmitted to humans by an infected mosquito. Infection is generally considered to be self-limiting and non-critical. Chikungunya infection may be diagnosed by severe joint pain with fever, but it is difficult to diagnose because the symptoms of chikungunya are common to many pathogens, including dengue fever. Diagnosis mainly depends on viral culture, reverse transcriptase polymerase chain reaction (RT-PCR), and IgM ELISA. Early and accurate diagnosis of the virus can be achieved by the application of PCR methods, but the high cost and the need for a thermal cycler restrict the use of such methods. On the other hand, antibody-based IgM ELISA is considered to be inexpensive, but antibodies against chikungunya virus (CHIKV) only develop after 4 days of infection, so it has limited application in the earlier diagnosis of viral infection and the management of patients. Because of these challenges, a simple antigen-based sensitive, specific, and rapid detection method is required for the early and accurate clinical diagnosis of chikungunya. Methods The amino acid sequence of CHIKV ectodomain E1 and E2 proteins was analyzed using bioinformatics tools to determine the antigenic residues, particularly the B-cell epitopes and their characteristics. Recombinant E2-E1 CHIKV antigen was used for the development of polyclonal antibodies in hamsters and IgG was purified. Serological tests of 96 CHIKV patients were conducted by antigen-capture ELISA using primary antibodies raised against rCHIKV E2-E1 in hamsters and human anti-CHIKV antibodies. Results We observed high specificity and sensitivity, of 100% and 95.8%, respectively, and these values demonstrate the efficiency of the test as a clinical diagnostic tool. There was no cross-reactivity with samples taken from dengue patients. Discussion Our simple and sensitive sandwich ELISA for the early-phase detection of CHIKV infection may be used to improve the diagnosis of chikungunya.
Collapse
Affiliation(s)
- Mohammad Islamuddin
- Molecular Virology Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
- Correspondence: Mohammad Islamuddin; Shama Parveen, Email ;
| | - Abuzer Ali
- Department of Pharmacognosy, College of Pharmacy, Taif University, Taif, 21944, Saudi Arabia
| | - Wajihul Hasan Khan
- Molecular Virology Lab, Department of Microbiology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Amena Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, 21944, Saudi Arabia
| | - Syed Kazim Hasan
- Molecular Virology Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Mohd Abdullah
- Microbiology Laboratory, Ansari Health Center, Jamia Millia Islamia, New Delhi 110025, India
| | - Kentaro Kato
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Malik Zainul Abdin
- Department of Biotechnology, School of Chemical and Life Sciences, Hamdard University, New Delhi 110026, India
| | - Shama Parveen
- Molecular Virology Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| |
Collapse
|
2
|
Burton NR, Kim P, Backus KM. Photoaffinity labelling strategies for mapping the small molecule-protein interactome. Org Biomol Chem 2021; 19:7792-7809. [PMID: 34549230 PMCID: PMC8489259 DOI: 10.1039/d1ob01353j] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nearly all FDA approved drugs and bioactive small molecules exert their effects by binding to and modulating proteins. Consequently, understanding how small molecules interact with proteins at an molecular level is a central challenge of modern chemical biology and drug development. Complementary to structure-guided approaches, chemoproteomics has emerged as a method capable of high-throughput identification of proteins covalently bound by small molecules. To profile noncovalent interactions, established chemoproteomic workflows typically incorporate photoreactive moieties into small molecule probes, which enable trapping of small molecule-protein interactions (SMPIs). This strategy, termed photoaffinity labelling (PAL), has been utilized to profile an array of small molecule interactions, including for drugs, lipids, metabolites, and cofactors. Herein we describe the discovery of photocrosslinking chemistries, including a comparison of the strengths and limitations of implementation of each chemotype in chemoproteomic workflows. In addition, we highlight key examples where photoaffinity labelling has enabled target deconvolution and interaction site mapping.
Collapse
Affiliation(s)
- Nikolas R Burton
- Department of Chemistry and Biochemistry, College of Arts and Sciences, UCLA, Los Angeles, CA, 90095, USA.
| | - Phillip Kim
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Keriann M Backus
- Department of Chemistry and Biochemistry, College of Arts and Sciences, UCLA, Los Angeles, CA, 90095, USA.
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| |
Collapse
|
3
|
Fang H, Peng B, Ong SY, Wu Q, Li L, Yao SQ. Recent advances in activity-based probes (ABPs) and affinity-based probes (A fBPs) for profiling of enzymes. Chem Sci 2021; 12:8288-8310. [PMID: 34221311 PMCID: PMC8221178 DOI: 10.1039/d1sc01359a] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/11/2021] [Indexed: 12/14/2022] Open
Abstract
Activity-based protein profiling (ABPP) is a technique that uses highly selective active-site targeted chemical probes to label and monitor the state of proteins. ABPP integrates the strengths of both chemical and biological disciplines. By utilizing chemically synthesized or modified bioactive molecules, ABPP is able to reveal complex physiological and pathological enzyme-substrate interactions at molecular and cellular levels. It is also able to provide critical information of the catalytic activity changes of enzymes, annotate new functions of enzymes, discover new substrates of enzymes, and allow real-time monitoring of the cellular location of enzymes. Based on the mechanism of probe-enzyme interaction, two types of probes that have been used in ABPP are activity-based probes (ABPs) and affinity-based probes (AfBPs). This review highlights the recent advances in the use of ABPs and AfBPs, and summarizes their design strategies (based on inhibitors and substrates) and detection approaches.
Collapse
Affiliation(s)
- Haixiao Fang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University 127 West Youyi Road Xi'an 710072 P. R. China
| | - Sing Yee Ong
- Department of Chemistry, National University of Singapore 4 Science Drive 2 117544 Singapore
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore 4 Science Drive 2 117544 Singapore
| |
Collapse
|
4
|
Korovesis D, Beard HA, Mérillat C, Verhelst SHL. Probes for Photoaffinity Labelling of Kinases. Chembiochem 2021; 22:2206-2218. [PMID: 33544409 DOI: 10.1002/cbic.202000874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/05/2021] [Indexed: 11/06/2022]
Abstract
Protein kinases, one of the largest enzyme superfamilies, regulate many physiological and pathological processes. They are drug targets for multiple human diseases, including various cancer types. Probes for the photoaffinity labelling of kinases are important research tools for the study of members of this enzyme superfamily. In this review, we discuss the design principles of these probes, which are mainly derived from inhibitors targeting the ATP pocket. Overall, insights from crystal structures guide the placement of photoreactive groups and detection tags. This has resulted in a wide variety of probes, of which we provide a comprehensive overview. We also discuss several areas of application of these probes, including the identification of targets and off-targets of kinase inhibitors, mapping of their binding sites, the development of inhibitor screening assays, the imaging of kinases, and identification of protein binding partners.
Collapse
Affiliation(s)
- Dimitris Korovesis
- Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology KU Leuven, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Hester A Beard
- Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology KU Leuven, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Christel Mérillat
- Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology KU Leuven, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Steven H L Verhelst
- Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology KU Leuven, Herestraat 49 box 802, 3000, Leuven, Belgium.,AG Chemical Proteomics, Leibniz Institute for Analytical Sciences ISAS, Otto-Hahn-Strasse 6b, 44227, Dortmund, Germany
| |
Collapse
|
5
|
Matsumoto K, Nakajima M, Nemoto T. Visible Light-Induced Direct S 0 → T n Transition of Benzophenone Promotes C(sp 3)-H Alkynylation of Ethers and Amides. J Org Chem 2020; 85:11802-11811. [PMID: 32814421 DOI: 10.1021/acs.joc.0c01573] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Benzophenone has an S0 → S1 absorption band at 365 nm. However, the rarely reported S0 → Tn transition occurs upon irradiation at longer wavelengths. Herein, we employed benzophenone as a catalyst and exploited its S0 → Tn transition in C(sp3)-H alkynylations with hypervalent iodine reagents. The selective benzophenone excitation prevented alkynylating reagent decomposition, enabling the reaction to proceed under mild conditions. The reaction mechanism was investigated by spectroscopic and computational studies.
Collapse
Affiliation(s)
- Koki Matsumoto
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Masaya Nakajima
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Tetsuhiro Nemoto
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
6
|
Grant EK, Fallon DJ, Hann MM, Fantom KGM, Quinn C, Zappacosta F, Annan RS, Chung C, Bamborough P, Dixon DP, Stacey P, House D, Patel VK, Tomkinson NCO, Bush JT. A Photoaffinity‐Based Fragment‐Screening Platform for Efficient Identification of Protein Ligands. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Emma K. Grant
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
- Pure and Applied Chemistry University of Strathclyde 295 Cathedral Street Glasgow G1 1XL UK
| | - David J. Fallon
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
- Pure and Applied Chemistry University of Strathclyde 295 Cathedral Street Glasgow G1 1XL UK
| | - Michael M. Hann
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - Ken G. M. Fantom
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - Chad Quinn
- GlaxoSmithKline South Collegeville Road Collegeville PA 19426 USA
| | | | - Roland S. Annan
- GlaxoSmithKline South Collegeville Road Collegeville PA 19426 USA
| | - Chun‐wa Chung
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - Paul Bamborough
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - David P. Dixon
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - Peter Stacey
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - David House
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | | | | | - Jacob T. Bush
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| |
Collapse
|
7
|
Grant EK, Fallon DJ, Hann MM, Fantom KGM, Quinn C, Zappacosta F, Annan RS, Chung C, Bamborough P, Dixon DP, Stacey P, House D, Patel VK, Tomkinson NCO, Bush JT. A Photoaffinity‐Based Fragment‐Screening Platform for Efficient Identification of Protein Ligands. Angew Chem Int Ed Engl 2020; 59:21096-21105. [DOI: 10.1002/anie.202008361] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Emma K. Grant
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
- Pure and Applied Chemistry University of Strathclyde 295 Cathedral Street Glasgow G1 1XL UK
| | - David J. Fallon
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
- Pure and Applied Chemistry University of Strathclyde 295 Cathedral Street Glasgow G1 1XL UK
| | - Michael M. Hann
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - Ken G. M. Fantom
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - Chad Quinn
- GlaxoSmithKline South Collegeville Road Collegeville PA 19426 USA
| | | | - Roland S. Annan
- GlaxoSmithKline South Collegeville Road Collegeville PA 19426 USA
| | - Chun‐wa Chung
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - Paul Bamborough
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - David P. Dixon
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - Peter Stacey
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - David House
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | | | | | - Jacob T. Bush
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| |
Collapse
|
8
|
Grant EK, Fallon DJ, Eberl HC, Fantom KGM, Zappacosta F, Messenger C, Tomkinson NCO, Bush JT. A Photoaffinity Displacement Assay and Probes to Study the Cyclin‐Dependent Kinase Family. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Emma K. Grant
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
- Department of Pure and Applied ChemistryUniversity of Strathclyde 295 Cathedral Street Glasgow G1 1XL UK
| | - David J. Fallon
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
- Department of Pure and Applied ChemistryUniversity of Strathclyde 295 Cathedral Street Glasgow G1 1XL UK
| | | | - Ken G. M. Fantom
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | | | - Cassie Messenger
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - Nicholas C. O. Tomkinson
- Department of Pure and Applied ChemistryUniversity of Strathclyde 295 Cathedral Street Glasgow G1 1XL UK
| | - Jacob T. Bush
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| |
Collapse
|
9
|
Grant EK, Fallon DJ, Eberl HC, Fantom KGM, Zappacosta F, Messenger C, Tomkinson NCO, Bush JT. A Photoaffinity Displacement Assay and Probes to Study the Cyclin‐Dependent Kinase Family. Angew Chem Int Ed Engl 2019; 58:17322-17327. [DOI: 10.1002/anie.201906321] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/09/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Emma K. Grant
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
- Department of Pure and Applied ChemistryUniversity of Strathclyde 295 Cathedral Street Glasgow G1 1XL UK
| | - David J. Fallon
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
- Department of Pure and Applied ChemistryUniversity of Strathclyde 295 Cathedral Street Glasgow G1 1XL UK
| | | | - Ken G. M. Fantom
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | | | - Cassie Messenger
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - Nicholas C. O. Tomkinson
- Department of Pure and Applied ChemistryUniversity of Strathclyde 295 Cathedral Street Glasgow G1 1XL UK
| | - Jacob T. Bush
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| |
Collapse
|
10
|
Burke AA, Barrows L, Solares MJ, Wall AD, Jakobsche CE. Bifunctional Molecular Probes for Activity-Based Visualization of Quinone-Dependent Amine Oxidases. Chemistry 2018; 24:17681-17685. [PMID: 30221409 DOI: 10.1002/chem.201804247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/12/2018] [Indexed: 12/25/2022]
Abstract
The design, synthesis, and evaluation of two bifunctional molecular probes that can be used to visualize quinone-dependent amine oxidase enzymes in an activity-dependent manner are described. These probes use alkylhydrazines to irreversibly bind the target enzymes, which can then be visualized with either Western blotting or in-gel fluorescence. The results show that the Western blotting readout, which utilizes commercially available anti-nitrophenyl antibodies to detect a simple dinitrophenyl antigen, provides a stronger readout than the fluorescein-based fluorescence readout. This visualization strategy can be used to measure the potency of enzyme inhibitors by selectively visualizing the active enzyme that remains after treatment with an inhibitor. Looking forward, this probe molecule and visualization strategy will enable activity-based protein-profiling experiments, such as determining inhibitor selectivity values within full proteome mixtures, for this family of amine oxidase enzymes.
Collapse
Affiliation(s)
- Ashley A Burke
- Clark University, Carlson School of Chemistry & Biochemistry, Worcester, MA, 01610, USA
| | - Luke Barrows
- Clark University, Carlson School of Chemistry & Biochemistry, Worcester, MA, 01610, USA
| | - Maria J Solares
- Clark University, Carlson School of Chemistry & Biochemistry, Worcester, MA, 01610, USA
| | - Alexander D Wall
- Clark University, Carlson School of Chemistry & Biochemistry, Worcester, MA, 01610, USA
| | - Charles E Jakobsche
- Clark University, Carlson School of Chemistry & Biochemistry, Worcester, MA, 01610, USA
| |
Collapse
|
11
|
Abstract
Successful viral infection, as well as any resultant antiviral response, relies on numerous sequential interactions between host and viral factors. These interactions can take the form of affinity-based interactions between viral and host macromolecules or active, enzyme-based interactions, consisting both of direct enzyme activity performed by viral enzymes and indirect modulation of the activity of the host cell's enzymes via viral interference. This activity has the potential to transform the local microenvironment to the benefit or detriment of both the virus and the host, favouring either the continuation of the viral life cycle or the host's antiviral response. Comprehensive characterisation of enzymatic activity during viral infection is therefore necessary for the understanding of virally induced diseases. Activity-based protein profiling techniques have been established as effective and practicable tools with which to interrogate the regulation of enzymes' catalytic activity and the roles played by these enzymes in various cell processes. This paper will review the contributions of these techniques in characterising the roles of both host and viral enzymes during viral infection in humans.
Collapse
Affiliation(s)
- Benjamin F. Cravatt
- grid.214007.00000000122199231Department of Chemistry, The Scripps Research Institute, La Jolla, CA USA
| | - Ku-Lung Hsu
- grid.27755.320000 0000 9136 933XDepartment of Chemistry, University of Virginia, Charlottesville, VA USA
| | - Eranthie Weerapana
- grid.208226.c0000 0004 0444 7053Department of Chemistry, Boston College, Chestnut Hill, MA USA
| |
Collapse
|