1
|
Saikia S, Chetia P. Antibiotics: From Mechanism of Action to Resistance and Beyond. Indian J Microbiol 2024; 64:821-845. [PMID: 39282166 PMCID: PMC11399512 DOI: 10.1007/s12088-024-01285-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/15/2024] [Indexed: 09/18/2024] Open
Abstract
Antibiotics are the super drugs that have revolutionized modern medicine by curing many infectious diseases caused by various microbes. They efficiently inhibit the growth and multiplication of the pathogenic microbes without causing adverse effects on the host. However, prescribing suboptimal antibiotic and overuse in agriculture and animal husbandry have led to the emergence of antimicrobial resistance, one of the most serious threats to global health at present. The efficacy of a new antibiotic is high when introduced; however, a small bacterial population attains resistance gradually and eventually survives. Understanding the mode of action of these miracle drugs, as well as their interaction with targets is very complex. However, it is necessary to fulfill the constant need for novel therapeutic alternatives to address the inevitable development of resistance. Therefore, considering the need of the hour, this article has been prepared to discuss the mode of action and recent advancements in the field of antibiotics. Efforts has also been made to highlight the current scenario of antimicrobial resistance and drug repurposing as a fast-track solution to combat the issue.
Collapse
Affiliation(s)
- Shyamalima Saikia
- Molecular Plant Taxonomy and Bioinformatics Research Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Pankaj Chetia
- Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| |
Collapse
|
2
|
Yang A, Song J, Li J, Li Y, Bai S, Zhou C, Wang M, Zhou Y, Wen K, Luo M, Chen P, Liu B, Yang H, Bai Y, Wong WL, Cai Q, Pu H, Qian Y, Hu W, Huang W, Wan M, Zhang C, Feng X. Ligand-Receptor Interaction-Induced Intracellular Phase Separation: A Global Disruption Strategy for Resistance-Free Lethality of Pathogenic Bacteria. J Am Chem Soc 2024; 146:23121-23137. [PMID: 38980064 DOI: 10.1021/jacs.4c04749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Addressing the global challenge of bacterial resistance demands innovative approaches, among which multitargeting is a widely used strategy. Current strategies of multitargeting, typically achieved through drug combinations or single agents inherently aiming at multiple targets, face challenges such as stringent pharmacokinetic and pharmacodynamic requirements and cytotoxicity concerns. In this report, we propose a bacterial-specific global disruption approach as a vastly expanded multitargeting strategy that effectively disrupts bacterial subcellular organization. This effect is achieved through a pioneering chemical design of ligand-receptor interaction-induced aggregation of small molecules, i.e., DNA-induced aggregation of a diarginine peptidomimetic within bacterial cells. These intracellular aggregates display affinity toward various proteins and thus substantially interfere with essential bacterial functions and rupture bacterial cell membranes in an "inside-out" manner, leading to robust antibacterial activities and suppression of drug resistance. Additionally, biochemical analysis of macromolecule binding affinity, cytoplasmic localization patterns, and bacterial stress responses suggests that this bacterial-specific intracellular aggregation mechanism is fundamentally different from nonselective classic DNA or membrane binding mechanisms. These mechanistic distinctions, along with the peptidomimetic's selective permeation of bacterial membranes, contribute to its favorable biocompatibility and pharmacokinetic properties, enabling its in vivo antimicrobial efficacy in several animal models, including mice-based superficial wound models, subcutaneous abscess models, and septicemia infection models. These results highlight the great promise of ligand-receptor interaction-induced intracellular aggregation in achieving a globally disruptive multitargeting effect, thereby offering potential applications in the treatment of malignant cells, including pathogens, tumor cells, and infected tissues.
Collapse
Affiliation(s)
- Anming Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Junfeng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Jiaqi Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Youzhi Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Silei Bai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Cailing Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Min Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yu Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Kang Wen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Miaomiao Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Peiren Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Bo Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
| | - Huan Yang
- School of Medical Technology, Xuzhou Medical University, Xuzhou 221004, China
| | - Yugang Bai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - Qingyun Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Huangsheng Pu
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel NanoOptoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, Hunan 410073, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China
| | - Yu Qian
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenhao Hu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wei Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
| | - Muyang Wan
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Chunhui Zhang
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Xinxin Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
3
|
Ngougni Pokem P, Vanneste D, Schouwenburg S, Abdulla A, Gijsen M, Dhont E, Van der Linden D, Spriet I, De Cock P, Koch B, Van Bambeke F, Wijnant GJ. Dose optimization of β-lactam antibiotics in children: from population pharmacokinetics to individualized therapy. Expert Opin Drug Metab Toxicol 2024:1-18. [PMID: 39078238 DOI: 10.1080/17425255.2024.2385403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/21/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
INTRODUCTION β-Lactams are the most widely used antibiotics in children. Their optimal dosing is essential to maximize their efficacy, while minimizing the risk for toxicity and the further emergence of antimicrobial resistance. However, most β-lactams were developed and licensed long before regulatory changes mandated pharmacokinetic studies in children. As a result, pediatric dosing practices are poorly harmonized and off-label use remains common today. AREAS COVERED β-Lactam pharmacokinetics and dose optimization strategies in pediatrics, including fixed dose regimens, therapeutic drug monitoring, and model-informed precision dosing are reviewed. EXPERT OPINION/COMMENTARY Standard pediatric doses can result in subtherapeutic exposure and non-target attainment for specific patient subpopulations (neonates, critically ill children, e.g.). Such patients could benefit greatly from more individualized approaches to dose optimization, beyond a relatively simple dose adaptation based on weight, age, or renal function. In this context, Therapeutic Drug Monitoring (TDM) and Model-Informed Precision Dosing (MIPD) emerge as particularly promising avenues. Obstacles to their implementation include the lack of strong evidence of clinical benefit due to the paucity of randomized clinical trials, of standardized assays for monitoring concentrations, or of adequate markers for renal function. The development of precision medicine tools is urgently needed to individualize therapy in vulnerable pediatric subpopulations.
Collapse
Affiliation(s)
- Perrin Ngougni Pokem
- Pharmacologie Cellulaire et Moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
- Department of Microbiology, Cliniques Universitaires Saint-Luc - Université catholique de Louvain, Brussels, Belgium
| | - Dorian Vanneste
- Clinical Pharmacology and Pharmacotherapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Stef Schouwenburg
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, Netherlands
- Rotterdam Clinical Pharmacometrics Group, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Alan Abdulla
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, Netherlands
- Rotterdam Clinical Pharmacometrics Group, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Matthias Gijsen
- Clinical Pharmacology and Pharmacotherapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- Pharmacy Department, UZ Leuven, Leuven, Belgium
| | - Evelyn Dhont
- Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Pediatric Intensive Care, Ghent University Hospital, Ghent, Belgium
| | - Dimitri Van der Linden
- Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
- Pediatric Infectious Diseases, Service of Specialized Pediatrics, Department of Pediatrics, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Isabel Spriet
- Clinical Pharmacology and Pharmacotherapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- Pharmacy Department, UZ Leuven, Leuven, Belgium
| | - Pieter De Cock
- Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Pediatric Intensive Care, Ghent University Hospital, Ghent, Belgium
- Department of Pharmacy, Ghent University Hospital, Ghent, Belgium
| | - Birgit Koch
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, Netherlands
- Rotterdam Clinical Pharmacometrics Group, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Françoise Van Bambeke
- Pharmacologie Cellulaire et Moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Gert-Jan Wijnant
- Pharmacologie Cellulaire et Moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
- Laboratory of Clinical Microbiology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Wiesner A, Zagrodzki P, Paśko P. Do dietary interventions exert clinically important effects on the bioavailability of β-lactam antibiotics? A systematic review with meta-analyses. J Antimicrob Chemother 2024; 79:722-757. [PMID: 38334389 PMCID: PMC11528546 DOI: 10.1093/jac/dkae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Managing drug-food interactions may help to achieve the optimal action and safety profile of β-lactam antibiotics. METHODS We conducted a systematic review with meta-analyses in adherence to PRISMA guidelines for 32 β-lactams. We included 166 studies assessing the impact of food, beverages, antacids or mineral supplements on the pharmacokinetic (PK) parameters or PK/pharmacodynamic (PK/PD) indices. RESULTS Eighteen of 25 β-lactams for which data on food impact were available had clinically important interactions. We observed the highest negative influence of food (AUC or Cmax decreased by >40%) for ampicillin, cefaclor (immediate-release formulations), cefroxadine, cefradine, cloxacillin, oxacillin, penicillin V (liquid formulations and tablets) and sultamicillin, whereas the highest positive influence (AUC or Cmax increased by >45%) for cefditoren pivoxil, cefuroxime and tebipenem pivoxil (extended-release tablets). Significantly lower bioavailability in the presence of antacids or mineral supplements occurred for 4 of 13 analysed β-lactams, with the highest negative impact for cefdinir (with iron salts) and moderate for cefpodoxime proxetil (with antacids). Data on beverage impact were limited to 11 antibiotics. With milk, the extent of absorption was decreased by >40% for cefalexin, cefradine, penicillin G and penicillin V, whereas it was moderately increased for cefuroxime. No significant interaction occurred with cranberry juice for two tested drugs (amoxicillin and cefaclor). CONCLUSIONS Factors such as physicochemical features of antibiotics, drug formulation, type of intervention, and patient's health state may influence interactions. Due to the poor actuality and diverse methodology of included studies and unproportionate data availability for individual drugs, we judged the quality of evidence as low.
Collapse
Affiliation(s)
- Agnieszka Wiesner
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, Krakow, Poland
- Department of Food Chemistry and Nutrition, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Paweł Zagrodzki
- Department of Food Chemistry and Nutrition, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Paweł Paśko
- Department of Food Chemistry and Nutrition, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
5
|
Zhong J, Le W, Li X, Su X. Evaluating the efficacy of different antibiotics against Neisseria gonorrhoeae: a pharmacokinetic/pharmacodynamic analysis using Monte Carlo simulation. BMC Infect Dis 2024; 24:104. [PMID: 38238655 PMCID: PMC10797866 DOI: 10.1186/s12879-023-08938-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/19/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND With the widespread use of antibiotics, antimicrobial resistance in Neisseria gonorrhoeae is worsening. The objective of this study was to evaluate the efficacy changes of seven antibiotics in the treatment of N. gonorrhoeae by using Monte Carlo simulation combined with pharmacokinetics/pharmacodynamics/ (PK/PD). METHODS The minimum inhibitory concentration (MIC) of antibiotics against clinical isolates from 2013 to 2020 in Nanjing, China, was determined by agar dilution method. The probability of target attainment (PTA) was estimated at each MIC value and the cumulative fraction of response (CFR) was calculated to evaluate the efficacy of these regimens. RESULTS All dosage regimens of seven antibiotics achieved PTAs ≥ 90% for MIC ≤ 0.06 µg/ml. But when the MIC was increased to 1 µg/ml, PTAs at each MIC value exceeded 90% only for ceftriaxone 1,000 mg and 2,000 mg, zoliflodacin 2,000 mg and 3,000 mg. Among them, the CFR values of each dosing regimen against N. gonorrhoeae only for ceftriaxone, cefixime and zoliflodacin were ≥ 90% in Nanjing from 2013 to 2020. CONCLUSIONS Cephalosporins are still the first-line drugs in the treatment of gonorrhea. However, the elevated MIC values of cephalosporins can lead to decline in clinical efficacy of the conventional dose regimens, and increasing the dose of ceftriaxone to 1,000 mg-2,000 mg may improve the efficacy. In addition, zoliflodacin is possible to be a potential therapeutic agent in the future.
Collapse
Affiliation(s)
- Jiaojiao Zhong
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences &Peking Union Medical College, Nanjing, China
| | - Wenjing Le
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences &Peking Union Medical College, Nanjing, China
| | - Xuechun Li
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences &Peking Union Medical College, Nanjing, China
- Department of Dermatology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Xiaohong Su
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences &Peking Union Medical College, Nanjing, China.
| |
Collapse
|
6
|
Lee EB, Abbas MA, Park J, Tassew DD, Park SC. Optimizing tylosin dosage for co-infection of Actinobacillus pleuropneumoniae and Pasteurella multocida in pigs using pharmacokinetic/pharmacodynamic modeling. Front Pharmacol 2023; 14:1258403. [PMID: 37808183 PMCID: PMC10556534 DOI: 10.3389/fphar.2023.1258403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Formulating a therapeutic strategy that can effectively combat concurrent infections of Actinobacillus pleuropneumoniae (A. pleuropneumoniae) and Pasteurella multocida (P. multocida) can be challenging. This study aimed to 1) establish minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), time kill curve, and post-antibiotic effect (PAE) of tylosin against A. pleuropneumoniae and P. multocida pig isolates and employ the MIC data for the development of epidemiological cutoff (ECOFF) values; 2) estimate the pharmacokinetics (PKs) of tylosin following its intramuscular (IM) administration (20 mg/kg) in healthy and infected pigs; and 3) establish a PK-pharmacodynamic (PD) integrated model and predict optimal dosing regimens and PK/PD cutoff values for tylosin in healthy and infected pigs. The MIC of tylosin against both 89 and 363 isolates of A. pleuropneumoniae and P. multocida strains spread widely, ranging from 1 to 256 μg/mL and from 0.5 to 128 μg/mL, respectively. According to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) ECOFFinder analysis ECOFF value (≤64 µg/mL), 97.75% (87 strains) of the A. pleuropnumoniae isolates were wild-type, whereas with the same ECOFF value (≤64 µg/mL), 99.72% (363 strains) of the P. multicoda isolates were considered wild-type to tylosin. Area under the concentration time curve (AUC), T1/2, and Cmax values were significantly greater in healthy pigs than those in infected pigs (13.33 h × μg/mL, 1.99 h, and 5.79 μg/mL vs. 10.46 h × μg/mL, 1.83 h, and 3.59 μg/mL, respectively) (p < 0.05). In healthy pigs, AUC24 h/MIC values for the bacteriostatic activity were 0.98 and 1.10 h; for the bactericidal activity, AUC24 h/MIC values were 1.97 and 1.99 h for A. pleuropneumoniae and P. multocida, respectively. In infected pigs, AUC24 h/MIC values for the bacteriostatic activity were 1.03 and 1.12 h; for bactericidal activity, AUC24 h/MIC values were 2.54 and 2.36 h for A. pleuropneumoniae and P. multocida, respectively. Monte Carlo simulation lead to a 2 μg/mL calculated PK/PD cutoff. Managing co-infections can present challenges, as it often demands the administration of multiple antibiotics to address diverse pathogens. However, using tylosin, which effectively targets both A. pleuropneumoniae and P. multocida in pigs, may enhance the control of bacterial burden. By employing an optimized dosage of 11.94-15.37 mg/kg and 25.17-27.79 mg/kg of tylosin can result in achieving bacteriostatic and bactericidal effects in 90% of co-infected pigs.
Collapse
Affiliation(s)
- Eon-Bee Lee
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Muhammad Aleem Abbas
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jonghyun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
- DIVA Bio Incorporation, Daegu, Republic of Korea
| | | | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
7
|
Omolabi KF, Reddy N, Mdanda S, Ntshangase S, Singh SD, Kruger HG, Naicker T, Govender T, Bajinath S. The in vitro and in vivo potential of metal-chelating agents as metallo-beta-lactamase inhibitors against carbapenem-resistant Enterobacterales. FEMS Microbiol Lett 2023; 370:6912242. [PMID: 36521842 DOI: 10.1093/femsle/fnac122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/28/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
The recent surge in beta-lactamase resistance has created superbugs, which pose a current and significant threat to public healthcare. This has created an urgent need to keep pace with the discovery of inhibitors that can inactivate these beta-lactamase producers. In this study, the in vitro and in vivo activity of 1,4,7-triazacyclononane-1,4,7 triacetic acid (NOTA)-a potential metallo-beta-lactamase (MBL) inhibitor was evaluated in combination with meropenem against MBL producing bacteria. Time-kill studies showed that NOTA restored the efficacy of meropenem against all bacterial strains tested. A murine infection model was then used to study the in vivo pharmacokinetics and efficacy of this metal chelator. The coadministration of NOTA and meropenem (100 mg/kg.bw each) resulted in a significant decrease in the colony-forming units of Klebsiella pneumoniae NDM-1 over an 8-h treatment period (>3 log10 units). The findings suggest that chelators, such as NOTA, hold strong potential for use as a MBL inhibitor in treating carbapenem-resistant Enterobacterale infections.
Collapse
Affiliation(s)
- Kehinde F Omolabi
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Private Bag X54001,Durban 4000, South Africa
| | - Nakita Reddy
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Private Bag X54001,Durban 4000, South Africa
| | - Sipho Mdanda
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Private Bag X54001,Durban 4000, South Africa
| | - Sphamandla Ntshangase
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Private Bag X54001,Durban 4000, South Africa
| | - Sanil D Singh
- Department of Pharmaceutical Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Private Bag X54001,Durban 4000, South Africa
| | - Tricia Naicker
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Private Bag X54001,Durban 4000, South Africa
| | - Thavendran Govender
- Department of Chemistry, University of Zululand, Private Bag X1001, KwaDlangezwa 3886, South Africa
| | - Sooraj Bajinath
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Private Bag X54001,Durban 4000, South Africa.,Department of Pharmaceutical Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa.,School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| |
Collapse
|
8
|
Lodise TP, O’Donnell JN, Balevic S, Liu X, Gu K, George J, Raja S, Guptill JT, Zaharoff S, Schwager N, Fowler VG, Wall A, Wiegand K, Chambers HF. Pharmacokinetics of Ceftazidime-Avibactam in Combination with Aztreonam (COMBINE) in a Phase 1, Open-Label Study of Healthy Adults. Antimicrob Agents Chemother 2022; 66:e0093622. [PMID: 36394326 PMCID: PMC9764983 DOI: 10.1128/aac.00936-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/19/2022] [Indexed: 11/19/2022] Open
Abstract
Scant pharmacokinetic (PK) data are available on ceftazidime-avibactam (CZA) and aztreonam (ATM) in combination, and it is unknown if CZA-ATM exacerbates alanine aminotransferase (ALT)/aspartate aminotransferase (AST) elevations relative to ATM alone. This phase 1 study sought to describe the PK of CZA-ATM and assess the associations between ATM exposures and ALT/AST elevations. Subjects (n = 48) were assigned to one of six cohorts (intermittent infusion [II] CZA, continuous infusion [CI] CZA, II ATM, CI ATM [8 g/daily], II CZA with II ATM [6 g/daily], and II CZA with II ATM [8 g/daily]), and study product(s) were administered for 7 days. A total of 19 subjects (40%) had ALT/AST elevations, and most (89%) occurred in the ATM/CZA-ATM cohorts. Two subjects in the CI ATM cohort experienced severe ALT/AST elevations, which halted the study. All subjects with ALT/AST elevations were asymptomatic with no other signs of liver injury, and all ALT/AST elevations resolved without sequalae after cessation of dosing. In the population PK (PopPK) analyses, CZA-ATM administration reduced total ATM clearance by 16%, had a negligible effect on total ceftazidime clearance, and was not a covariate in the avibactam PopPK model. In the exposure-response analyses, coadministration of CZA-ATM was not found to augment ALT/AST elevations. Modest associations were observed between ATM exposure (maximum concentration of drug in serum [Cmax] and area under the concentration-time curve [AUC]) and ALT/AST elevations in the analysis of subjects in the II ATM/CZA-ATM cohorts. The findings suggest that administration of CZA-ATM reduces ATM clearance but does not exacerbate AST/ALT elevations relative to ATM alone. The results also indicate that CI ATM should be used with caution.
Collapse
Affiliation(s)
- Thomas P. Lodise
- Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | | | - Stephen Balevic
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Xing Liu
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Kenan Gu
- Office of Regulatory Affairs (ORA), Division of Microbiology and Infectious Diseases (DMID), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Jomy George
- Office of Regulatory Affairs (ORA), Division of Microbiology and Infectious Diseases (DMID), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Shruti Raja
- Duke Early Phase Clinical Research Unit, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jeffrey T. Guptill
- Duke Early Phase Clinical Research Unit, Duke University School of Medicine, Durham, North Carolina, USA
| | - Smitha Zaharoff
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Nyssa Schwager
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Vance G. Fowler
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | | | | | - Henry F. Chambers
- University of California, San Francisco, and San Francisco General Hospital, San Francisco, California, USA
| | - Antibacterial Resistance Leadership Group
- Albany College of Pharmacy and Health Sciences, Albany, New York, USA
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Office of Regulatory Affairs (ORA), Division of Microbiology and Infectious Diseases (DMID), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Duke Early Phase Clinical Research Unit, Duke University School of Medicine, Durham, North Carolina, USA
- The Emmes Company, Rockville, Maryland, USA
- University of California, San Francisco, and San Francisco General Hospital, San Francisco, California, USA
| |
Collapse
|
9
|
Nadiki H, Islami MR, Soltanian S. Thermal and Microwave-Assisted Synthesis of New Highly Functionalized Bis-β-lactams from Available Compounds via Bisketene as an Intermediate. ACS OMEGA 2022; 7:33320-33329. [PMID: 36157762 PMCID: PMC9494681 DOI: 10.1021/acsomega.2c03902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
The synthesis of highly functionalized bis-β-lactams containing aromatic rings was achieved by thermal and microwave-assisted methods starting from easily available 2-(4-hydroxyphenyl)acetic acid and 2,2'-(propane-2,2-diyl)diphenol precursors. The approach to these valuable heterocyclic scaffolds involved formal [2π + 2π] cycloadditions between Schiff bases and novel bisketenes, which were generated in situ, followed by an electrocyclic reaction of zwitterionic intermediates. Reactions carried out under microwave irradiation were clean and gave high yields with significantly reduced reaction times. Interestingly, in the thermal method, the reaction proceeded in a stereospecific manner, and only the trans-cis or cis-cis isomers were formed. However, under the microwave conditions, the reaction proceeded stereoselectively, and other possible isomers such trans-trans and cis-trans isomers were formed in addition to the product formed under thermal conditions. More interestingly, when the two compounds that did not produce any products under thermal conditions were reacted under microwave conditions, one formed the trans-cis isomer and the other formed the cis-trans and trans-trans isomers as two products .
Collapse
Affiliation(s)
| | - Mohammad Reza Islami
- Department
of Chemistry, Shahid Bahonar University
of Kerman, Kerman 76169, Iran
| | - Sara Soltanian
- Department
of Biology, Shahid Bahonar University of
Kerman, Kerman 76169, Iran
| |
Collapse
|
10
|
Strongly Bactericidal All-Oral β-Lactam Combinations for the Treatment of Mycobacterium abscessus Lung Disease. Antimicrob Agents Chemother 2022; 66:e0079022. [PMID: 36047786 PMCID: PMC9487536 DOI: 10.1128/aac.00790-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Bioactive forms of oral β-lactams were screened in vitro against Mycobacterium abscessus with and without the bioactive form of the oral β-lactamase inhibitor avibactam ARX1796. Sulopenem was equally active without avibactam, while tebipenem, cefuroxime, and amoxicillin required avibactam for optimal activity. Systematic pairwise combination of the four β-lactams revealed strong bactericidal synergy for each of sulopenem, tebipenem, and cefuroxime combined with amoxicillin in the presence of avibactam. These all-oral β-lactam combinations warrant clinical evaluation.
Collapse
|
11
|
Parker E, Cain BN, Hajian B, Ulrich RJ, Geddes EJ, Barkho S, Lee HY, Williams JD, Raynor M, Caridha D, Zaino A, Shekhar M, Muñoz KA, Rzasa KM, Temple ER, Hunt D, Jin X, Vuong C, Pannone K, Kelly AM, Mulligan MP, Lee KK, Lau GW, Hung DT, Hergenrother PJ. An Iterative Approach Guides Discovery of the FabI Inhibitor Fabimycin, a Late-Stage Antibiotic Candidate with In Vivo Efficacy against Drug-Resistant Gram-Negative Infections. ACS CENTRAL SCIENCE 2022; 8:1145-1158. [PMID: 36032774 PMCID: PMC9413440 DOI: 10.1021/acscentsci.2c00598] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 05/13/2023]
Abstract
Genomic studies and experiments with permeability-deficient strains have revealed a variety of biological targets that can be engaged to kill Gram-negative bacteria. However, the formidable outer membrane and promiscuous efflux pumps of these pathogens prevent many candidate antibiotics from reaching these targets. One such promising target is the enzyme FabI, which catalyzes the rate-determining step in bacterial fatty acid biosynthesis. Notably, FabI inhibitors have advanced to clinical trials for Staphylococcus aureus infections but not for infections caused by Gram-negative bacteria. Here, we synthesize a suite of FabI inhibitors whose structures fit permeation rules for Gram-negative bacteria and leverage activity against a challenging panel of Gram-negative clinical isolates as a filter for advancement. The compound to emerge, called fabimycin, has impressive activity against >200 clinical isolates of Escherichia coli, Klebsiella pneumoniae, and Acinetobacter baumannii, and does not kill commensal bacteria. X-ray structures of fabimycin in complex with FabI provide molecular insights into the inhibition. Fabimycin demonstrates activity in multiple mouse models of infection caused by Gram-negative bacteria, including a challenging urinary tract infection model. Fabimycin has translational promise, and its discovery provides additional evidence that antibiotics can be systematically modified to accumulate in Gram-negative bacteria and kill these problematic pathogens.
Collapse
Affiliation(s)
- Erica
N. Parker
- Department
of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Brett N. Cain
- Department
of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Behnoush Hajian
- Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Rebecca J. Ulrich
- Department
of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Emily J. Geddes
- Department
of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Sulyman Barkho
- Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Hyang Yeon Lee
- Department
of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - John D. Williams
- Walter
Reed Army Institute of Research, Silver Spring, Maryland 20910 United States
| | - Malik Raynor
- Walter
Reed Army Institute of Research, Silver Spring, Maryland 20910 United States
| | - Diana Caridha
- Walter
Reed Army Institute of Research, Silver Spring, Maryland 20910 United States
| | - Angela Zaino
- Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Mrinal Shekhar
- Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Kristen A. Muñoz
- Department
of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Kara M. Rzasa
- Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Emily R. Temple
- Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Diana Hunt
- Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Department
of Molecular Biology and Center for Computational and Integrative
Biology, Massachusetts General Hospital, Boston, Massachusetts 02115, United States
| | - Xiannu Jin
- Walter
Reed Army Institute of Research, Silver Spring, Maryland 20910 United States
| | - Chau Vuong
- Walter
Reed Army Institute of Research, Silver Spring, Maryland 20910 United States
| | - Kristina Pannone
- Walter
Reed Army Institute of Research, Silver Spring, Maryland 20910 United States
| | - Aya M. Kelly
- Department
of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Michael P. Mulligan
- Department
of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Katie K. Lee
- Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Gee W. Lau
- Department
of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Deborah T. Hung
- Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Department
of Molecular Biology and Center for Computational and Integrative
Biology, Massachusetts General Hospital, Boston, Massachusetts 02115, United States
| | - Paul J. Hergenrother
- Department
of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
12
|
Luo A, Zhang Z, Zeng F, Wang X, Zhao X, Yang K, Hu YJ. Kinugasa Reaction for DNA-Encoded β-Lactam Library Synthesis. Org Lett 2022; 24:5756-5761. [PMID: 35916753 DOI: 10.1021/acs.orglett.2c02237] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
β-Lactam antibiotics are one of the most important antibacterial drug classes worldwide. This work will present the first prototype on-DNA β-lactam combinatorial library with novel structures and chemical space properties that would be significant for phenotypic screening to identify the next generation of antibiotics to combat the pervasive problem of bacterial resistance.
Collapse
Affiliation(s)
- Ayun Luo
- Pharmaron (Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336 China
| | - Ziqi Zhang
- Pharmaron (Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336 China
| | - Fanming Zeng
- Pharmaron (Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336 China
| | - Xiuming Wang
- Pharmaron (Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336 China
| | - Xue Zhao
- Pharmaron (Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336 China
| | - Kexin Yang
- Pharmaron (Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336 China
| | - Yun Jin Hu
- Pharmaron (Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336 China
| |
Collapse
|
13
|
Gold B, Zhang J, Quezada LL, Roberts J, Ling Y, Wood M, Shinwari W, Goullieux L, Roubert C, Fraisse L, Bacqué E, Lagrange S, Filoche-Rommé B, Vieth M, Hipskind PA, Jungheim LN, Aubé J, Scarry SM, McDonald SL, Li K, Perkowski A, Nguyen Q, Dartois V, Zimmerman M, Olsen DB, Young K, Bonnett S, Joerss D, Parish T, Boshoff HI, Arora K, Barry CE, Guijarro L, Anca S, Rullas J, Rodríguez-Salguero B, Martínez-Martínez MS, Porras-De Francisco E, Cacho M, Barros-Aguirre D, Smith P, Berthel SJ, Nathan C, Bates RH. Identification of β-Lactams Active against Mycobacterium tuberculosis by a Consortium of Pharmaceutical Companies and Academic Institutions. ACS Infect Dis 2022; 8:557-573. [PMID: 35192346 PMCID: PMC8922279 DOI: 10.1021/acsinfecdis.1c00570] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Indexed: 11/28/2022]
Abstract
Rising antimicrobial resistance challenges our ability to combat bacterial infections. The problem is acute for tuberculosis (TB), the leading cause of death from infection before COVID-19. Here, we developed a framework for multiple pharmaceutical companies to share proprietary information and compounds with multiple laboratories in the academic and government sectors for a broad examination of the ability of β-lactams to kill Mycobacterium tuberculosis (Mtb). In the TB Drug Accelerator (TBDA), a consortium organized by the Bill & Melinda Gates Foundation, individual pharmaceutical companies collaborate with academic screening laboratories. We developed a higher order consortium within the TBDA in which four pharmaceutical companies (GlaxoSmithKline, Sanofi, MSD, and Lilly) collectively collaborated with screeners at Weill Cornell Medicine, the Infectious Disease Research Institute (IDRI), and the National Institute of Allergy and Infectious Diseases (NIAID), pharmacologists at Rutgers University, and medicinal chemists at the University of North Carolina to screen ∼8900 β-lactams, predominantly cephalosporins, and characterize active compounds. In a striking contrast to historical expectation, 18% of β-lactams screened were active against Mtb, many without a β-lactamase inhibitor. One potent cephaloporin was active in Mtb-infected mice. The steps outlined here can serve as a blueprint for multiparty, intra- and intersector collaboration in the development of anti-infective agents.
Collapse
Affiliation(s)
- Ben Gold
- Department
of Microbiology & Immunology, Weill
Cornell Medicine, 413 East 69th Street, New York, New York 10021, United
States
| | - Jun Zhang
- Department
of Microbiology & Immunology, Weill
Cornell Medicine, 413 East 69th Street, New York, New York 10021, United
States
| | - Landys Lopez Quezada
- Department
of Microbiology & Immunology, Weill
Cornell Medicine, 413 East 69th Street, New York, New York 10021, United
States
| | - Julia Roberts
- Department
of Microbiology & Immunology, Weill
Cornell Medicine, 413 East 69th Street, New York, New York 10021, United
States
| | - Yan Ling
- Department
of Microbiology & Immunology, Weill
Cornell Medicine, 413 East 69th Street, New York, New York 10021, United
States
| | - Madeleine Wood
- Department
of Microbiology & Immunology, Weill
Cornell Medicine, 413 East 69th Street, New York, New York 10021, United
States
| | - Wasima Shinwari
- Department
of Microbiology & Immunology, Weill
Cornell Medicine, 413 East 69th Street, New York, New York 10021, United
States
| | - Laurent Goullieux
- Sanofi,
Infectious Diseases Therapeutic Area, 69280 Marcy l’Étoile, France
- Evotec
(Lyon) SAS, 69007 Lyon, France
| | - Christine Roubert
- Sanofi,
Infectious Diseases Therapeutic Area, 69280 Marcy l’Étoile, France
- Evotec
(Lyon) SAS, 69007 Lyon, France
| | - Laurent Fraisse
- Sanofi,
Infectious Diseases Therapeutic Area, 69280 Marcy l’Étoile, France
| | - Eric Bacqué
- Sanofi,
Infectious Diseases Therapeutic Area, 69280 Marcy l’Étoile, France
- Evotec
(Lyon) SAS, 69007 Lyon, France
| | - Sophie Lagrange
- Sanofi,
Infectious Diseases Therapeutic Area, 69280 Marcy l’Étoile, France
- Evotec
(Lyon) SAS, 69007 Lyon, France
| | | | - Michal Vieth
- Lilly
Biotechnology Center, Eli Lilly and Company, 10290 Campus Point Dr, San Diego, California 92121, United States
| | - Philip A. Hipskind
- Lilly
Research Laboratories, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Louis N. Jungheim
- YourEncore, 20 North Meridian Street, Indianapolis, Indiana 46204, United States
| | - Jeffrey Aubé
- Division
of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of
Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Sarah M. Scarry
- Division
of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of
Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Stacey L. McDonald
- Division
of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of
Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Kelin Li
- Division
of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of
Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Andrew Perkowski
- Division
of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of
Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Quyen Nguyen
- Division
of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of
Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Véronique Dartois
- Public
Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103, United States
| | - Matthew Zimmerman
- Public
Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103, United States
| | - David B. Olsen
- Merck
& Co., Inc., Infectious Diseases, 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Katherine Young
- Merck
& Co., Inc., Infectious Diseases, 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Shilah Bonnett
- TB
Discovery Research, Infectious Disease Research
Institute, 1616 Eastlake Ave E, Suite 400, Seattle, Washington 98102, United States
| | - Douglas Joerss
- TB
Discovery Research, Infectious Disease Research
Institute, 1616 Eastlake Ave E, Suite 400, Seattle, Washington 98102, United States
| | - Tanya Parish
- TB
Discovery Research, Infectious Disease Research
Institute, 1616 Eastlake Ave E, Suite 400, Seattle, Washington 98102, United States
| | - Helena I. Boshoff
- Tuberculosis Research Section, Laboratory
of Clinical Immunology and Microbiology, Bethesda, Maryland 20892, United States
| | - Kriti Arora
- Tuberculosis Research Section, Laboratory
of Clinical Immunology and Microbiology, Bethesda, Maryland 20892, United States
| | - Clifton E. Barry
- Tuberculosis Research Section, Laboratory
of Clinical Immunology and Microbiology, Bethesda, Maryland 20892, United States
| | - Laura Guijarro
- Global Health Pharma R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Sara Anca
- Global Health Pharma R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Joaquín Rullas
- Global Health Pharma R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | | | | | | | - Monica Cacho
- Global Health Pharma R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - David Barros-Aguirre
- Global Health Pharma R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Paul Smith
- Independent Consultant, Global Health Pharma R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Steven J. Berthel
- Panorama Global, 2101
4th Avenue, Suite 2100, Seattle, Washington 98121, United States
| | - Carl Nathan
- Department
of Microbiology & Immunology, Weill
Cornell Medicine, 413 East 69th Street, New York, New York 10021, United
States
| | - Robert H. Bates
- Global Health Pharma R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| |
Collapse
|
14
|
Fierro F, Vaca I, Castillo NI, García-Rico RO, Chávez R. Penicillium chrysogenum, a Vintage Model with a Cutting-Edge Profile in Biotechnology. Microorganisms 2022; 10:573. [PMID: 35336148 PMCID: PMC8954384 DOI: 10.3390/microorganisms10030573] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/20/2022] Open
Abstract
The discovery of penicillin entailed a decisive breakthrough in medicine. No other medical advance has ever had the same impact in the clinical practise. The fungus Penicillium chrysogenum (reclassified as P. rubens) has been used for industrial production of penicillin ever since the forties of the past century; industrial biotechnology developed hand in hand with it, and currently P. chrysogenum is a thoroughly studied model for secondary metabolite production and regulation. In addition to its role as penicillin producer, recent synthetic biology advances have put P. chrysogenum on the path to become a cell factory for the production of metabolites with biotechnological interest. In this review, we tell the history of P. chrysogenum, from the discovery of penicillin and the first isolation of strains with high production capacity to the most recent research advances with the fungus. We will describe how classical strain improvement programs achieved the goal of increasing production and how the development of different molecular tools allowed further improvements. The discovery of the penicillin gene cluster, the origin of the penicillin genes, the regulation of penicillin production, and a compilation of other P. chrysogenum secondary metabolites will also be covered and updated in this work.
Collapse
Affiliation(s)
- Francisco Fierro
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Unidad Iztapalapa, Ciudad de México 09340, Mexico
| | - Inmaculada Vaca
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile;
| | - Nancy I. Castillo
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá 110231, Colombia;
| | - Ramón Ovidio García-Rico
- Grupo de Investigación GIMBIO, Departamento De Microbiología, Facultad de Ciencias Básicas, Universidad de Pamplona, Pamplona 543050, Colombia;
| | - Renato Chávez
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170020, Chile;
| |
Collapse
|
15
|
Ji DS, Liang H, Yang KX, Feng ZT, Luo YC, Xu GQ, Gu Y, Xu PF. Solvent directed chemically divergent synthesis of β-lactams and α-amino acid derivatives with chiral isothiourea. Chem Sci 2022; 13:1801-1807. [PMID: 35282623 PMCID: PMC8826511 DOI: 10.1039/d1sc06127e] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/18/2022] [Indexed: 01/01/2023] Open
Abstract
A protocol for the chemically divergent synthesis of β-lactams and α-amino acid derivatives with isothiourea (ITU) catalysis by switching solvents was developed. The stereospecific Mannich reaction occurring between imine and C(1)-ammonium enolate generated zwitterionic intermediates, which underwent intramolecular lactamization and afforded β-lactam derivatives when DCM and CH3CN were used as solvents. However, when EtOH was used as the solvent, the intermediates underwent an intermolecular esterification reaction, and α-amino acid derivatives were produced. Detailed mechanistic experiments were conducted to prove that these two kinds of products came from the same intermediates. Furthermore, chemically diversified transformations of β-lactam and α-amino acid derivatives were achieved. A protocol for the solvent directed chemically divergent synthesis of β-lactam and α-amino acid derivatives with chiral isothiourea was reported.![]()
Collapse
Affiliation(s)
- Dong-Sheng Ji
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Hui Liang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Kai-Xuan Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Zhi-Tao Feng
- Department of Chemistry, University of California Davis, One Shields Avenue, Davis, California, 95616, USA
| | - Yong-Chun Luo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Guo-Qiang Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yucheng Gu
- Syngenta Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
16
|
Wu YJ, Meanwell NA. Geminal Diheteroatomic Motifs: Some Applications of Acetals, Ketals, and Their Sulfur and Nitrogen Homologues in Medicinal Chemistry and Drug Design. J Med Chem 2021; 64:9786-9874. [PMID: 34213340 DOI: 10.1021/acs.jmedchem.1c00790] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Acetals and ketals and their nitrogen and sulfur homologues are often considered to be unconventional and potentially problematic scaffolding elements or pharmacophores for the design of orally bioavailable drugs. This opinion is largely a function of the perception that such motifs might be chemically unstable under the acidic conditions of the stomach and upper gastrointestinal tract. However, even simple acetals and ketals, including acyclic molecules, can be sufficiently robust under acidic conditions to be fashioned into orally bioavailable drugs, and these structural elements are embedded in many effective therapeutic agents. The chemical stability of molecules incorporating geminal diheteroatomic motifs can be modulated by physicochemical design principles that include the judicious deployment of proximal electron-withdrawing substituents and conformational restriction. In this Perspective, we exemplify geminal diheteroatomic motifs that have been utilized in the discovery of orally bioavailable drugs or drug candidates against the backdrop of understanding their potential for chemical lability.
Collapse
Affiliation(s)
- Yong-Jin Wu
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, 100 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Nicholas A Meanwell
- Department of Discovery and Chemistry and Molecular Technologies, Bristol-Myers Squibb PRI, PO Box 4000, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|
17
|
Singh SP, Tripathi S, Yadav A, Kant R, Srivastava HK, Srivastava AK. Synthesis of β- and γ-lactam fused dihydropyrazinones from Ugi adducts via a sequential ring construction strategy. Chem Commun (Camb) 2020; 56:12789-12792. [PMID: 32966412 DOI: 10.1039/d0cc04415f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A modular approach for the construction of β- and γ-lactam fused dihydropyrazinones from the readily available Ugi adducts has been described. The sequential construction of rings through base-mediated cycloisomerization followed by acid-mediated cyclization yielded β-lactam fused dihydropyrazinones. However, the Ugi-derived dihydropyrazinones afforded γ-lactam fused dihydropyrazinones under base-mediated cycloisomerization. The regioselectivity in the cycloisomerization reactions is explained on the basis of ring-strain. Substrate scope, limitations and mechanistic investigations through DFT-calculations have been explored.
Collapse
Affiliation(s)
- Sangh Priya Singh
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow-226031, India. and Chemical Sciences Division, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Shashank Tripathi
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow-226031, India. and Chemical Sciences Division, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Anamika Yadav
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow-226031, India. and Chemical Sciences Division, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Ruchir Kant
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow-226031, India
| | - Hemant Kumar Srivastava
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Guwahati-781101, India.
| | - Ajay Kumar Srivastava
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow-226031, India. and Chemical Sciences Division, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
18
|
Singh M, Sykes EME, Li Y, Kumar A. MexXY RND pump of Pseudomonas aeruginosa PA7 effluxes bi-anionic β-lactams carbenicillin and sulbenicillin when it partners with the outer membrane factor OprA but not with OprM. MICROBIOLOGY-SGM 2020; 166:1095-1106. [PMID: 32909933 DOI: 10.1099/mic.0.000971] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Antibiotic resistance in Pseudomonas aeruginosa is a serious concern in healthcare systems. Among the determinants of antibiotic resistance in P. aeruginosa, efflux pumps belonging to the resistance-nodulation-division (RND) family confer resistance to a broad range of antibacterial compounds. The MexXY efflux system is widely overexpressed in P. aeruginosa isolates from cystic fibrosis (CF) patients. MexXY can form functional complexes with two different outer membrane factors (OMFs), OprA and OprM. In this study, using state-of-the-art genetic tools, the substrate specificities of MexXY-OprA and MexXY-OprM complexes were determined. Our results show, for the first time, that the substrate profile of the MexXY system from P. aeruginosa PA7 can vary depending on which OM factor (OprM or OprA) it complexes with. While both MexXY-OprA and MexXY-OprM complexes are capable of effluxing aminoglycosides, the bi-anionic β-lactam molecules carbenicillin and sulbenicillin were found to only be the substrate of MexXY-OprA. Our study therefore shows that by partnering with different OMF proteins MexY can expand its substrate profile.
Collapse
Affiliation(s)
- Manu Singh
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Ellen M E Sykes
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Yanqi Li
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Ayush Kumar
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
19
|
De Sutter PJ, Gasthuys E, Van Braeckel E, Schelstraete P, Van Biervliet S, Van Bocxlaer J, Vermeulen A. Pharmacokinetics in Patients with Cystic Fibrosis: A Systematic Review of Data Published Between 1999 and 2019. Clin Pharmacokinet 2020; 59:1551-1573. [DOI: 10.1007/s40262-020-00932-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Ramachandran B, Jeyakanthan J, Lopes BS. Molecular docking, dynamics and free energy analyses of Acinetobacter baumannii OXA class enzymes with carbapenems investigating their hydrolytic mechanisms. J Med Microbiol 2020; 69:1062-1078. [PMID: 32773005 DOI: 10.1099/jmm.0.001233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Introduction. Acinetobacter baumannii is a critical priority pathogen listed by the World Health Organization due to increasing levels of resistance to carbapenem classes of antibiotics. It causes wound and other nosocomial infections, which can be life-threatening. Hence, there is an urgent need for the development of new classes of antibiotics.Aim. To study the interaction of carabapenems with class D beta-lactamases (oxacillinases) and analyse drug resistance by studying enzyme-substrate complexes using modelling approaches as a means of establishing correlations with the phenotypic data.Methodology. The three-dimensional structures of carbapenems (doripenem, ertapenem, imipenem and meropenem) were obtained from DrugBank and screened against class D beta-lactamases. Further, the study was extended with their variants. The variants' structure was homology-modelled using the Schrödinger Prime module (Schrödinger LLC, NY, USA).Results. The first discovered intrinsic beta-lactamase of Acinetobacter baumannii, OXA-51, had a binding energy value of -40.984 kcal mol-1, whereas other OXA-51 variants, such as OXA-64, OXA-110 and OXA-111, have values of -60.638, -66.756 and -67.751 kcal mol-1, respectively. The free energy values of OXA-51 variants produced better results than those of other groups.Conclusions. Imipenem and meropenem showed MIC values of 2 and 8 µg ml-1, respectively against OXA-51 in earlier studies, indicating that these are the most effective drugs for treatment of A. baumannii infection. According to our results, OXA-51 is an active enzyme that shows better interactions and is capable of hydrolyzing carbapenems. When correlating the hydrogen-bonding interaction with MIC values, the predicted results are in good agreement and might provide initial insights into performing similar studies related to OXA variants or other antibiotic-enzyme-based studies.
Collapse
Affiliation(s)
- Balajee Ramachandran
- Structural Biology and Bio-computing Lab, Department of Bioinformatics, Alagappa University, Karaikudi - 630 004, Tamil Nadu, India
| | - Jeyaraman Jeyakanthan
- Structural Biology and Bio-computing Lab, Department of Bioinformatics, Alagappa University, Karaikudi - 630 004, Tamil Nadu, India
| | - Bruno S Lopes
- School of Medicine, Medical Sciences and Nutrition, 0:025 Polwarth building, Foresterhill, Aberdeen AB25 2ZD, UK
| |
Collapse
|
21
|
Kaur R, Singh R, Kumar A, Kaur S, Priyadarshi N, Singhal NK, Singh K. 1,2,3-Triazole β-lactam conjugates as antimicrobial agents. Heliyon 2020; 6:e04241. [PMID: 32637684 PMCID: PMC7327255 DOI: 10.1016/j.heliyon.2020.e04241] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/29/2020] [Accepted: 06/15/2020] [Indexed: 01/12/2023] Open
Abstract
A convenient and efficient synthesis of new triazole β-lactam conjugates using click chemistry is described. β-lactam 15 and 16 were prepared using cycloaddition strategy and propargylated at N-1 to afford compounds 17 and 18. Cu-catalyzed click reaction of these β-lactams 17 and 18 with different aryl azides provided 1,2,3-triazole conjugates 6 and 7, respectively. The products were fully characterized spectroscopically and tested against Gram-(+) and Gram-(-) bacteria. Compound 7a and 7c were found to be most active.
Collapse
Affiliation(s)
- Rajneesh Kaur
- Department of Chemistry, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Haryana, 133207, India
| | - Raman Singh
- Department of Chemistry, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Haryana, 133207, India
| | - Antresh Kumar
- Department of Biotechnology, Central University of South Bihar, Panchanpur, Gaya, 824236, India
- Department of Biochemistry, Central University of Haryana, Mahendergarh, Haryana, 123031, India
| | - Satvinder Kaur
- Department of Chemistry, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Haryana, 133207, India
| | - Nitesh Priyadarshi
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S. Nagar, Mohali, Punjab, 140306, India
| | - Nitin Kumar Singhal
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S. Nagar, Mohali, Punjab, 140306, India
| | - Kuldeep Singh
- Department of Chemistry, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Haryana, 133207, India
| |
Collapse
|
22
|
Giangiuli SE, Mueller SW, Jeffres MN. Transition to Oral versus Continued Intravenous Antibiotics for Patients with Pyogenic Liver Abscesses: A Retrospective Analysis. Pharmacotherapy 2019; 39:734-740. [PMID: 31148192 DOI: 10.1002/phar.2296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
INTRODUCTION The management of pyogenic liver abscesses usually requires 4 weeks of antibiotic therapy. It is unknown if oral (PO) antibiotics are as effective as intravenous (IV) antibiotics for this indication. OBJECTIVES To compare 30-, 60-, and 90-day readmission rates between patients with pyogenic liver abscesses receiving IV antibiotics for the duration of therapy and those who were transitioned to PO antibiotics after discharge from the hospital. METHODS This retrospective study included patients with pyogenic liver abscesses who had undergone percutaneous drainage and received IV antibiotics while in the hospital. Patients were grouped based on receipt of either PO or IV antibiotics at discharge. RESULTS The final cohort resulted in 99 patients, 48 in the PO group and 51 in the IV group. The most common organisms identified were Klebsiella sp, Escherichia coli, and Streptococcus sp. The most common antibiotic received at discharge in the IV group was ertapenem or ceftriaxone plus metronidazole. Patients in the PO group most commonly received levofloxacin plus metronidazole at discharge. Thirty-day readmission occurred more frequently in the PO group (PO 39.6% vs IV 17.6%, p=0.03). The most common reasons for readmission were complications related to abscess or antibiotic. Univariate logistic regression for readmission identified PO antibiotics at discharge as an independent predictor of readmission at 30 days (odds ratio [OR] 3.1), 60 days (OR 3.9), and 90 days (OR 3.1). CONCLUSION Transition to PO antibiotics that consisted mostly of fluoroquinolones for patients with pyogenic liver abscesses was associated with a higher rate of 30-day readmission compared with patients treated with IV antibiotics that consisted mostly of β-lactams.
Collapse
Affiliation(s)
- Stephanie E Giangiuli
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado
| | - Scott W Mueller
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado
| | - Meghan N Jeffres
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Denver, Colorado
| |
Collapse
|
23
|
Effect of C-2 substitution on the stability of non-traditional cephalosporins in mouse plasma. J Antibiot (Tokyo) 2019; 72:469-475. [PMID: 30903100 PMCID: PMC7255492 DOI: 10.1038/s41429-019-0167-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 11/23/2022]
Abstract
A systematic study of the stability of a set of cephalosporins in mouse plasma reveals that cephalosporins lacking an acidic moiety at C-2 may be vulnerable to β-lactam cleavage in mouse plasma.
Collapse
|