1
|
Mayer F, Laa D, Koch T, Stampfl J, Liska R, Ehrmann K. Rapid 3D printing of unlayered, tough epoxy-alcohol resins with late gel points via dual-color curing technology. MATERIALS HORIZONS 2024. [PMID: 39665675 DOI: 10.1039/d4mh01261e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Additive manufacturing technologies and, in particular, vat photopolymerization promise complex structures that can be made in a fast and easy fashion for highly individualized products. While the technology has upheld this promise many times already, some polymers are still out of reach or at least problematic to print reliably. High-performance epoxide-based resins, which are regulated by chain transfer via multifunctional alcohols, are a typical example of resins with late gel points, which require long irradiation times and high light intensities to print. Therefore, we have developed a dual-colour printing approach where rapid radical curing of a soft, wide-meshed polymer network facilitates fast and easy 3D structuring of the subsequently slow curing step-growth formulation at an orthogonal initiation-wavelength regime. Thereby the methacrylate system acts as a scaffold for an uncured epoxide alcohol system during the printing process, which is then cured with UV light post-printing. This way tough alcohol-regulated epoxy-systems become accessible to vat photopolymerization achieving outstanding high-resolution 3D printed parts without significant layering effects. The demonstrated wide-meshed matrix-assisted printing approach has the potential to make a multitude of slowly curing resins accessible to vat photopolymerization techniques, at low irradiation intensities and high curing speeds.
Collapse
Affiliation(s)
- Florian Mayer
- Institute of Applied Synthetic Chemistry, Technische Universität Wien, Vienna, Austria.
| | - Dominik Laa
- Institute of Materials Science and Technology, Technische Universität Wien, Vienna, Austria
| | - Thomas Koch
- Institute of Materials Science and Technology, Technische Universität Wien, Vienna, Austria
| | - Jürgen Stampfl
- Institute of Materials Science and Technology, Technische Universität Wien, Vienna, Austria
| | - Robert Liska
- Institute of Applied Synthetic Chemistry, Technische Universität Wien, Vienna, Austria.
| | - Katharina Ehrmann
- Institute of Applied Synthetic Chemistry, Technische Universität Wien, Vienna, Austria.
| |
Collapse
|
2
|
Ahmadi M, Ehrmann K, Koch T, Liska R, Stampfl J. From Unregulated Networks to Designed Microstructures: Introducing Heterogeneity at Different Length Scales in Photopolymers for Additive Manufacturing. Chem Rev 2024; 124:3978-4020. [PMID: 38546847 PMCID: PMC11009961 DOI: 10.1021/acs.chemrev.3c00570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 04/11/2024]
Abstract
Photopolymers have been optimized as protective and decorative coating materials for decades. However, with the rise of additive manufacturing technologies, vat photopolymerization has unlocked the use of photopolymers for three-dimensional objects with new material requirements. Thus, the originally highly cross-linked, amorphous architecture of photopolymers cannot match the expectations for modern materials anymore, revealing the largely unanswered question of how diverse properties can be achieved in photopolymers. Herein, we review how microstructural features in soft matter materials should be designed and implemented to obtain high performance materials. We then translate these findings into chemical design suggestions for enhanced printable photopolymers. Based on this analysis, we have found microstructural heterogenization to be the most powerful tool to tune photopolymer performance. By combining the chemical toolbox for photopolymerization and the analytical toolbox for microstructural characterization, we examine current strategies for physical heterogenization (fillers, inkjet printing) and chemical heterogenization (semicrystalline polymers, block copolymers, interpenetrating networks, photopolymerization induced phase separation) of photopolymers and put them into a material scientific context to develop a roadmap for improving and diversifying photopolymers' performance.
Collapse
Affiliation(s)
- Mojtaba Ahmadi
- Institute
of Materials Science and Technology, Technische
Universität Wien, Getreidemarkt 9BE, 1060 Vienna, Austria
| | - Katharina Ehrmann
- Institute
of Applied Synthetic Chemistry, Technische
Universität Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| | - Thomas Koch
- Institute
of Materials Science and Technology, Technische
Universität Wien, Getreidemarkt 9BE, 1060 Vienna, Austria
| | - Robert Liska
- Institute
of Applied Synthetic Chemistry, Technische
Universität Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| | - Jürgen Stampfl
- Institute
of Materials Science and Technology, Technische
Universität Wien, Getreidemarkt 9BE, 1060 Vienna, Austria
| |
Collapse
|
3
|
Kaya K, Kiliclar HC, Yagci Y. Photochemically generated ionic species for cationic and step-growth polymerizations. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
4
|
Coban ZG, Kiliclar HC, Yagci Y. Photoinitiated Cationic Ring-Opening Polymerization of Octamethylcyclotetrasiloxane. Molecules 2023; 28:molecules28031299. [PMID: 36770964 PMCID: PMC9919424 DOI: 10.3390/molecules28031299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Photochemical techniques have recently been revitalized as they can readily be adapted to different polymerization modes to yield a wide range of complex macromolecular structures. However, the implementation of the photoinduced cationic methods in the polymerization of cyclic siloxane monomers has scarcely been investigated. Octamethylcyclotetrasiloxane (D4) is an important monomer for the synthesis of polydimethylsiloxane (PDMS) and its copolymers. In this study, the cationic ring-opening polymerization (ROP) of D4, initiated by diphenyl iodonium hexafluorophosphate (DPI), has been studied. Both direct and indirect initiating systems acting at broad wavelength using benzophenone and pyrene were investigated. In both systems, photochemically generated protonic acids and silylium cations are responsible for the polymerization. The kinetics of the polymerization are followed by viscosimetry and GPC analyses. The reported approach may overcome the problems associated with conventional methods and therefore represents industrial importance for the fabrication of polysiloxanes.
Collapse
|
5
|
Yang Z, Chen J, Liao S. Monophosphoniums as Effective Photoredox Organocatalysts for Visible Light-Regulated Cationic RAFT Polymerization. ACS Macro Lett 2022; 11:1073-1078. [PMID: 35984378 DOI: 10.1021/acsmacrolett.2c00418] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Visible light-regulated metal-free polymerizations have attracted considerable attention for macromolecular syntheses in recent years. However, few organic photocatalysts show high efficiency and strict photocontrol in cationic polymerizations. Herein, we introduce monophosphonium-doped polycyclic arenes as an organic photocatalyst, which features the high tunability, broad redox window, long excited state lifetime, and excellent temporal control in the cationic reversible addition-fragmentation chain transfer polymerization of vinyl ethers. A correlation of the catalytic performance and the photophysical and electrochemical properties of photocatalysts is also discussed.
Collapse
Affiliation(s)
- Zan Yang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jianxu Chen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China.,Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| |
Collapse
|
6
|
Pezzana L, Wolff R, Melilli G, Guigo N, Sbirrazzuoli N, Stampfl J, Liska R, Sangermano M. Hot-lithography 3D printing of biobased epoxy resins. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Mete Y, Seidler K, Gorsche C, Koch T, Knaack P, Liska R. Cationic Photopolymerization of Cyclic Esters at Elevated Temperatures and Their Application in Hot Lithography. POLYM INT 2022. [DOI: 10.1002/pi.6430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yazgan Mete
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163 MC 1060 Vienna Austria
| | | | | | - Thomas Koch
- Institute of Materials Science and Technology, TU Wien, Getreidemarkt 9 1060 Vienna Austria
| | - Patrick Knaack
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163 MC 1060 Vienna Austria
| | - Robert Liska
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163 MC 1060 Vienna Austria
| |
Collapse
|
8
|
Lang M, Hirner S, Wiesbrock F, Fuchs P. A Review on Modeling Cure Kinetics and Mechanisms of Photopolymerization. Polymers (Basel) 2022; 14:polym14102074. [PMID: 35631956 PMCID: PMC9145830 DOI: 10.3390/polym14102074] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
Photopolymerizations, in which the initiation of a chemical-physical reaction occurs by the exposure of photosensitive monomers to a high-intensity light source, have become a well-accepted technology for manufacturing polymers. Providing significant advantages over thermal-initiated polymerizations, including fast and controllable reaction rates, as well as spatial and temporal control over the formation of material, this technology has found a large variety of industrial applications. The reaction mechanisms and kinetics are quite complex as the system moves quickly from a liquid monomer mixture to a solid polymer. Therefore, the study of curing kinetics is of utmost importance for industrial applications, providing both the understanding of the process development and the improvement of the quality of parts manufactured via photopolymerization. Consequently, this review aims at presenting the materials and curing chemistry of such ultrafast crosslinking polymerization reactions as well as the research efforts on theoretical models to reproduce cure kinetics and mechanisms for free-radical and cationic photopolymerizations including diffusion-controlled phenomena and oxygen inhibition reactions in free-radical systems.
Collapse
Affiliation(s)
- Margit Lang
- Polymer Competence Center Leoben, 8700 Leoben, Austria;
- Correspondence: ; Tel.: +43-384-242-962-753
| | - Stefan Hirner
- Institute for Chemistry and Technology of Materials, University of Technology Graz, NAWI Graz, 8010 Graz, Austria; (S.H.); (F.W.)
| | - Frank Wiesbrock
- Institute for Chemistry and Technology of Materials, University of Technology Graz, NAWI Graz, 8010 Graz, Austria; (S.H.); (F.W.)
| | - Peter Fuchs
- Polymer Competence Center Leoben, 8700 Leoben, Austria;
| |
Collapse
|
9
|
|
10
|
Wolff R, Ehrmann K, Knaack P, Seidler K, Gorsche C, Koch T, Stampfl J, Liska R. Photo-chemically induced polycondensation of a pure phenolic resin for additive manufacturing. Polym Chem 2022. [DOI: 10.1039/d1py01665b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Additive manufacturing of phenolic resins as a proof-of-concept for the first photo-chemical induced polycondensation by Hot Lithography. Through the dual use of a photoacidgenerator, the first pure 3D printing of Bakelite© is investigated.
Collapse
Affiliation(s)
- Raffael Wolff
- Institute of Applied Synthetic Chemistry, Technische Universität Wien, Getreidemarkt 9/163 MC, 1060 Vienna, Austria
| | - Katharina Ehrmann
- Institute of Applied Synthetic Chemistry, Technische Universität Wien, Getreidemarkt 9/163 MC, 1060 Vienna, Austria
| | - Patrick Knaack
- Institute of Applied Synthetic Chemistry, Technische Universität Wien, Getreidemarkt 9/163 MC, 1060 Vienna, Austria
| | - Konstanze Seidler
- Cubicure GmbH, Gutheil-Schodergasse 17, Tech Park Vienna, 1230 Vienna, Austria
| | - Christian Gorsche
- Cubicure GmbH, Gutheil-Schodergasse 17, Tech Park Vienna, 1230 Vienna, Austria
| | - Thomas Koch
- Institute of Materials Science and Technology, Technische Universität Wien, Getreidemarkt 9/308, 1060 Vienna, Austria
| | - Jürgen Stampfl
- Institute of Materials Science and Technology, Technische Universität Wien, Getreidemarkt 9/308, 1060 Vienna, Austria
| | - Robert Liska
- Institute of Applied Synthetic Chemistry, Technische Universität Wien, Getreidemarkt 9/163 MC, 1060 Vienna, Austria
| |
Collapse
|
11
|
Mete Y, Knaack P, Liska R. A systematic study of temperature‐dependent cationic photopolymerization of cyclic esters. POLYM INT 2021. [DOI: 10.1002/pi.6326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yazgan Mete
- Institute of Applied Synthetic Chemistry TU Wien Vienna Austria
| | - Patrick Knaack
- Institute of Applied Synthetic Chemistry TU Wien Vienna Austria
| | - Robert Liska
- Institute of Applied Synthetic Chemistry TU Wien Vienna Austria
| |
Collapse
|
12
|
Cationic Photopolymerization Initiated by a Photocatalytic Complex Sensitive to Visible Light at 520 nm. Catal Letters 2020. [DOI: 10.1007/s10562-020-03437-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
13
|
Fiedor P, Ortyl J. A New Approach to Micromachining: High-Precision and Innovative Additive Manufacturing Solutions Based on Photopolymerization Technology. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2951. [PMID: 32630285 PMCID: PMC7372441 DOI: 10.3390/ma13132951] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022]
Abstract
The following article introduces technologies that build three dimensional (3D) objects by adding layer-upon-layer of material, also called additive manufacturing technologies. Furthermore, most important features supporting the conscious choice of 3D printing methods for applications in micro and nanomanufacturing are covered. The micromanufacturing method covers photopolymerization-based methods such as stereolithography (SLA), digital light processing (DLP), the liquid crystal display-DLP coupled method, two-photon polymerization (TPP), and inkjet-based methods. Functional photocurable materials, with magnetic, conductive, or specific optical applications in the 3D printing processes are also reviewed.
Collapse
Affiliation(s)
- Paweł Fiedor
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland;
| | - Joanna Ortyl
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland;
- Photo HiTech Ltd., Bobrzyńskiego 14, 30-348 Cracow, Poland
| |
Collapse
|