1
|
Lei Y, Wang Y, Hill SK, Cheng Z, Song Q, Perrier S. Supra-Fluorophores: Ultrabright Fluorescent Supramolecular Assemblies Derived from Conventional Fluorophores in Water. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401346. [PMID: 38416605 PMCID: PMC11475621 DOI: 10.1002/adma.202401346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/22/2024] [Indexed: 03/01/2024]
Abstract
Fluorescent organic nanoparticles (NPs) with exceptional brightness hold significant promise for demanding fluorescence bioimaging applications. Although considerable efforts are invested in developing novel organic dyes with enhanced performance, augmenting the brightness of conventional fluorophores is still one of the biggest challenges to overcome. This study presents a supramolecular strategy for constructing ultrabright fluorescent nanoparticles in aqueous media (referred to as "Supra-fluorophores") derived from conventional fluorophores. To achieve this, this course has employed a cylindrical nanoparticle with a hydrophobic microdomain, assembled by a cyclic peptide-diblock copolymer conjugate in water, as a supramolecular scaffold. The noncovalent dispersion of fluorophore moieties within the hydrophobic microdomain of the scaffold effectively mitigates the undesired aggregation-caused quenching and fluorescence quenching by water, resulting in fluorescent NPs with high brightness. This strategy is applicable to a broad spectrum of fluorophore families, covering polyaromatic hydrocarbons, coumarins, boron-dipyrromethenes, cyanines, xanthenes, and squaraines. The resulting fluorescent NPs demonstrate high fluorescence quantum yield (>30%) and brightness per volume (as high as 12 060 m-1 cm-1 nm-3). Moreover, high-performance NPs with emission in the NIR region are constructed, showcasing up to 20-fold increase in both brightness and photostability. This Supra-fluorophore strategy offers a versatile and effective method for transforming existing fluorophores into ultrabright fluorescent NPs in aqueous environments, for applications such as bioimaging.
Collapse
Affiliation(s)
- Yuqing Lei
- Shenzhen Grubbs InstituteSouthern University of Science and TechnologyShenzhen518055China
| | - Yuqian Wang
- Shenzhen Grubbs InstituteSouthern University of Science and TechnologyShenzhen518055China
| | - Sophie K. Hill
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Zihe Cheng
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Qiao Song
- Shenzhen Grubbs InstituteSouthern University of Science and TechnologyShenzhen518055China
| | - Sébastien Perrier
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
- Warwick Medical SchoolUniversity of WarwickCoventryCV4 7ALUK
- Faculty of Pharmacy and Pharmaceutical SciencesMonash UniversityParkvilleVIC 3052Australia
| |
Collapse
|
2
|
Pascouau C, Schweitzer M, Besenius P. Supramolecular Assembly and Thermogelation Strategies Using Peptide-Polymer Conjugates. Biomacromolecules 2024; 25:2659-2678. [PMID: 38663862 PMCID: PMC11095398 DOI: 10.1021/acs.biomac.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 05/14/2024]
Abstract
Peptide-polymer conjugates (PPCs) are of particular interest in the development of responsive, adaptive, and interactive materials due to the benefits offered by combining both building blocks and components. This review presents pioneering work as well as recent advances in the design of peptide-polymer conjugates, with a specific focus on their thermoresponsive behavior. This unique class of materials has shown great promise in the development of supramolecular structures with physicochemical properties that are modulated using soft and biorthogonal external stimuli. The temperature-induced self-assembly of PPCs into various supramolecular architectures, gelation processes, and tuning of accessible processing parameters to biologically relevant temperature windows are described. The discussion covers the chemical design of the conjugates, the supramolecular driving forces involved, and the mutual influence of the polymer and peptide segments. Additionally, some selected examples for potential biomedical applications of thermoresponsive PPCs in tissue engineering, delivery systems, tumor therapy, and biosensing are highlighted, as well as perspectives on future challenges.
Collapse
Affiliation(s)
- Chloé Pascouau
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 1014, D-55128 Mainz, Germany
| | - Maren Schweitzer
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 1014, D-55128 Mainz, Germany
| | - Pol Besenius
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 1014, D-55128 Mainz, Germany
| |
Collapse
|
3
|
Lu H, Wang Y, Hill SK, Jiang H, Ke Y, Huang S, Zheng D, Perrier S, Song Q. Supra-Cyanines: Ultrabright Cyanine-Based Fluorescent Supramolecular Materials in Solution and in the Solid State. Angew Chem Int Ed Engl 2023; 62:e202311224. [PMID: 37840434 DOI: 10.1002/anie.202311224] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/29/2023] [Accepted: 10/13/2023] [Indexed: 10/17/2023]
Abstract
Fluorescent materials with high brightness play a crucial role in the advancement of various technologies such as bioimaging, photonics, and OLEDs. While significant efforts are dedicated to designing new organic dyes with improved performance, enhancing the brightness of existing dyes holds equal importance. In this study, we present a simple supramolecular strategy to develop ultrabright cyanine-based fluorescent materials by addressing long-standing challenges associated with cyanine dyes, including undesired cis-trans photoisomerization and aggregation-caused quenching. Supra-cyanines are obtained by incorporating cyanine moieties in a cyclic peptide-based supramolecular scaffold, and exhibit high fluorescence quantum yields (up to 50 %) in both solution and in the solid state. These findings offer a versatile approach for constructing highly emissive cyanine-based supramolecular materials.
Collapse
Affiliation(s)
- Haicheng Lu
- Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuqian Wang
- Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Sophie K Hill
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Hanqiu Jiang
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, China
- Spallation Neutron Source Science Center, Dongguan, 523803, China
| | - Yubin Ke
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, China
- Spallation Neutron Source Science Center, Dongguan, 523803, China
| | - Shaohui Huang
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101499, China
| | - Dunjin Zheng
- LightEdge Technologies Limited, Zhongshan, 528451, China
| | - Sébastien Perrier
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Qiao Song
- Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
4
|
Song Q, Cheng Z, Perrier S. Supramolecular peptide nanotubes as artificial enzymes for catalysing ester hydrolysis. Polym Chem 2023; 14:4712-4718. [PMID: 38013987 PMCID: PMC10594401 DOI: 10.1039/d3py00993a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 11/29/2023]
Abstract
Peptide-based artificial enzymes are attracting significant interest because of their remarkable resemblance in both composition and structure to native enzymes. Herein, we report the construction of histidine-containing cyclic peptide-based supramolecular polymeric nanotubes to function as artificial enzymes for ester hydrolysis. The optimized catalyst shows a ca. 70-fold increase in reaction rate compared to the un-catalysed reaction when using 4-nitrophenyl acetate as a model substrate. Furthermore, the amphiphilic nature of the supramolecular catalysts enables an enhanced catalytic activity towards hydrophobic substrates. By incorporating an internal hydrophobic region within the self-assembled polymeric nanotube, we achieve a 55.4-fold acceleration in hydrolysis rate towards a more hydrophobic substrate, 4-nitrophenyl butyrate. This study introduces supramolecular peptide nanotubes as an innovative class of supramolecular scaffolds for fabricating artificial enzymes with better structural and chemical stability, catalysing not only ester hydrolysis, but also a broader spectrum of catalytic reactions.
Collapse
Affiliation(s)
- Qiao Song
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
- Shenzhen Grubbs Institute, Southern University of Science and Technology Shenzhen 518055 China
| | - Zihe Cheng
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Sébastien Perrier
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
- Warwick Medical School, University of Warwick Coventry CV4 7AL UK
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University Parkville VIC 3052 Australia
| |
Collapse
|
5
|
Edson CB, Liu M, Totsingan F, O’Berg E, Salvucci J, Dao U, Khare SD, Gross RA. Monomer Choice Influences N-Acryloyl Amino Acid Grafter Conversion via Protease Catalysis. Biomacromolecules 2023; 24:1798-1809. [PMID: 36996092 PMCID: PMC10139737 DOI: 10.1021/acs.biomac.3c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
End-capped peptides modified with reactive functional groups on the N-terminus provide a route to prepare peptide-polymer conjugates for a broad range of applications. Unfortunately, current chemical methods to construct modified peptides rely largely on solid-phase peptide synthesis (SPPS), which lacks green preparative characteristics and is costly, thus limiting its applicability to specialty applications such as regenerative medicine. This work evaluates N-terminally modified N-acryloyl-glutamic acid diethyl ester, N-acryloyl-leucine ethyl ester, and N-acryloyl-alanine ethyl ester as grafters and papain as the protease for the direct addition of amino acid ethyl ester (AA-OEt) monomers via protease-catalyzed peptide synthesis (PCPS) and the corresponding formation of N-acryloyl-functionalized oligopeptides in a one-pot aqueous reaction. It was hypothesized that by building N-acryloyl grafters from AA-OEt monomers that are known to be good substrates for papain in PCPS, the corresponding grafters would yield high grafter conversions, high ratio of grafter-oligopeptide to free NH2-oligopeptide, and high overall yield. However, this work demonstrates based on the grafter/monomers studied herein that the dominant factor in N-acryloyl-AA-OEt grafter conversion is the co-monomer used in co-oligomerizations. Computational modeling using Rosetta qualitatively recapitulates the results and provides insight into the structural and energetic bases underlying substrate selectivity. The findings herein expand our knowledge of factors that determine the efficiency of preparing N-acryloyl-terminated oligopeptides by PCPS that could provide practical routes to peptide macromers for conjugation to polymers and surfaces for a broad range of applications.
Collapse
Affiliation(s)
- Cody B. Edson
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8 St. Troy, NY 12180
| | - Melinda Liu
- Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Filbert Totsingan
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8 St. Troy, NY 12180
| | - Evan O’Berg
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8 St. Troy, NY 12180
| | - John Salvucci
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8 St. Troy, NY 12180
| | - Uyen Dao
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8 St. Troy, NY 12180
| | - Sagar D. Khare
- Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Richard A. Gross
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8 St. Troy, NY 12180
| |
Collapse
|
6
|
Müllner M. Molecular polymer bottlebrushes in nanomedicine: therapeutic and diagnostic applications. Chem Commun (Camb) 2022; 58:5683-5716. [PMID: 35445672 DOI: 10.1039/d2cc01601j] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Molecular polymer bottlebrushes are densely grafted, individual macromolecules with nanoscale proportions. The last decade has seen an increased focus on this material class, especially in nanomedicine and for biomedical applications. This Feature Article provides an overview of major developments in this area to highlight the many opportunities that these polymer architectures bring to nano-bio research. The article covers aspects of bottlebrush synthesis and summarises their use in drug and gene delivery, imaging, as theranostics and as prototype materials to correlate nanoparticle structure and composition to biological function and behaviour. Areas for future research in this area are discussed.
Collapse
Affiliation(s)
- Markus Müllner
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia. .,The University of Sydney Nano Institute (Sydney Nano), Sydney, NSW 2006, Australia
| |
Collapse
|
7
|
Song Q, Zhang J, Yu X, Cheng Z, Yang J, Hall SCL, Perrier S. Tailoring the luminescence of FRET systems built using supramolecular polymeric nanotubes. Polym Chem 2022. [DOI: 10.1039/d2py00557c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Supramolecular polymeric nanotubes self-assembled from cyclic peptide–polymer conjugates are employed as general scaffolds to fabricate supramolecular FRET systems with tailorable and responsive luminescence.
Collapse
Affiliation(s)
- Qiao Song
- Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Jingyu Zhang
- Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xinxin Yu
- Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zihe Cheng
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Jie Yang
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | | | - Sébastien Perrier
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| |
Collapse
|
8
|
Novelli F, Vilela M, Pazó A, Amorín M, Granja JR. Molecular Plumbing to Bend Self‐Assembling Peptide Nanotubes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Federica Novelli
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Organic Chemistry Department Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Marcos Vilela
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Organic Chemistry Department Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Antía Pazó
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Organic Chemistry Department Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Manuel Amorín
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Organic Chemistry Department Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Juan R. Granja
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Organic Chemistry Department Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
9
|
Novelli F, Vilela M, Pazó A, Amorín M, Granja JR. Molecular Plumbing to Bend Self-Assembling Peptide Nanotubes. Angew Chem Int Ed Engl 2021; 60:18838-18844. [PMID: 34185371 PMCID: PMC8456905 DOI: 10.1002/anie.202107034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Indexed: 12/11/2022]
Abstract
Light-induced molecular piping of cyclic peptide nanotubes to form bent tubular structures is described. The process is based on the [4+4] photocycloaddition of anthracene moieties, whose structural changes derived from the interdigitated flat disposition of precursors to the corresponding cycloadduct moieties, induced the geometrical modifications in nanotubes packing that provokes their curvature. For this purpose, we designed a new class of cyclic peptide nanotubes formed by β- and α-amino acids. The presence of the former predisposes the peptide to stack in a parallel fashion with the β-residues aligned along the nanotube and the homogeneous distribution of anthracene pendants.
Collapse
Affiliation(s)
- Federica Novelli
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Organic Chemistry DepartmentUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Marcos Vilela
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Organic Chemistry DepartmentUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Antía Pazó
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Organic Chemistry DepartmentUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Manuel Amorín
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Organic Chemistry DepartmentUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Juan R. Granja
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Organic Chemistry DepartmentUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| |
Collapse
|
10
|
Song Q, Kerr A, Yang J, Hall SCL, Perrier S. Tubular supramolecular alternating copolymers fabricated by cyclic peptide-polymer conjugates. Chem Sci 2021; 12:9096-9103. [PMID: 34276939 PMCID: PMC8261775 DOI: 10.1039/d1sc02389f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/29/2021] [Indexed: 11/21/2022] Open
Abstract
Supramolecular copolymers are an emerging class of materials, which bring together different properties and functionalities of multiple components via noncovalent interactions. While it is widely acknowledged that the repeating unit sequence plays an essential role on the performance of these materials, mastering and tuning the supramolecular copolymer sequence is still an open challenge. To date, only statistical supramolecular copolymers have been reported using cyclic peptide-polymer conjugates as building blocks. To enrich the diversity of tubular supramolecular copolymers, we report here a strategy of controlling their sequences by introducing an extra complementary noncovalent interaction. Hence, two conjugates bearing one electron donor and one electron acceptor, respectively, are designed. The two conjugates can individually assemble into tubular supramolecular homopolymers driven by the multiple hydrogen bonding interactions between cyclic peptides. However, the complementary charge transfer interaction between the electron donor and acceptor makes each conjugate more favorable for complexing with its counterpart, resulting in an alternating sequence of the supramolecular copolymer. Following the same principle, more functional supramolecular alternating copolymers are expected to be designed and constructed via other complementary noncovalent interactions (electrostatic interactions, metal coordination interactions, and host-guest interactions, etc.).
Collapse
Affiliation(s)
- Qiao Song
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
- Shenzhen Grubbs Institute, Southern University of Science and Technology Shenzhen 518055 China
| | - Andrew Kerr
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Jie Yang
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Stephen C L Hall
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Sébastien Perrier
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
- Warwick Medical School, University of Warwick Coventry CV4 7AL UK
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University Parkville VIC 3052 Australia
| |
Collapse
|
11
|
|