1
|
Xie H, Zhong K, Niu S, Li X, Hu Z, Xiao G, Huang Y, Zhang H, Liu Y, Zhang H, Cai Q. Air-Mediated Biomimetic Synthesis of Polyhydroxyalkanoate with C4 Diol. Angew Chem Int Ed Engl 2024:e202417660. [PMID: 39714430 DOI: 10.1002/anie.202417660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Poly(4-hydroxybutyrate) (P4HB) is a high-performance, well-recyclable, and biodegradable polyhydroxyalkanoate (PHA). However, conventional bioproduction of homopolymeric P4HB involves complex and costly processes with C4 feedstocks, particularly 1,4-butanediol (BDO), and enzyme-coenzyme systems in genetically engineered bacteria. An alternative extracellular chemical route utilizing aerial oxidation of BDO offers cost and energy benefits but struggle with conversion efficiency. Inspired by efficient intracellular oxidation of primary alcohols, we propose a ruthenium-phosphine synergistic catalytic system that mimics enzyme-coenzyme functionality. This system effectively catalyzed the air-mediated, solvent-free oxidation of BDO to produce γ-butyrolactone (γ-BL) and oligomeric P4HB, with a space-time yield (10.37 g [γ-BL unit] g-1 catalyst h-1) surpassing the values (<5.5) of previous approaches. The oligomer-containing products were reversibly converted to γ-BL and then to P4HB (28.9 kDa) via ring-opening polymerization, exceeding reported values (<16 kDa). This study provides the potential for large-scale synthesis of high-value PHAs from diverse non-grain-based diols, offering economic and environmental advantages.
Collapse
Affiliation(s)
- Huilin Xie
- Chemistry and Chemical Engineering Guangdong Laboratory, 515031, Shantou, China
- College of Chemistry and Chemical Engineering, Shantou University, 515063, Shantou, China
| | - Kaibin Zhong
- Chemistry and Chemical Engineering Guangdong Laboratory, 515031, Shantou, China
| | - Shihao Niu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Xiaoxu Li
- Chemistry and Chemical Engineering Guangdong Laboratory, 515031, Shantou, China
| | - Zexu Hu
- Chemistry and Chemical Engineering Guangdong Laboratory, 515031, Shantou, China
| | - Guang Xiao
- Chemistry and Chemical Engineering Guangdong Laboratory, 515031, Shantou, China
| | - Yifu Huang
- College of Chemistry and Chemical Engineering, Shantou University, 515063, Shantou, China
| | - Hongjie Zhang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Yuan Liu
- Chemistry and Chemical Engineering Guangdong Laboratory, 515031, Shantou, China
| | - Hefeng Zhang
- College of Chemistry and Chemical Engineering, Shantou University, 515063, Shantou, China
| | - Qiuquan Cai
- Chemistry and Chemical Engineering Guangdong Laboratory, 515031, Shantou, China
| |
Collapse
|
2
|
Shang B, Xiao M, Wang S, Han D, Huang S, Guo H, Meng Y. One-pot synthesis of crystalline polycarbonate- block-polyesters. Chem Commun (Camb) 2024; 60:14826-14829. [PMID: 39584746 DOI: 10.1039/d4cc05462h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
We herein describe a simple and efficient one-pot synthesis approach to prepare crystalline polycarbonate-polyester diblock copolymers by copolymerizing tetrachlorophthalic anhydride, CO2, and ethylene oxide using a metal-free catalyst. The block copolymers possess a melting point as high as 169 °C and two distinct glass transition temperatures. It is also possible to control the length and composition of the copolymers, thereby customizing their crystallinity and physical performance.
Collapse
Affiliation(s)
- Bingkai Shang
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | - Min Xiao
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | - Shuanjin Wang
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | - Dongmei Han
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519000, P. R. China
| | - Sheng Huang
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | - Hui Guo
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519000, P. R. China
| | - Yuezhong Meng
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China.
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519000, P. R. China
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou, 45000, P. R. China
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
3
|
Chen X, Zhao S, Yuan A, Chen S, Liao Y, Lei Y, Fu X, Lei J, Jiang L. Enabling High Strength and Toughness Polyurethane through Disordered-Hydrogen Bonds for Printable, Recyclable, Ultra-Fast Responsive Capacitive Sensors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405941. [PMID: 39401406 PMCID: PMC11615776 DOI: 10.1002/advs.202405941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/05/2024] [Indexed: 12/06/2024]
Abstract
The rapid advancement of smart, flexible electronic devices has paralleled a surge in electronic waste (e-waste), exacerbating massive resource depletion and serious environmental pollution. Recyclable materials are extensively investigated to address these challenges. Herein, this study designs a unique polyurethane (SPPUs) with ultra-high strength up to 60 MPa and toughness of 360 MJ m-3. This synthetic SPPUs can be fully recycled at room temperature by using green solvents of ethanol. Accordingly, the resultant SPPU-Ni composites, created by mixing the ethanol-dissolved SPPUs solution with nickel (Ni) powder, effectively combine the flexibility and recyclability of SPPUs with the electrical conductivity of the nickel filler. Notably, this work develops the printable capacitive sensors (PCBS) through transcribing the paste of SPPUs-Ni slurry onto PET film and paper using screen-printing technology. The devised PCBS have fast response time ≈50 ms, high resolution, and multiple signal recognition capabilities. Remarkably, SPPUs and Ni powder can be fully recycled by only dissolving the waste PCBS in ethanol. This work offers a sustainable solution to the growing e-waste problem in recyclable flexible electronics.
Collapse
Affiliation(s)
- Xingbao Chen
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengdu610065China
| | - Shiwei Zhao
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengdu610065China
| | - Anqian Yuan
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengdu610065China
| | - Silong Chen
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengdu610065China
| | - Yansheng Liao
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengdu610065China
| | - Yuan Lei
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengdu610065China
| | - Xiaowei Fu
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengdu610065China
| | - Jingxin Lei
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengdu610065China
| | - Liang Jiang
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengdu610065China
| |
Collapse
|
4
|
Liu F, Cheng Z, Fang Y, Wang X, Zhao L, Rong ZQ. Metal-Catalyst-Controlled Divergent Synthesis of γ-Butyrolactones via Intramolecular Coupling of Epoxides with Alcohols. Org Lett 2023; 25:3618-3622. [PMID: 37184068 DOI: 10.1021/acs.orglett.3c00898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A metal-controlled divergent protocol for the synthesis of α- and β-substituted γ-butyrolactones was developed through intramolecular coupling of epoxides with alcohols. This method provides an efficient and practicable way to afford γ-butyrolactones with good efficiency, excellent regioselectivity, and broad substrate scope.
Collapse
Affiliation(s)
- Feipeng Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Zifan Cheng
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Yiyun Fang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Xuchao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Lingzi Zhao
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Zi-Qiang Rong
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
5
|
Xia Y, Yuan P, Zhang Y, Sun Y, Hong M. Converting Non-strained γ-Valerolactone and Derivatives into Sustainable Polythioesters via Isomerization-driven Cationic Ring-Opening Polymerization of Thionolactone Intermediate. Angew Chem Int Ed Engl 2023; 62:e202217812. [PMID: 36757807 DOI: 10.1002/anie.202217812] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/17/2023] [Accepted: 02/09/2023] [Indexed: 02/10/2023]
Abstract
This contribution reports the efficient conversion of γ-valerolactone and its derivatives, abundant but unexplored renewable feedstocks, into sustainable and degradable polythioesters via the establishment of the first isomerization-driven ring-opening polymerizations (IROPs) of corresponding thionolactone intermediates. The key to this success relies on the development of a new simple and robust [Et3 O]+ [B(C6 F5 )4 ]- cationic initiator which possesses high activity, exclusive selectivity, living nature, and broad scope of thionolactones. A complete inversion of configuration during IROP of enantiopure γ-thionovalerolactone is also disclosed, affording isotactic semicrystalline polythioesters (Tm =87.0 °C) with mechanical property compared well to the representative commodity polyolefins. The formation of a highly crystalline supramolecular stereocomplex with enhanced thermal property (Tm =117.6 °C) has also been revealed.
Collapse
Affiliation(s)
- Yongliang Xia
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Pengjun Yuan
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yanping Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yangyang Sun
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Miao Hong
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.,School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| |
Collapse
|
6
|
Wang X, Huo Z, Xie X, Shanaiah N, Tong R. Recent Advances in Sequence-Controlled Ring-Opening Copolymerizations of Monomer Mixtures. Chem Asian J 2023; 18:e202201147. [PMID: 36571563 DOI: 10.1002/asia.202201147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
Transforming renewable resources into functional and degradable polymers is driven by the ever-increasing demand to replace unsustainable polyolefins. However, the utility of many degradable homopolymers remains limited due to their inferior properties compared to commodity polyolefins. Therefore, the synthesis of sequence-defined copolymers from one-pot monomer mixtures is not only conceptually appealing in chemistry, but also economically attractive by maximizing materials usage and improving polymers' performances. Among many polymerization strategies, ring-opening (co)polymerization of cyclic monomers enables efficient access to degradable polymers with high control on molecular weights and molecular weight distributions. Herein, we highlight recent advances in achieving one-pot, sequence-controlled polymerizations of cyclic monomer mixtures using a single catalytic system that combines multiple catalytic cycles. The scopes of cyclic monomers, catalysts, and polymerization mechanisms are presented for this type of sequence-controlled ring-opening copolymerization.
Collapse
Affiliation(s)
- Xiaoqian Wang
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, 24061, Blacksburg, VA, USA
| | - Ziyu Huo
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, 24061, Blacksburg, VA, USA
| | - Xiaoyu Xie
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, 24061, Blacksburg, VA, USA
| | - Narasimhamurthy Shanaiah
- Department of Chemistry, Virginia Polytechnic Institute and State University, 1040 Drillfield Drive, 24061, Blacksburg, VA, USA
| | - Rong Tong
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, 24061, Blacksburg, VA, USA
| |
Collapse
|
7
|
Recyclable polythioesters and polydisulfides with near-equilibrium thermodynamics and dynamic covalent bonds. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1418-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
8
|
Functional polyesters via ring-opening copolymerization of α–hydroxy–γ–butyrolactone and ε-caprolactone: La[N(SiMe3)2]3 as an efficient coordination-insertion catalyst. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
McGuire TM, Deacy AC, Buchard A, Williams CK. Solid-State Chemical Recycling of Polycarbonates to Epoxides and Carbon Dioxide Using a Heterodinuclear Mg(II)Co(II) Catalyst. J Am Chem Soc 2022; 144:18444-18449. [PMID: 36169420 PMCID: PMC9562274 DOI: 10.1021/jacs.2c06937] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Polymer chemical
recycling to monomers (CRM) could help
improve
polymer sustainability, but its implementation requires much better
understanding of depolymerization catalysis, ensuring high rates and
selectivity. Here, a heterodinuclear [Mg(II)Co(II)] catalyst is applied
for CRM of aliphatic polycarbonates, including poly(cyclohexene carbonate)
(PCHC), to epoxides and carbon dioxide using solid-state conditions,
in contrast with many other CRM strategies that rely on high dilution.
The depolymerizations are performed in the solid state giving very
high activity and selectivity (PCHC, TOF = 25700 h–1, CHO selectivity >99 %, 0.02 mol %, 140 °C). Reactions may
also be performed in air without impacting on the rate or selectivity
of epoxide formation. The depolymerization can be performed on a 2
g scale to isolate the epoxides in up to 95 % yield with >99 %
selectivity.
In addition, the catalyst can be re-used four times without compromising
its productivity or selectivity.
Collapse
Affiliation(s)
- Thomas M McGuire
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Rd, Oxford, OX1 3TA, U.K
| | - Arron C Deacy
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Rd, Oxford, OX1 3TA, U.K
| | - Antoine Buchard
- Department of Chemistry, University of Bath, Centre for Sustainable and Circular Technologies, Claverton Down, Bath BA2 7AY, U.K
| | - Charlotte K Williams
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Rd, Oxford, OX1 3TA, U.K
| |
Collapse
|
10
|
Yu Y, Gao B, Liu Y, Lu XB. Efficient and Selective Chemical Recycling of CO 2 -Based Alicyclic Polycarbonates via Catalytic Pyrolysis. Angew Chem Int Ed Engl 2022; 61:e202204492. [PMID: 35770495 DOI: 10.1002/anie.202204492] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Indexed: 01/22/2023]
Abstract
Chemical recycling of polymers to their constituent monomers is the foremost challenge in building a sustainable circular plastics economy. Here, we report a strategy for highly efficient depolymerization of various CO2 -based alicyclic polycarbonates to epoxide monomers in solvent-free conditions by a simple CrIII -Salen complex mediated catalytic pyrolysis process. The chemical recycling of the widely studied poly(cyclohexene carbonate) exhibits excellent reactivity (TOF up to 3000 h-1 , 0.1 mol % catalyst loading) and high epoxide monomer selectivity (>99 %). Mechanistic investigation reveals that the process proceeds in a sequential fashion via a trans-carbonate intermediate.
Collapse
Affiliation(s)
- Yan Yu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Bang Gao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Ye Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| |
Collapse
|
11
|
Yu Y, Gao B, Liu Y, Lu XB. Efficient and Selective Chemical Recycling of CO2‐based Alicyclic Polycarbonates via Catalytic Pyrolysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yan Yu
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Bang Gao
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Ye Liu
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Xiao-Bing Lu
- State Key Laboratory of fine chemicals,Dalian University of Technology State Key Laboratory of fine chemicals, 2 Linggong road 116024 Dalian CHINA
| |
Collapse
|
12
|
Fan HZ, Yang X, Chen JH, Tu YM, Cai Z, Zhu JB. Advancing the Development of Recyclable Aromatic Polyesters by Functionalization and Stereocomplexation. Angew Chem Int Ed Engl 2022; 61:e202117639. [PMID: 35104021 DOI: 10.1002/anie.202117639] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Indexed: 01/09/2023]
Abstract
The development of innovative synthetic polymer systems to overcome the trade-offs between the polymer's depolymerizability and performance properties is in high demand for advanced material applications and sustainable development. In this contribution, we prepared a class of aromatic cyclic esters (M1-M5) from thiosalicylic acid and epoxides by facile one-pot synthesis. Ring-opening polymerization of Ms afforded aromatic polyesters P(M)s with high molecular weights and narrow dispersities. The physical and mechanical properties of P(M)s can be modulated by stereocomplexation and regulation of the side-chain flexibility of the polymers, ultimately achieving high-performance properties such as high thermal stability and crystallinity (Tm up to 209 °C), as well as polyolefin-like high mechanical strength, ductility, and toughness. Furthermore, the functionalizable moieties of P(M)s have driven a wide array of post-polymerization modifications toward access to value-added materials. More importantly, the P(M)s were able to selectively depolymerize into monomers in excellent yields, thus establishing its circular life cycle.
Collapse
Affiliation(s)
- Hua-Zhong Fan
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| | - Xing Yang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| | - Jia-Hao Chen
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| | - Yi-Min Tu
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| | - Zhongzheng Cai
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| | - Jian-Bo Zhu
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| |
Collapse
|
13
|
Zhao W, Wang Q, He J, Zhang Y. Boron-Based Lewis Pairs Catalyzed Living, Regioselective and Topology-Controlled Polymerization of (E, E)-alkyl Sorbates. Macromol Rapid Commun 2022; 43:e2200088. [PMID: 35363417 DOI: 10.1002/marc.202200088] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/16/2022] [Indexed: 11/06/2022]
Abstract
It remains as a great challenge to realize living and controlled polymerization of renewable monomers by the boron-based Lewis pairs. Here we employ strong nucleophilic N-heterocyclic olefins (NHOs) or N-heterocyclic carbenes (NHCs) as Lewis bases (LBs), and boron-based compounds as Lewis acids (LAs) to construct LPs for polymerization of alkyl sorbates, including (E, E)-methyl sorbate (MS) and (E, E)-ethyl sorbate (ES). Systematic investigation reveal that the combinations of B(C6 F5 )3 with appropriate acidity and steric hindrance, and strong nucleophilic NHOs promote living and controlled polymerization of alkyl sorbates in 100% 1,4-addition manner, furnishing polymers with predicted molecular weight (Mw up to 56.6 kg/mol) and narrow molecular weight distribution (Đ as low as 1.12). Furthermore, topology analysis shows that NHC1/B(C6 F5 )3 LP produced PMS possessing cyclic structure. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wuchao Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Qianyi Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Jianghua He
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Yuetao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| |
Collapse
|
14
|
Lu X, Xie P, Xiang X, Sun J. Mechanically Robust Supramolecular Plastics with Energy-Saving and Highly Efficient Closed-Loop Recyclability. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xingyuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Peng Xie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xiaoxuan Xiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Junqi Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
15
|
Cywar RM, Rorrer NA, Mayes HB, Maurya AK, Tassone CJ, Beckham GT, Chen EYX. Redesigned Hybrid Nylons with Optical Clarity and Chemical Recyclability. J Am Chem Soc 2022; 144:5366-5376. [PMID: 35290039 DOI: 10.1021/jacs.1c12611] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aliphatic polyamides, or nylons, are typically highly crystalline and thermally robust polymers used in high-performance applications. Nylon 6, a high-ceiling-temperature (HCT) polyamide from ε-caprolactam, lacks expedient chemical recyclability, while low-ceiling temperature (LCT) nylon 4 from pyrrolidone exhibits complete chemical recyclability, but it is thermally unstable and not melt-processable. Here, we introduce a hybrid nylon, nylon 4/6, based on a bicyclic lactam composed of both HCT ε-caprolactam and LCT pyrrolidone motifs in a hybridized offspring structure. Hybrid nylon 4/6 overcomes trade-offs in (de)polymerizability and performance properties of the parent nylons, exhibiting both excellent polymerization and facile depolymerization characteristics. This stereoregular polyamide forms nanocrystalline domains, allowing optical clarity and high thermal stability, however, without displaying a melting transition before decomposition. Of a series of statistical copolymers comprising nylon 4/6 and nylon 4, a 50/50 copolymer achieves the greatest synergy in both reactivity and polymer properties of each homopolymer, offering an amorphous nylon with favorable properties, including optical clarity, a high glass transition temperature, melt processability, and full chemical recyclability.
Collapse
Affiliation(s)
- Robin M Cywar
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States.,Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Nicholas A Rorrer
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Heather B Mayes
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Anjani K Maurya
- SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, Menlo Park, California 94025, United States
| | - Christopher J Tassone
- SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, Menlo Park, California 94025, United States
| | - Gregg T Beckham
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States.,Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| |
Collapse
|
16
|
Fully Chemical Recyclable Poly(γ-butyrolactone)-based Copolymers with Tunable Structures and Properties. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2685-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Fan H, Yang X, Chen J, Tu Y, Cai Z, Zhu J. Advancing the Development of Recyclable Aromatic Polyesters by Functionalization and Stereocomplexation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hua‐Zhong Fan
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan) College of Chemistry Sichuan University 29 Wangjiang Rd Chengdu 610064 P. R. China
| | - Xing Yang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan) College of Chemistry Sichuan University 29 Wangjiang Rd Chengdu 610064 P. R. China
| | - Jia‐Hao Chen
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan) College of Chemistry Sichuan University 29 Wangjiang Rd Chengdu 610064 P. R. China
| | - Yi‐Min Tu
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan) College of Chemistry Sichuan University 29 Wangjiang Rd Chengdu 610064 P. R. China
| | - Zhongzheng Cai
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan) College of Chemistry Sichuan University 29 Wangjiang Rd Chengdu 610064 P. R. China
| | - Jian‐Bo Zhu
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan) College of Chemistry Sichuan University 29 Wangjiang Rd Chengdu 610064 P. R. China
| |
Collapse
|
18
|
Xu J, Wang X, Liu J, Feng X, Gnanou Y, Hadjichristidis N. Ionic H-bonding organocatalysts for the ring-opening polymerization of cyclic esters and cyclic carbonates. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2021.101484] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
19
|
Huang J, Olsén P, Svensson Grape E, Inge AK, Odelius K. Simple Approach to Macrocyclic Carbonates with Fast Polymerization Rates and Their Polymer-to-Monomer Regeneration. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02225] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jin Huang
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Peter Olsén
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Erik Svensson Grape
- Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - A. Ken Inge
- Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - Karin Odelius
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| |
Collapse
|
20
|
Bruckmoser J, Henschel D, Vagin S, Rieger B. Combining high activity with broad monomer scope: indium salan catalysts in the ring-opening polymerization of various cyclic esters. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00436d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
An indium salan-type catalyst shows very high activities in the ring-opening polymerization of various cyclic esters, including β-butyrolactone, γ-butyrolactone, lactide, ε-caprolactone and ε-decalactone.
Collapse
Affiliation(s)
- Jonas Bruckmoser
- WACKER-Chair of Macromolecular Chemistry, Catalysis Research Center, Technical University of Munich, 85748 Garching, Germany
| | - Daniel Henschel
- WACKER-Chair of Macromolecular Chemistry, Catalysis Research Center, Technical University of Munich, 85748 Garching, Germany
| | - Sergei Vagin
- WACKER-Chair of Macromolecular Chemistry, Catalysis Research Center, Technical University of Munich, 85748 Garching, Germany
| | - Bernhard Rieger
- WACKER-Chair of Macromolecular Chemistry, Catalysis Research Center, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
21
|
Kazama A, Kohsaka Y. Diverse chemically recyclable polymers obtained by cationic vinyl and ring-opening polymerizations of the cyclic ketene acetal ester “dehydroaspirin”. Polym Chem 2022. [DOI: 10.1039/d2py01181f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chemically recyclable polymers composed of carbon and/or ester backbones were prepared by vinyl and ring-opening polymerizations of a cyclic ketene acetal ester.
Collapse
Affiliation(s)
- Akane Kazama
- Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Yasuhiro Kohsaka
- Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
- Research Initiative for Supra-Materials (RISM), Shinshu University, Japan
| |
Collapse
|
22
|
Cai Z, Liu Y, Tao Y, Zhu JB. Recent Advances in Monomer Design for Recyclable Polymers. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22050235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Liu Y, Yuan X, Wu J, Hu X, Zhu N, Guo K. Access to high-molecular-weight poly(γ-butyrolactone) by using simple commercial catalysts. Polym Chem 2022. [DOI: 10.1039/d1py01340h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The simple commercial organomagnesium catalysts were utilized for efficient access to high-molecular-weight poly(γ-butyrolactone) and facile manipulation of the reaction conditions enabled the polymer topology controlled.
Collapse
Affiliation(s)
- Yihuan Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Xin Yuan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Jiaqi Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Xin Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| |
Collapse
|
24
|
Tu YM, Wang XM, Yang X, Fan HZ, Gong FL, Cai Z, Zhu JB. Biobased High-Performance Aromatic-Aliphatic Polyesters with Complete Recyclability. J Am Chem Soc 2021; 143:20591-20597. [PMID: 34842423 DOI: 10.1021/jacs.1c10162] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The development of high-performance recyclable polymers represents a circular plastics economy to address the urgent issues of plastic sustainability. Herein, we design a series of biobased seven-membered-ring esters containing aromatic and aliphatic moieties. Ring-opening polymerization studies showed that they readily polymerize with excellent activity (TOF up to 2.1 × 105 h-1) at room temperature and produce polymers with high molecular weight (Mn up to 438 kg/mol). The variety of functionalities allows us to investigate the substitution effect on polymerizability/recyclability of monomers and properties of polymers (such as Tgs from -1 to 79 °C). Remarkably, a stereocomplexed P(M2) exhibited significantly increased Tm and crystallization rate. More importantly, product P(M)s were capable of depolymerizing into their monomers in solution or bulk with high efficiency, thus establishing their circular life cycle.
Collapse
Affiliation(s)
- Yi-Min Tu
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, People's Republic of China
| | - Xue-Mei Wang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, People's Republic of China
| | - Xing Yang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, People's Republic of China
| | - Hua-Zhong Fan
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, People's Republic of China
| | - Fu-Long Gong
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, People's Republic of China
| | - Zhongzheng Cai
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, People's Republic of China
| | - Jian-Bo Zhu
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, People's Republic of China.,State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| |
Collapse
|
25
|
Reinvestigation of the ring-opening polymerization of ε-caprolactone with 1,8-diazacyclo[5.4.0]undec-7-ene organocatalyst in bulk. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Shi Q, Chen Y, Yang J, Yang J. Ring-opening polymerization-induced self-assembly (ROPISA) of salicylic acid o-carboxyanhydride. Chem Commun (Camb) 2021; 57:11390-11393. [PMID: 34647932 DOI: 10.1039/d1cc04630f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here is the first report on polyester-based nanocarriers fabricated via the ring-opening polymerization-induced self-assembly (ROPISA) of salicylic acid o-carboxyanhydride (SAOCA). This ROPISA process affords well-defined diblock copolymers that interestingly form an original cylindrical morphology.
Collapse
Affiliation(s)
- Qianqian Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yibing Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Junjiao Yang
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jing Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
27
|
Bernat R, Maksym P, Tarnacka M, Malarz K, Mrozek-Wilczkiewicz A, Biela T, Golba S, Kamińska E, Paluch M, Kamiński K. High pressure as a novel tool for the cationic ROP of γ-butyrolactone. RSC Adv 2021; 11:34806-34819. [PMID: 35494728 PMCID: PMC9042710 DOI: 10.1039/d1ra06081c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/03/2021] [Indexed: 11/21/2022] Open
Abstract
In this study, we report the acid-catalyzed and high pressure assisted ring-opening polymerization (ROP) of γ-butyrolactone (GBL). The use of a dually-catalyzed approach combining an external physical factor and internal catalyst (trifluoromethanesulfonic acid (TfOH) or p-toluenesulfonic acid (PTSA)) enforced ROP of GBL, which is considered as hardly polymerizable monomer still remaining a challenge for the modern polymer chemistry. The experiments performed at various thermodynamic conditions (T = 278–323 K and p = 700–1500 MPa) clearly showed that the high pressure supported polymerization process led to obtaining well-defined macromolecules of better parameters (Mn = 2200–9700 g mol−1; Đ = 1.05–1.46) than those previously reported. Furthermore, the parabolic-like dependence of both the molecular weight (MW) and the yield of obtained polymers on variation in temperature and pressure at either isobaric or isothermal conditions was also noticed, allowing the determination of optimal conditions for the polymerization process. However, most importantly, this strategy allowed to significantly reduce the reaction time (just 3 h at room temperature) and increase the yield of obtained polymers (up to 0.62 gPGBL/gGBL). Moreover, despite using a strongly acidic catalyst, synthesized polymers remained non-toxic and biocompatible, as proven by the cytotoxicity test we performed in further analysis. Additional investigation (including MALDI-TOF measurements) showed that the catalyst selection affected not only MW and yield but also the linear/cyclic form content in obtained macromolecules. These findings show the way to tune the properties of PGBL and obtain polymer suitable for application in the biomedical industry. Well-defined poly(γ-butyrolactone) was synthesized with great efficiency via high pressure assisted cationic ROP of hardly polimerizable γ-butyrolactone.![]()
Collapse
Affiliation(s)
- Roksana Bernat
- Institute of Chemistry, University of Silesia in Katowice Szkolna 9 40-007 Katowice Poland.,Silesian Centre for Education and Interdisciplinary Research, University of Silesia in Katowice 75 Pułku Piechoty 1A 41-500 Chorzów Poland
| | - Paulina Maksym
- Silesian Centre for Education and Interdisciplinary Research, University of Silesia in Katowice 75 Pułku Piechoty 1A 41-500 Chorzów Poland .,Institute of Materials Engineering, University of Silesia in Katowice 75 Pułku Piechoty 1 41-500 Chorzów Poland
| | - Magdalena Tarnacka
- Silesian Centre for Education and Interdisciplinary Research, University of Silesia in Katowice 75 Pułku Piechoty 1A 41-500 Chorzów Poland .,Chelkowski Institute of Physics, University of Silesia in Katowice 75 Pułku Piechoty 1 41-500 Chorzów Poland
| | - Katarzyna Malarz
- Silesian Centre for Education and Interdisciplinary Research, University of Silesia in Katowice 75 Pułku Piechoty 1A 41-500 Chorzów Poland .,Chelkowski Institute of Physics, University of Silesia in Katowice 75 Pułku Piechoty 1 41-500 Chorzów Poland
| | - Anna Mrozek-Wilczkiewicz
- Silesian Centre for Education and Interdisciplinary Research, University of Silesia in Katowice 75 Pułku Piechoty 1A 41-500 Chorzów Poland .,Chelkowski Institute of Physics, University of Silesia in Katowice 75 Pułku Piechoty 1 41-500 Chorzów Poland
| | - Tadeusz Biela
- Department of Polymer Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences Sienkiewicza 112 90-363 Lódź Poland
| | - Sylwia Golba
- Silesian Centre for Education and Interdisciplinary Research, University of Silesia in Katowice 75 Pułku Piechoty 1A 41-500 Chorzów Poland .,Institute of Materials Engineering, University of Silesia in Katowice 75 Pułku Piechoty 1 41-500 Chorzów Poland
| | - Ewa Kamińska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice Jagiellońska 4 41-200 Sosnowiec Poland
| | - Marian Paluch
- Silesian Centre for Education and Interdisciplinary Research, University of Silesia in Katowice 75 Pułku Piechoty 1A 41-500 Chorzów Poland .,Chelkowski Institute of Physics, University of Silesia in Katowice 75 Pułku Piechoty 1 41-500 Chorzów Poland
| | - Kamil Kamiński
- Silesian Centre for Education and Interdisciplinary Research, University of Silesia in Katowice 75 Pułku Piechoty 1A 41-500 Chorzów Poland .,Chelkowski Institute of Physics, University of Silesia in Katowice 75 Pułku Piechoty 1 41-500 Chorzów Poland
| |
Collapse
|
28
|
Abstract
The synthesis of polymeric materials starting from CO2 as a feedstock is an active task of research. In particular, the copolymerization of CO2 with epoxides via ring-opening copolymerization (ROCOP) offers a simple, efficient route to synthesize aliphatic polycarbonates (APC). In many cases, APC display poor physical and chemical properties, limiting their range of application. The terpolymerization of CO2 with epoxides and organic anhydrides or cyclic esters offers the possibility, combining the ROCOP with ring-opening polymerization (ROP), to access a wide range of materials containing polycarbonate and polyester segments along the polymer chain, showing enhanced properties with respect to the simple APC. This review will cover the last advancements in the field, evidencing the crucial role of the catalytic system in determining the microstructural features of the final polymer.
Collapse
|
29
|
Liu Y, Yin F, Hu X, Zhu N, Guo K. Protecting-group-free synthesis of thiol-functionalized degradable polyesters. Polym Chem 2021. [DOI: 10.1039/d1py00014d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Protecting-group-free synthesis of thiol-functionalized degradable polyesters has been developed by using chemoselective catalysis and microflow technology.
Collapse
Affiliation(s)
- Yihuan Liu
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing
- China
- State Key Laboratory of Materials-Oriented Chemical Engineering
| | - Fan Yin
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing
- China
- State Key Laboratory of Materials-Oriented Chemical Engineering
| | - Xin Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing
- China
- College of Materials Science and Engineering
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing
- China
- State Key Laboratory of Materials-Oriented Chemical Engineering
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing
- China
- State Key Laboratory of Materials-Oriented Chemical Engineering
| |
Collapse
|