1
|
Liu F, Liu X, Abdiryim T, Gu H, Astruc D. Heterometallic macromolecules: Synthesis, properties and multiple nanomaterial applications. Coord Chem Rev 2024; 500:215544. [DOI: 10.1016/j.ccr.2023.215544] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Xie S, Sun W, Sun J, Wan X, Zhang J. Apparent symmetry rising induced by crystallization inhibition in ternary co-crystallization-driven self-assembly. Nat Commun 2023; 14:6496. [PMID: 37838782 PMCID: PMC10576807 DOI: 10.1038/s41467-023-42290-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023] Open
Abstract
The concept of apparent symmetry rising, opposite to symmetry breaking, was proposed to illustrate the unusual phenomenon that the symmetry of the apparent morphology of the multiply twinned particle is higher than that of its crystal structure. We developed a unique strategy of co-crystallization-driven self-assembly of amphiphilic block copolymers PEO-b-PS and the inorganic cluster silicotungstic acid to achieve apparent symmetry rising of nanoparticles under mild conditions. The triangular nanoplates triply twinned by orthogonal crystals (low symmetry) have an additional triple symmetry (high symmetry). The appropriate crystallization inhibition of short solvophilic segments of the block copolymers favors the oriented attachment of homogeneous domains of hybrid nanoribbons, and consequently forms kinetic-controlled triangular nanoplates with twin grain boundaries.
Collapse
Affiliation(s)
- Siyu Xie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, 100871, Beijing, China
| | - Wenjia Sun
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Junliang Sun
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Xinhua Wan
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, 100871, Beijing, China
| | - Jie Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China.
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, 100871, Beijing, China.
| |
Collapse
|
3
|
He H, Zhu Y, Li T, Song S, Zhai L, Li X, Wu L, Li H. Supramolecular Anchoring of Polyoxometalate Amphiphiles into Nafion Nanophases for Enhanced Proton Conduction. ACS NANO 2022; 16:19240-19252. [PMID: 36315623 DOI: 10.1021/acsnano.2c08614] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Advanced proton exchange membranes (PEMs) are highly desirable in emerging sustainable energy technology. However, the further improvement of commercial perfluorosulfonic acid PEMs represented by Nafion is hindered by the lack of precise modification strategy due to their chemical inertness and low compatibility. Here, we report the robust assembly of polyethylene glycol grafted polyoxometalate amphiphile (GSiW11) into the ionic nanophases of Nafion, which largely enhances the comprehensive performance of Nafion. GSiW11 can coassemble with Nafion through multiple supramolecular interactions and realize a stable immobilization. The incorporation of GSiW11 can increase the whole proton content in the system and induce the hydrated ionic nanophase to form a wide channel for proton transport; meanwhile, GSiW11 can reinforce the Nafion ionic nanophase by noncovalent cross-linking. Based on these synergistic effects, the hybrid PEMs show multiple enhancements in proton conductivity, tensile strength, and fuel cell power density, which are all superior to the pristine Nafion. This work demonstrates the intriguing advantage of molecular nanoclusters as supramolecular enhancers to develop high-performance electrolyte materials.
Collapse
Affiliation(s)
- Haibo He
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun130012, China
| | - Youliang Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun130012, China
| | - Tingting Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun130012, China
| | - Shihao Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun130012, China
| | - Liang Zhai
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun130012, China
| | - Xiang Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun130012, China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun130012, China
| | - Haolong Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun130012, China
| |
Collapse
|
4
|
Chai S, Xu F, Zhang R, Wang X, Zhai L, Li X, Qian HJ, Wu L, Li H. Hybrid Liquid-Crystalline Electrolytes with High-Temperature-Stable Channels for Anhydrous Proton Conduction. J Am Chem Soc 2021; 143:21433-21442. [PMID: 34886669 DOI: 10.1021/jacs.1c11884] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Modern electrochemical and electronic devices require advanced electrolytes. Liquid crystals have emerged as promising electrolyte candidates due to their good fluidity and long-range order. However, the mesophase of liquid crystals is variable upon heating, which limits their applications as high-temperature electrolytes, e.g., implementing anhydrous proton conduction above 100 °C. Here, we report a highly stable thermotropic liquid-crystalline electrolyte based on the electrostatic self-assembly of polyoxometalate (POM) clusters and zwitterionic polymer ligands. These electrolytes can form a well-ordered mesophase with sub-10 nm POM-based columnar domains, attributed to the dynamic rearrangement of polymer ligands on POM surfaces. Notably, POMs can serve as both electrostatic cross-linkers and high proton conductors, which enable the columnar domains to be high-temperature-stable channels for anhydrous proton conduction. These nanochannels can maintain constant columnar structures in a wide temperature range from 90 to 160 °C. This work demonstrates the unique role of POMs in developing high-performance liquid-crystalline electrolytes, which can provide a new route to design advanced ion transport systems for energy and electronic applications.
Collapse
Affiliation(s)
- Shengchao Chai
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Fengrui Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Rongchun Zhang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Molecular Science and Engineering (MoSE), South China University of Technology, Guangzhou 510640, China.,Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Xiaoliang Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Liang Zhai
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Xiang Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Hu-Jun Qian
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Haolong Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| |
Collapse
|