1
|
Oshinowo M, Piccini M, Kociok-Köhn G, Marken F, Buchard A. Xylose- and Nucleoside-Based Polymers via Thiol-ene Polymerization toward Sugar-Derived Solid Polymer Electrolytes. ACS APPLIED POLYMER MATERIALS 2024; 6:1622-1632. [PMID: 38357438 PMCID: PMC10862469 DOI: 10.1021/acsapm.3c02119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 02/16/2024]
Abstract
A series of copolymers have been prepared via thiol-ene polymerization of bioderived α,ω-unsaturated diene monomers with dithiols toward application as solid polymer electrolytes (SPEs) for Li+-ion conduction. Amorphous polyesters and polyethers with low Tg's (-31 to -11 °C) were first prepared from xylose-based monomers (with varying lengths of fatty acid moiety) and 2,2'-(ethylenedioxy)diethanethiol (EDT). Cross-linking by incorporation of a trifunctional monomer also produced a series of SPEs with ionic conductivities up to 2.2 × 10-5 S cm-1 at 60 °C and electrochemical stability up to 5.08 V, a significant improvement over previous xylose-derived materials. Furthermore, a series of copolymers bearing nucleoside moieties were prepared to exploit the complementary base-pairing interaction of nucleobases. Flexible, transparent, and reprocessable SPE films were thus prepared with improved ionic conductivity (up to 1.5 × 10-4 S cm-1 at 60 °C), hydrolytic degradability, and potential self-healing capabilities.
Collapse
Affiliation(s)
- Matthew Oshinowo
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
- University
of Bath Institute for Sustainability, Claverton Down, Bath BA2
7AY, U.K.
| | - Marco Piccini
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
- University
of Bath Institute for Sustainability, Claverton Down, Bath BA2
7AY, U.K.
| | - Gabriele Kociok-Köhn
- Materials
and Chemical Characterisation Facility (MC2), University of Bath, Claverton Down, Bath BA2
7AY, U.K.
| | - Frank Marken
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
- University
of Bath Institute for Sustainability, Claverton Down, Bath BA2
7AY, U.K.
| | - Antoine Buchard
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
- University
of Bath Institute for Sustainability, Claverton Down, Bath BA2
7AY, U.K.
| |
Collapse
|
2
|
Petersen SR, Prydderch H, Worch JC, Stubbs CJ, Wang Z, Yu J, Arno MC, Dobrynin AV, Becker ML, Dove AP. Ultra-Tough Elastomers from Stereochemistry-Directed Hydrogen Bonding in Isosorbide-Based Polymers. Angew Chem Int Ed Engl 2022; 61:e202115904. [PMID: 35167725 PMCID: PMC9311410 DOI: 10.1002/anie.202115904] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Indexed: 02/02/2023]
Abstract
The remarkable elasticity and tensile strength found in natural elastomers are challenging to mimic. Synthetic elastomers typically feature covalently cross-linked networks (rubbers), but this hinders their reprocessability. Physical cross-linking via hydrogen bonding or ordered crystallite domains can afford reprocessable elastomers, but often at the cost of performance. Herein, we report the synthesis of ultra-tough, reprocessable elastomers based on linear alternating polymers. The incorporation of a rigid isohexide adjacent to urethane moieties affords elastomers with exceptional strain hardening, strain rate dependent behavior, and high optical clarity. Distinct differences were observed between isomannide and isosorbide-based elastomers where the latter displays superior tensile strength and strain recovery. These phenomena are attributed to the regiochemical irregularities in the polymers arising from their distinct stereochemistry and respective inter-chain hydrogen bonding.
Collapse
Affiliation(s)
| | | | - Joshua C. Worch
- School of ChemistryUniversity of BirminghamBirminghamB15 2TTUK
| | | | - Zilu Wang
- Department of ChemistryUniversity of North Carolina Chapel HillChapel HillNC, 27599USA
| | - Jiayi Yu
- Department of Polymer ScienceThe University of AkronAkronOH 44224USA
| | - Maria C. Arno
- School of ChemistryUniversity of BirminghamBirminghamB15 2TTUK
| | - Andrey V. Dobrynin
- Department of ChemistryUniversity of North Carolina Chapel HillChapel HillNC, 27599USA
| | - Matthew L. Becker
- Department of Chemistry, Mechanical Engineering and Materials ScienceBiomedical Engineering and Orthopedic SurgeryDuke UniversityDurhamNC, 20899USA
| | - Andrew P. Dove
- School of ChemistryUniversity of BirminghamBirminghamB15 2TTUK
| |
Collapse
|
3
|
Petersen SR, Prydderch H, Worch JC, Stubbs CJ, Wang Z, Yu J, Arno MC, Dobrynin AV, Becker ML, Dove AP. Ultra‐Tough Elastomers from Stereochemistry‐Directed Hydrogen Bonding in Isosorbide‐Based Polymers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Hannah Prydderch
- School of Chemistry University of Birmingham Birmingham B15 2TT UK
| | - Joshua C. Worch
- School of Chemistry University of Birmingham Birmingham B15 2TT UK
| | - Connor J. Stubbs
- School of Chemistry University of Birmingham Birmingham B15 2TT UK
| | - Zilu Wang
- Department of Chemistry University of North Carolina Chapel Hill Chapel Hill NC, 27599 USA
| | - Jiayi Yu
- Department of Polymer Science The University of Akron Akron OH 44224 USA
| | - Maria C. Arno
- School of Chemistry University of Birmingham Birmingham B15 2TT UK
| | - Andrey V. Dobrynin
- Department of Chemistry University of North Carolina Chapel Hill Chapel Hill NC, 27599 USA
| | - Matthew L. Becker
- Department of Chemistry, Mechanical Engineering and Materials Science Biomedical Engineering and Orthopedic Surgery Duke University Durham NC, 20899 USA
| | - Andrew P. Dove
- School of Chemistry University of Birmingham Birmingham B15 2TT UK
| |
Collapse
|
4
|
Stubbs C, Worch JC, Prydderch H, Wang Z, Mathers RT, Dobrynin AV, Becker ML, Dove AP. Sugar-Based Polymers with Stereochemistry-Dependent Degradability and Mechanical Properties. J Am Chem Soc 2022; 144:1243-1250. [PMID: 35029980 PMCID: PMC8796236 DOI: 10.1021/jacs.1c10278] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Indexed: 12/22/2022]
Abstract
Stereochemistry in polymers can be used as an effective tool to control the mechanical and physical properties of the resulting materials. Typically, though, in synthetic polymers, differences among polymer stereoisomers leads to incremental property variation, i.e., no changes to the baseline plastic or elastic behavior. Here we show that stereochemical differences in sugar-based monomers yield a family of nonsegmented, alternating polyurethanes that can be either strong amorphous thermoplastic elastomers with properties that exceed most cross-linked rubbers or robust, semicrystalline thermoplastics with properties comparable to commercial plastics. The stereochemical differences in the monomers direct distinct intra- and interchain supramolecular hydrogen-bonding interactions in the bulk materials to define their behavior. The chemical similarity among these isohexide-based polymers enables both statistical copolymerization and blending, which each afford independent control over degradability and mechanical properties. The modular molecular design of the polymers provides an opportunity to create a family of materials with divergent properties that possess inherently built degradability and outstanding mechanical performance.
Collapse
Affiliation(s)
- Connor
J. Stubbs
- School
of Chemistry, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
| | - Joshua C. Worch
- School
of Chemistry, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
| | - Hannah Prydderch
- School
of Chemistry, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
| | - Zilu Wang
- Department
of Chemistry, University of North Carolina−Chapel
Hill, Chapel
Hill, North Carolina 27599, United States
| | - Robert T. Mathers
- Department
of Chemistry, Pennsylvania State University, New Kensington, Pennsylvania 15068, United States
| | - Andrey V. Dobrynin
- Department
of Chemistry, University of North Carolina−Chapel
Hill, Chapel
Hill, North Carolina 27599, United States
| | - Matthew L. Becker
- Department
of Chemistry, Mechanical Engineering and Materials Science, Biomedical
Engineering and Orthopedic Surgery, Duke
University, Durham, North Carolina 20899, United States
| | - Andrew P. Dove
- School
of Chemistry, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
| |
Collapse
|