1
|
Lee J, Tang Y, Cureño Hernandez KE, Kim S, Lee R, Cartwright Z, Pochan DJ, Herrera-Alonso M. Ultrastable and Redispersible Zwitterionic Bottlebrush Micelles for Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39370599 DOI: 10.1021/acsami.4c10968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Bottlebrush copolymers are increasingly used for drug delivery and biological imaging applications in part due to the enhanced thermodynamic stability of their self-assemblies. Herein, we discuss the effect of hydrophilic block chemistry on the stability of bottlebrush micelles. Amphiphilic bottlebrushes with zwitterionic poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) and nonionic polyethylene glycol (PEG) hydrophilic blocks were synthesized by "grafting from" polymerization and self-assembled into well-defined spherical micelles. Colloidal stability and stability against disassembly were challenged under high concentrations of NaCl, MgSO4, sodium dodecyl sulfate, fetal bovine serum, and elevated temperature. While both types of micelles appeared to be stable in many of these conditions, those with a PMPC shell consistently surpassed their PEG analogs. Moreover, when repeatedly subjected to lyophilization/resuspension cycles, PMPC micelles redispersed with no apparent variation in size or dispersity even in the absence of a cryoprotectant; PEG micelles readily aggregated. The observed excellent stability of PMPC micelles is attributed to the low critical micelle concentration of the bottlebrushes as well as to the strong hydration shell caused by ionic solvation of the phosphorylcholine moieties. Zwitterionic micelles were loaded with doxorubicin, and higher loading capacity/efficiency, as well as delayed release, was observed with increasing side-chain length. Finally, hemocompatibility studies of PMPC micelles demonstrated no disruption to the red blood cell membranes. The growing concern regarding the immunogenicity of PEG-based systems propels the search for alternative hydrophilic polymers; in this respect and for their outstanding stability, zwitterionic bottlebrush micelles represent excellent candidates for drug delivery and bioimaging applications.
Collapse
Affiliation(s)
- Jeonghun Lee
- School of Materials Science and Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Yao Tang
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Karla E Cureño Hernandez
- School of Materials Science and Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Sunghoon Kim
- School of Materials Science and Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Rahmi Lee
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Zachary Cartwright
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Darrin J Pochan
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Margarita Herrera-Alonso
- School of Materials Science and Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
2
|
Toujani C, Padilla LA, Alhraki N, Hur SM, Ramírez-Hernández A. Self-assembly of rod-coil-rod block copolymers in a coil-selective solvent: coarse-grained simulation results. SOFT MATTER 2024; 20:3131-3142. [PMID: 38497125 DOI: 10.1039/d4sm00251b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The solution self-assembly of amphiphilic polymers provides a versatile approach to design novel nanostructured materials. Multiblock polymers, particularly those composed of liquid crystalline and coil blocks, are of significant interest due to the potential display of nematic ordering in liquid crystalline domains, offering intriguing optical and mechanical properties. In this study, dissipative particle dynamics is used to investigate the solution self-assembly of rod-coil-rod copolymers in a coil-selective solvent. Extensive molecular simulations were conducted to elucidate the impact of polymer composition, concentration and flexibility on the self-assembly behavior. A quantitative analysis was performed to investigate how polymer conformations varied with changes in composition, concentration, and rigidity. Simulation results show that, at small rod compositions, rod-coil-rod polymers self-assemble into micelles at low concentrations, transitioning to network formation as concentration increases. An increase in rod composition leads to the formation of larger aggregates, resulting in cylindrical micelles and membranes. The results reported here also offer insights into the role of flexibility in shaping the self-assembly behavior of rod-coil-rod triblocks in selective solvents, thus, contributing to a comprehensive understanding of the factors governing the formation of diverse structures in the solution self-assembly of triblock copolymers.
Collapse
Affiliation(s)
- Chiraz Toujani
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | - Luis A Padilla
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | - Nour Alhraki
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | - Su-Mi Hur
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, South Korea
| | - Abelardo Ramírez-Hernández
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, Texas 78249, USA.
| |
Collapse
|
3
|
Jakobi B, Bichler KJ, Juranyi F, Schneider GJ. Reversed dynamics of bottlebrush polymers with stiff backbone and flexible side chains. J Chem Phys 2024; 160:084901. [PMID: 38385519 DOI: 10.1063/5.0184429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/29/2024] [Indexed: 02/23/2024] Open
Abstract
The segmental dynamics of bottlebrush polymers with a stiff backbone and flexible side chains has been studied. The segmental relaxation time of side chains attached to a flexible backbone follows the same trend as linear polymers, an increase with the increasing molecular weight, but is slowed down compared to their linear counterparts. Theoretical work predicts a reversal of the molecular weight dependence of the relaxation time for stiff backbones. As a model for a stiff-g-flexible system, bottlebrushes with poly(norbornene) backbone and poly(propylene oxide) side chains, PNB-g-PPO, at a uniform grafting density have been synthesized and characterized with quasi-elastic neutron scattering. Indeed, the anticipated reversed dynamics was found. Increasing the side chain length decreases the segmental relaxation time. This indicates the importance of the characteristics of the grafting site beyond a simplified picture of an attached side chain. The mean square displacement shows a similar trend with longer side chains exhibiting a larger displacement.
Collapse
Affiliation(s)
- Bruno Jakobi
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Karin J Bichler
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Fanni Juranyi
- Laboratory for Neutron Scattering, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Gerald J Schneider
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
4
|
Hassler JF, Lawson M, Arroyo EC, Bates FS, Hackel BJ, Lodge TP. Discovery of Kinetic Trapping of Poloxamers inside Liposomes via Thermal Treatment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14263-14274. [PMID: 37755825 PMCID: PMC10853007 DOI: 10.1021/acs.langmuir.3c01499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Poloxamers, a class of biocompatible, commercially available amphiphilic block polymers (ABPs) comprising poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) blocks, interact with phospholipid bilayers, resulting in altered mechanical and surface properties. These block copolymers are useful in a variety of applications including therapeutics for Duchenne muscular dystrophy, as cell membrane stabilizers, and for drug delivery, as liposome surface modifying agents. Hydrogen bonding between water and oxygen atoms in PEO and PPO units results in thermoresponsive behavior because the bound water shell around both blocks dehydrates as the temperature increases. This motivated an investigation of poloxamer-lipid bilayer interactions as a function of temperature and thermal history. In this study, we applied pulsed-field-gradient NMR spectroscopy to measure the fraction of chains bound to 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) liposomes between 10 and 50 °C. We measured an (11 ± 3)-fold increase in binding affinity at 37 °C relative to 27 °C. Moreover, following incubation at 37 °C, it takes weeks for the system to re-equilibrate at 25 °C. Such slow desorption kinetics suggests that at elevated temperatures polymer chains can pass through the bilayer and access the interior of the liposomes, a mechanism that is inaccessible at lower temperatures. We propose a molecular mechanism to explain this effect, which could have important ramifications on the cellular distribution of ABPs and could be exploited to modulate the mechanical and surface properties of liposomes and cell membranes.
Collapse
|
5
|
Hahn D, Quick JD, Thompson BR, Crabtree A, Hackel BJ, Bates FS, Metzger JM. Rapid restitution of contractile dysfunction by synthetic copolymers in dystrophin-deficient single live skeletal muscle fibers. Skelet Muscle 2023; 13:9. [PMID: 37208786 PMCID: PMC10197332 DOI: 10.1186/s13395-023-00318-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/05/2023] [Indexed: 05/21/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by the lack of dystrophin, a cytoskeletal protein essential for the preservation of the structural integrity of the muscle cell membrane. DMD patients develop severe skeletal muscle weakness, degeneration, and early death. We tested here amphiphilic synthetic membrane stabilizers in mdx skeletal muscle fibers (flexor digitorum brevis; FDB) to determine their effectiveness in restoring contractile function in dystrophin-deficient live skeletal muscle fibers. After isolating FDB fibers via enzymatic digestion and trituration from thirty-three adult male mice (9 C57BL10, 24 mdx), these were plated on a laminin-coated coverslip and treated with poloxamer 188 (P188; PEO75-PPO30-PEO75; 8400 g/mol), architecturally inverted triblock (PPO15-PEO200-PPO15, 10,700 g/mol), and diblock (PEO75-PPO16-C4, 4200 g/mol) copolymers. We assessed the twitch kinetics of sarcomere length (SL) and intracellular Ca2+ transient by Fura-2AM by field stimulation (25 V, 0.2 Hz, 25 °C). Twitch contraction peak SL shortening of mdx FDB fibers was markedly depressed to 30% of the dystrophin-replete control FDB fibers from C57BL10 (P < 0.001). Compared to vehicle-treated mdx FDB fibers, copolymer treatment robustly and rapidly restored the twitch peak SL shortening (all P < 0.05) by P188 (15 μM = + 110%, 150 μM = + 220%), diblock (15 μM = + 50%, 150 μM = + 50%), and inverted triblock copolymer (15 μM = + 180%, 150 μM = + 90%). Twitch peak Ca2+ transient from mdx FDB fibers was also depressed compared to C57BL10 FDB fibers (P < 0.001). P188 and inverted triblock copolymer treatment of mdx FDB fibers increased the twitch peak Ca2+ transient (P < 0.001). This study shows synthetic block copolymers with varied architectures can rapidly and highly effectively enhance contractile function in live dystrophin-deficient skeletal muscle fibers.
Collapse
Affiliation(s)
- Dongwoo Hahn
- Department of Integrative Biology & Physiology, Medical School, University of Minnesota, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Joseph D Quick
- Department of Integrative Biology & Physiology, Medical School, University of Minnesota, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Brian R Thompson
- Department of Integrative Biology & Physiology, Medical School, University of Minnesota, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Adelyn Crabtree
- Chemical Engineering & Materials Science, University of Minnesota, 151 Amundson Hall, 421 Washington Avenue SE, Minneapolis, MN, 55455, USA
| | - Benjamin J Hackel
- Chemical Engineering & Materials Science, University of Minnesota, 151 Amundson Hall, 421 Washington Avenue SE, Minneapolis, MN, 55455, USA
| | - Frank S Bates
- Chemical Engineering & Materials Science, University of Minnesota, 151 Amundson Hall, 421 Washington Avenue SE, Minneapolis, MN, 55455, USA
| | - Joseph M Metzger
- Department of Integrative Biology & Physiology, Medical School, University of Minnesota, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
6
|
Hassler JF, Crabtree A, Liberman L, Bates FS, Hackel BJ, Lodge TP. Effect of Bottlebrush Poloxamer Architecture on Binding to Liposomes. Biomacromolecules 2023; 24:449-461. [PMID: 36563027 DOI: 10.1021/acs.biomac.2c01274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Poloxamers─triblock copolymers consisting of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO)─have demonstrated cell membrane stabilization efficacy against numerous types of stress. However, the mechanism responsible for this stabilizing effect remains elusive, hindering engineering of more effective therapeutics. Bottlebrush polymers have a wide parameter space and known relationships between architectural parameters and polymer properties, enabling their use as a tool for mechanistic investigations of polymer-lipid bilayer interactions. In this work, we utilized a versatile synthetic platform to create novel bottlebrush analogues to poloxamers and then employed pulsed-field-gradient NMR and an in vitro osmotic stress assay to explore the effect of bottlebrush architectural parameters on binding to, and protection of, model phospholipid bilayers. We found that the binding affinity of a bottlebrush poloxamer (BBP) (B-E1043P515, Mn ≈ 26 kDa) is about 3 times higher than a linear poloxamer with a similar composition and number of PPO units (L-E93P54E93, Mn ≈ 11 kDa). Furthermore, BBP binding is sensitive to overall molecular weight, side-chain length, and architecture (statistical versus block). Finally, all tested BBPs exhibit a protective effect on cell membranes under stress at sub-μM concentrations. As the factors controlling membrane affinity and protection efficacy of bottlebrush poloxamers are not understood, these results provide important insight into how they adhere to and stabilize a lipid bilayer surface.
Collapse
|
7
|
Bichler KJ, Jakobi B, Klapproth A, Tominaga T, Mole RA, Schneider GJ. Side Chain Dynamics of Poly(norbornene)-g-Poly(propylene oxide) Bottlebrush Polymers. Macromol Rapid Commun 2022; 44:e2200902. [PMID: 36564928 DOI: 10.1002/marc.202200902] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Indexed: 12/25/2022]
Abstract
The segmental dynamics of the side chains of poly(norbornene)-g-poly(propylene oxide) (PNB-g-PPO) bottlebrush polymer in comparison to PPO is studied by quasi-elastic neutron scattering. Having experimental time and length scale information simultaneously allows to extract spatial information in addition to relaxation time. Tethering one end of the PPO side chain onto a stiff PNB backbone slows down the segmental relaxation, over the length and time scales investigated. The power law dependence of the relaxation time on the momentum transfer, Q, indicates a more heterogeneous relaxation pattern for the bottlebrush polymer, whereas the linear PPO has less deviations from a homogenous relaxation. Similar conclusions can be drawn from the time dependent mean square displacement, 〈r2 (t)〉, and the non-Gaussian parameter, α2 (t). Herein, the bottlebrush polymer shows a more restricted dynamics, whereas the linear PPO reaches 〈r2 (t)〉∝t0.5 at the highest temperature. The deviations from Gaussian behavior are evident at the α2 (t). Both samples show a decaying α2 (t). The non-Gaussian parameter supports the results from the power law dependence of the relaxation times, with lower α2 (t) values for PPO compared to those for PNB-g-PPO, pointing to less deviations from Gaussian behavior.
Collapse
Affiliation(s)
- Karin J Bichler
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| | - Bruno Jakobi
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| | - Alice Klapproth
- Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW, 2234, Australia
| | - Taiki Tominaga
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), Tokai, 319-1106, Japan
| | - Richard A Mole
- Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW, 2234, Australia
| | - Gerald J Schneider
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana, 70803, USA.,Department of Physics & Astronomy, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| |
Collapse
|