1
|
Ghorbani M, Prince E. Radical Ring-Opening Polymerization: Unlocking the Potential of Vinyl Polymers for Drug Delivery, Tissue Engineering, and More. Biomacromolecules 2025; 26:118-139. [PMID: 39733344 DOI: 10.1021/acs.biomac.4c01116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2024]
Abstract
Synthetic vinyl polymers have long been recognized for their potential to be utilized in drug delivery, tissue engineering, and other biomedical applications. The synthetic control that chemists have over their structure and properties is unmatched, allowing vinyl polymer-based materials to be precisely engineered for a range of therapeutic applications. Yet, their lack of biodegradability compromises the biocompatibility of vinyl polymers and has held back their translation into clinically used treatments for disease thus far. In recent years, radical ring-opening polymerization (rROP) has emerged as a promising strategy to render synthetic vinyl polymers biodegradable and bioresorbable. While rROP has long been touted as a strategy for preparing biodegradable vinyl polymers for biomedical applications, the translation of rROP into clinically approved treatments for disease has not yet been realized. This review highlights the opportunities for leveraging rROP to render vinyl polymers biodegradable and unlock their potential for use in biomedical applications.
Collapse
Affiliation(s)
- Mina Ghorbani
- Department of Chemical Engineering, University of Waterloo, 200 University Ave. WestN2L 3G1WaterlooON Canada
| | - Elisabeth Prince
- Department of Chemical Engineering, University of Waterloo, 200 University Ave. WestN2L 3G1WaterlooON Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave. WestN2L 3G1WaterlooON Canada
| |
Collapse
|
2
|
Xia B, Wang J, Chen H, Lin S, Pan B, Wang N. Recent Advances in Antifreeze Peptide Preparation: A Review. Molecules 2024; 29:4913. [PMID: 39459283 PMCID: PMC11510398 DOI: 10.3390/molecules29204913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 09/30/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Antifreeze agents play a critical role in various fields including tissue engineering, gene therapy, therapeutic protein production, and transplantation. Commonly used antifreeze agents such as DMSO and other organic substances are known to have cytotoxic effects. Antifreeze proteins sourced from cold-adapted organisms offer a promising solution by inhibiting ice crystal formation; however, their effectiveness is hindered by a dynamic ice-shaping (DIS) effect and thermal hysteresis (TH) properties. In response to these limitations, antifreeze peptides (AFPs) have been developed as alternatives to antifreeze proteins, providing similar antifreeze properties without the associated drawbacks. This review explores the methods for acquiring AFPs, with a particular emphasis on chemical synthesis. It aims to offer valuable insights and practical implications to drive the realm of sub-zero storage.
Collapse
Affiliation(s)
- Bo Xia
- Correspondence: (B.X.); (N.W.)
| | | | | | | | | | - Nan Wang
- Department of Bioenvironment, Jiyang College of Zhejiang A&F University, Zhuji 311800, China
| |
Collapse
|
3
|
Yuan L, Chen B, Zhu K, Ren L, Yuan X. Development of Macromolecular Cryoprotectants for Cryopreservation of Cells. Macromol Rapid Commun 2024; 45:e2400309. [PMID: 39012218 DOI: 10.1002/marc.202400309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/24/2024] [Indexed: 07/17/2024]
Abstract
Cryopreservation is a common way for long-term storage of therapeutical proteins, erythrocytes, and mammalian cells. For cryoprotection of these biosamples to keep their structural integrity and biological activities, it is essential to incorporate highly efficient cryoprotectants. Currently, permeable small molecular cryoprotectants such as glycerol and dimethyl sulfoxide dominate in cryostorage applications, but they are harmful to cells and human health. As acting in the extracellular space, membrane-impermeable macromolecular cryoprotectants, which exert remarkable membrane stabilization against cryo-injury and are easily removed post-thaw, are promising candidates with biocompatibility and feasibility. Water-soluble hydroxyl-containing polymers such as poly(vinyl alcohol) and polyol-based polymers are potent ice recrystallization inhibitors, while polyampholytes, polyzwitterions, and bio-inspired (glyco)polypeptides can significantly increase post-thaw recovery with reduced membrane damages. In this review, the synthetic macromolecular cryoprotectants are systematically summarized based on their synthesis routes, practical utilities, and cryoprotective mechanisms. It provides a valuable insight in development of highly efficient macromolecular cryoprotectants with valid ice recrystallization inhibition activity for highly efficient and safe cryopreservation of cells.
Collapse
Affiliation(s)
- Liang Yuan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Binlin Chen
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Kongying Zhu
- Analysis and Measurement Center, Tianjin University, Tianjin, 300072, China
| | - Lixia Ren
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
4
|
Sbordone F, Frisch H. Plenty of Space in the Backbone: Radical Ring-Opening Polymerization. Chemistry 2024; 30:e202401547. [PMID: 38818742 DOI: 10.1002/chem.202401547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/01/2024]
Abstract
Radical polymerization is the most widely applied technique in both industry and fundamental science. However, its major drawback is that it typically yields polymers with non-functional, non-degradable all-carbon backbones-a limitation that radical ring-opening polymerization (rROP) allows to overcome. The last decade has seen a surge in rROP, primarily focused on creating degradable polymers. This pursuit has resulted in the creation of the first readily degradable materials through radical polymerization. Recent years have witnessed innovations in new monomers that address previous design limitations, such as ring strain and reactivity ratios. Furthermore, advances in integrating rROP with reversible deactivation radical polymerization (RDRP) have facilitated the incorporation of complex, customizable chemical payloads into the main polymer chain. This short review discusses the latest developments in monomer design with a focused analysis of their limitations in a broader historical context. Recently evolving strategies for compatibility of rROP monomers with RDRP are discussed, which are key to precision polymer synthesis. The latest chemistry surveyed expands the horizon beyond mere hydrolytic degradation. Now is the time to explore the chemical potential residing in the previously inaccessible polymer backbone.
Collapse
Affiliation(s)
- Federica Sbordone
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Material Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Hendrik Frisch
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Material Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| |
Collapse
|
5
|
Ko K, Lundberg DJ, Johnson AM, Johnson JA. Mechanism-Guided Discovery of Cleavable Comonomers for Backbone Deconstructable Poly(methyl methacrylate). J Am Chem Soc 2024; 146:9142-9154. [PMID: 38526229 DOI: 10.1021/jacs.3c14554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The development of cleavable comonomers (CCs) with suitable copolymerization reactivity paves the way for the introduction of backbone deconstructability into polymers. Recent advancements in thionolactone-based CCs, exemplified by dibenzo[c,e]-oxepine-5(7H)-thione (DOT), have opened promising avenues for the selective deconstruction of multiple classes of vinyl polymers, including polyacrylates, polyacrylamides, and polystyrenics. To date, however, no thionolactone CC has been shown to copolymerize with methacrylates to an appreciable extent to enable polymer deconstruction. Here, we overcome this challenge through the design of a new class of benzyl-functionalized thionolactones (bDOTs). Guided by detailed mechanistic analyses, we find that the introduction of radical-stabilizing substituents to bDOTs enables markedly increased and tunable copolymerization reactivity with methyl methacrylate (MMA). Through iterative optimizations of the molecular structure, a specific bDOT, F-p-CF3PhDOT, is discovered to copolymerize efficiently with MMA. High molar mass deconstructable PMMA-based copolymers (dPMMA, Mn > 120 kDa) with low percentages of F-p-CF3PhDOT (1.8 and 3.8 mol%) are prepared using industrially relevant bulk free radical copolymerization conditions. The thermomechanical properties of dPMMA are similar to PMMA; however, the former is shown to degrade into low molar mass fragments (<6.5 kDa) under mild aminolysis conditions. This work presents the first example of a radical ring-opening CC capable of nearly random copolymerization with MMA without the possibility of cross-linking and provides a workflow for the mechanism-guided design of deconstructable copolymers in the future.
Collapse
Affiliation(s)
- Kwangwook Ko
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - David J Lundberg
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Alayna M Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
6
|
Lomba L, García CB, Benito L, Sangüesa E, Santander S, Zuriaga E. Advances in Cryopreservatives: Exploring Safer Alternatives. ACS Biomater Sci Eng 2024; 10:178-190. [PMID: 38141007 DOI: 10.1021/acsbiomaterials.3c00859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Cryopreservation of cells, tissues, and organs is widely used in the biomedical and research world. There are different cryopreservatives that are used for this process; however, many of them, such as DMSO, are used despite the problems they present, mainly due to the toxicity it presents to certain types of samples. The aim of this Review is to highlight the different types of substances used in the cryopreservation process. It has been shown that some of these substances are well-known, as in the case of the families of alcohols, sugars, sulfoxides, etc. However, in recent years, other compounds have appeared, such as ionic liquids, deep eutectic solvents, or certain polymers, which open the door to new cryopreservation methods and are also less toxic to frozen samples.
Collapse
Affiliation(s)
- Laura Lomba
- Facultad de Ciencias de la Salud, Universidad San Jorge. Campus Universitario, Autov A23 km 299, 50830 Villanueva de Gállego, Zaragoza, Spain
| | - Cristina B García
- Facultad de Ciencias de la Salud, Universidad San Jorge. Campus Universitario, Autov A23 km 299, 50830 Villanueva de Gállego, Zaragoza, Spain
| | - Lucía Benito
- Facultad de Ciencias de la Salud, Universidad San Jorge. Campus Universitario, Autov A23 km 299, 50830 Villanueva de Gállego, Zaragoza, Spain
| | - Estela Sangüesa
- Facultad de Ciencias de la Salud, Universidad San Jorge. Campus Universitario, Autov A23 km 299, 50830 Villanueva de Gállego, Zaragoza, Spain
| | - Sonia Santander
- Faculty of Health and Sports Sciences, University of Zaragoza, Campus of Huesca, 22002 Huesca, Spain
| | - Estefanía Zuriaga
- Facultad de Ciencias de la Salud, Universidad San Jorge. Campus Universitario, Autov A23 km 299, 50830 Villanueva de Gállego, Zaragoza, Spain
| |
Collapse
|
7
|
Kato Y, Matsuda Y, Uto T, Tanaka D, Ishibashi K, Ishizaki T, Ohta A, Kobayashi A, Hazawa M, Wong RW, Ninomiya K, Takahashi K, Hirata E, Kuroda K. Cell-compatible isotonic freezing media enabled by thermo-responsive osmolyte-adsorption/exclusion polymer matrices. Commun Chem 2023; 6:260. [PMID: 38030701 PMCID: PMC10687075 DOI: 10.1038/s42004-023-01061-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023] Open
Abstract
During the long-term storage of cells, it is necessary to inhibit ice crystal formation by adding cryoprotectants. Non-cell-permeable cryoprotectants have high osmotic pressure which dehydrates cells, indirectly suppressing intracellular ice crystal formation. However, the high osmotic pressure and dehydration often damage cells. Emerging polymer-type non-cell-permeable cryoprotectants form matrices surrounding cells. These matrices inhibit the influx of extracellular ice nuclei that trigger intracellular ice crystal formation. However, these polymer-type cryoprotectants also require high osmotic pressure to exert an effective cryoprotecting effect. In this study, we designed a poly(zwitterion) (polyZI) that forms firm matrices around cells based on their high affinity to cell membranes. The polyZI successfully cryopreserved freeze-vulnerable cells under isotonic conditions. These matrices also controlled osmotic pressure by adsorbing and desorbing NaCl depending on the temperature, which is a suitable feature for isotonic cryopreservation. Although cell proliferation was delayed by the cellular matrices, washing with a sucrose solution improved proliferation.
Collapse
Affiliation(s)
- Yui Kato
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Yuya Matsuda
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Takuya Uto
- University of Miyazaki, Faculty of Engineering, Nishi 1-1 Gakuen Kibanadai, Miyazaki, 889-2192, Japan
| | - Daisuke Tanaka
- Genetic Resource Center, National Agriculture and Food Research Organization, Kannondai, Tsukuba, 305-8602, Japan
| | - Kojiro Ishibashi
- Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Takeru Ishizaki
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Akio Ohta
- Faculty of Material Science and Technology, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Akiko Kobayashi
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative & WPI-Nano Life Science Institute, Kanazawa University, Kanazawa, Kanazawa, Ishikawa, 920-1192, Japan
| | - Masaharu Hazawa
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative & WPI-Nano Life Science Institute, Kanazawa University, Kanazawa, Kanazawa, Ishikawa, 920-1192, Japan
| | - Richard W Wong
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative & WPI-Nano Life Science Institute, Kanazawa University, Kanazawa, Kanazawa, Ishikawa, 920-1192, Japan
| | - Kazuaki Ninomiya
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Kenji Takahashi
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Eishu Hirata
- Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
- Nano Life Science Institute of Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Kosuke Kuroda
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
- NanoMaterials Research Institute, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
8
|
Ma Y, Zhang J, Tian Y, Fu Y, Tian S, Li Q, Yang J, Zhang L. Zwitterionic microgel preservation platform for circulating tumor cells in whole blood specimen. Nat Commun 2023; 14:4958. [PMID: 37587113 PMCID: PMC10432405 DOI: 10.1038/s41467-023-40668-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 08/07/2023] [Indexed: 08/18/2023] Open
Abstract
The immediate processing of whole blood specimen is required in circulating tumor cell-based liquid biopsy. Reliable blood specimen stabilization towards preserving circulating tumor cells can enable more extensive geographic sharing for precise rare-cell technology, but remains challenging due to the fragility and rarity of circulating tumor cells. Herein, we establish a zwitterionic magnetic microgel platform to stabilize whole blood specimen for long-term hypothermic preservation of model circulating tumor cells. We show in a cohort study of 20 cancer patients that blood samples can be preserved for up to 7 days without compromising circulating tumor cell viability and RNA integrity, thereby doubling the viable preservation duration. We demonstrate that the 7-day microgel-preserved blood specimen is able to reliably detect cancer-specific transcripts, similar to fresh blood specimens, while there are up/down expression regulation of 1243 genes in model circulating tumor cells that are preserved by commercial protectant. Mechanistically, we find that the zwitterionic microgel assembly counters the cold-induced excessive reactive oxygen species and platelet activation, as well as extracellular matrix loss-induced cell anoikis, to prevent circulating tumor cell loss in the whole blood sample. The present work could prove useful for the development of blood-based noninvasive diagnostics.
Collapse
Affiliation(s)
- Yiming Ma
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin, 300350, China
| | - Jun Zhang
- Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Breast Cancer Prevention and Therapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Yunqing Tian
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin, 300350, China
| | - Yihao Fu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin, 300350, China
| | - Shu Tian
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin, 300350, China
| | - Qingsi Li
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin, 300350, China
| | - Jing Yang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin, 300350, China.
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
9
|
Burkey AA, Ghousifam N, Hillsley AV, Brotherton ZW, Rezaeeyazdi M, Hatridge TA, Harris DT, Sprague WW, Sandoval BE, Rosales AM, Rylander MN, Lynd NA. Synthesis of Poly(allyl glycidyl ether)-Derived Polyampholytes and Their Application to the Cryopreservation of Living Cells. Biomacromolecules 2023; 24:1475-1482. [PMID: 36780271 DOI: 10.1021/acs.biomac.2c01488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Through the postpolymerization modification of poly(allyl glycidyl ether) (PAGE), a functionalizable polyether with a poly(ethylene oxide) backbone, we engineered a new class of highly tunable polyampholyte materials. These polyampholytes can be synthesized to have several useful properties, including low cytotoxicity and pH-responsive coacervate formation. In this study, we used PAGE-based polyampholytes (PAGE-PAs) for the cryopreservation of mammalian cell suspensions. Typically, dimethyl sulfoxide (DMSO) is the cryoprotectant used for preserving mammalian cells, but DMSO suffers from key drawbacks including toxicity and difficult post-thaw removal that motivates the development of new materials and methods. Toxicity and post-thaw survival were dependent on PAGE-PA composition with the highest immediate post-thaw survival for normal human dermal fibroblasts occurring for the least toxic PAGE-PA at a cation/anion ratio of 35:65. With low toxicity, the PAGE-PA concentration could be increased in order to increase immediate post-thaw survival of the immortalized mouse embryonic fibroblasts (NIH/3T3). While immediate post-thaw viability was achieved using only the PAGE-PAs, long-term cell survival was low, highlighting the challenges involved with the design of cryoprotective polyampholytes. An environment utilizing both PAGE-PAs and DMSO in a cryoprotective solution offered promising post-thaw viabilities exceeding 70%, with long-term metabolic activities comparable to unfrozen cells.
Collapse
Affiliation(s)
- Aaron A Burkey
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Neda Ghousifam
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Alexander V Hillsley
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zachary W Brotherton
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Mahboobeh Rezaeeyazdi
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Taylor A Hatridge
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Dale T Harris
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - William W Sprague
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Brittany E Sandoval
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Adrianne M Rosales
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Center for Dynamics and Control of Materials, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Marissa Nichole Rylander
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Nathaniel A Lynd
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Center for Dynamics and Control of Materials, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
10
|
Judge N, Georgiou PG, Bissoyi A, Ahmad A, Heise A, Gibson MI. High Molecular Weight Polyproline as a Potential Biosourced Ice Growth Inhibitor: Synthesis, Ice Recrystallization Inhibition, and Specific Ice Face Binding. Biomacromolecules 2023. [DOI: 10.1021/acs.biomac.2c01487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Nicola Judge
- Department of Chemistry, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
| | | | - Akalabya Bissoyi
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, U.K
| | - Ashfaq Ahmad
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, U.K
| | - Andreas Heise
- Department of Chemistry, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CURAM), RCSI, Dublin 2, Ireland
- AMBER, The SFI Advanced Materials and Bioengineering Research Centre, RCSI, Dublin D02, Ireland
| | - Matthew I. Gibson
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, U.K
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, U.K
| |
Collapse
|
11
|
Visscher AM, Pritchard HW, Neri G, Ballesteros D. How do we transport plant species with desiccation-sensitive germplasm in space? LIFE SCIENCES IN SPACE RESEARCH 2023; 36:135-137. [PMID: 36682822 DOI: 10.1016/j.lssr.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/06/2022] [Accepted: 09/28/2022] [Indexed: 06/17/2023]
Abstract
Many useful plant species with potential for plant-based bioregenerative life support systems produce extremophile seeds with tolerance to multiple stressors, including desiccation, which allows for their transport through space in a dried state. However, other valuable species produce desiccation-sensitive seeds or are propagated clonally, and life sciences research in space has not yet addressed the challenge of alternative transport methods in microgravity for such material. Although liquid nitrogen storage is used on Earth for desiccation-sensitive germplasm, it poses atmospheric leakage problems to crewed spacecraft and therefore liquid nitrogen-free cryogenic freezing could be an alternative. Another promising approach is slow growth tissue culture, with subculture intervals extended to months or years through the precise control of the culture environment. Whilst the design of innovative systems for the transport of species with desiccation-sensitive germplasm will be demanding, the prospect still remains for their successful growth beyond Earth.
Collapse
Affiliation(s)
- Anne M Visscher
- Royal Botanic Gardens, Kew, Wakehurst, Ardingly, Haywards Heath, West Sussex RH17 6TN, United Kingdom.
| | - Hugh W Pritchard
- Royal Botanic Gardens, Kew, Wakehurst, Ardingly, Haywards Heath, West Sussex RH17 6TN, United Kingdom; CryoLetters LLP, Lewes, East Sussex BN71QE, United Kingdom
| | - Gianluca Neri
- Kayser Space Ltd. Rutherford Appleton Laboratory Building R104, Fermi Avenue, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Daniel Ballesteros
- Royal Botanic Gardens, Kew, Wakehurst, Ardingly, Haywards Heath, West Sussex RH17 6TN, United Kingdom; Department of Botany and Geology, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, Valencia 46100, Spain
| |
Collapse
|
12
|
Zhang S, Cao C, Jiang S, Huang H. A General Strategy for Radical Ring-Opening Polymerization of Macrocyclic Allylic Sulfides. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shuai Zhang
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Chi Cao
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Suqiu Jiang
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Hanchu Huang
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|