1
|
Saraiva NM, Alves A, Costa PC, Correia-da-Silva M. Click Chemistry in Polymersome Technology. Pharmaceuticals (Basel) 2024; 17:747. [PMID: 38931414 PMCID: PMC11206349 DOI: 10.3390/ph17060747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Polymersomes, self-assembled nanoparticles composed of amphiphilic block copolymers, have emerged as promising versatile nanovesicles with various applications, such as drug delivery, medical imaging, and diagnostics. The integration of click chemistry reactions, specifically the copper [I]-catalysed azide-alkyne cycloaddition (CuAAC), has greatly expanded the functionalisation and bioconjugation capabilities of polymersomes and new drugs, being this synergistic combination explored in this review. It also provides up-to-date examples of previous incorporations of click-compatible moieties (azide and alkyne functional groups) into polymer building blocks, enabling the "click" attachment of various functional groups and ligands, delving into the diverse range of click reactions that have been reported and employed for polymersome copolymer synthesis and the modification of polymersome surfaces, including ligand conjugation and surface modification. Overall, this review explores the current state-of-the-art of the combinatory usage, in recent years, of polymersomes with the click chemistry reaction, highlighting examples of studies of their synthesis and functionalisation strategies.
Collapse
Affiliation(s)
- Nuno M. Saraiva
- LQOF—Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- CIIMAR—Interdisciplinary Center of Marine and Environmental Research, University of Porto, Terminal dos Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Ana Alves
- UCIBIO—Applied Molecular Biosciences Unit, MedTech-Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; (A.A.); (P.C.C.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Paulo C. Costa
- UCIBIO—Applied Molecular Biosciences Unit, MedTech-Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; (A.A.); (P.C.C.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Marta Correia-da-Silva
- LQOF—Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- CIIMAR—Interdisciplinary Center of Marine and Environmental Research, University of Porto, Terminal dos Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| |
Collapse
|
2
|
Sun Q, Shi J, Sun H, Zhu Y, Du J. Membrane and Lumen-Compartmentalized Polymersomes for Biocatalysis and Cell Mimics. Biomacromolecules 2023; 24:4587-4604. [PMID: 37842883 DOI: 10.1021/acs.biomac.3c00726] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Compartmentalization is a crucial feature of a natural cell, manifested in cell membrane and inner lumen. Inspired by the cellular structure, multicompartment polymersomes (MCPs), including membrane-compartmentalized polymersomes and lumen-compartmentalized polymersomes (polymersomes-in-polymersomes), have aroused great expectations for biological applications such as biocatalysis and cell mimics in the past decades. Compared with traditional polymersomes, MCPs have advantages in encapsulating multiple enzymes separately for multistep enzymatic cascade reactions. In this review, first, the design principles and preparation methods of membrane-compartmentalized and lumen-compartmentalized polymersomes are summarized. Next, recent advances of MCPs as nanoreactors and cell mimics to mimic subcellular organelles or artificial cells are discussed. Finally, the future research directions of MCPs are prospected.
Collapse
Affiliation(s)
- Qingmei Sun
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Junqiu Shi
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Hui Sun
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yunqing Zhu
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianzhong Du
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
3
|
Yong HW, Ferron M, Mecteau M, Mihalache-Avram T, Lévesque S, Rhéaume É, Tardif JC, Kakkar A. Single Functional Group Platform for Multistimuli Responsivities: Tertiary Amine for CO 2/pH/ROS-Triggered Cargo Release in Nanocarriers. Biomacromolecules 2023; 24:4064-4077. [PMID: 37647594 DOI: 10.1021/acs.biomac.3c00434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The design of multistimuli-responsive soft nanoparticles (NPs) often presents synthetic complexities and limited breadth in exploiting changes surrounding physiological environments. Nanocarriers that could collectively take advantage of several endogenous stimuli can offer a powerful tool in nanomedicine. Herein, we have capitalized on the chemical versatility of a single tertiary amine to construct miktoarm polymer-based nanocarriers that respond to dissolved CO2, varied pH, reactive oxygen species (ROS), and ROS + CO2. Curcumin (Cur), an anti-inflammatory phytopharmaceutic, was loaded into micelles, and we validated the sensitivity of the tertiary amine in tuning Cur release. An in vitro evaluation indicated that Cur encapsulation strongly suppressed its toxicity at high concentrations, significantly inhibited nigericin-induced secretion of interleukin-1β by THP-1 macrophages, and the proportion of M2/M1 (anti-inflammatory/pro-inflammatory macrophages) was higher for Cur-loaded NPs than for free Cur. Our approach highlights the potential of a simple-by-design strategy in expanding the scope of polymeric NPs in drug delivery.
Collapse
Affiliation(s)
- Hui Wen Yong
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Marine Ferron
- Research Center, Montréal Heart Institute, 5000 Belanger Street, Montréal, Québec H1T 1C8, Canada
| | - Mélanie Mecteau
- Research Center, Montréal Heart Institute, 5000 Belanger Street, Montréal, Québec H1T 1C8, Canada
| | - Teodora Mihalache-Avram
- Research Center, Montréal Heart Institute, 5000 Belanger Street, Montréal, Québec H1T 1C8, Canada
| | - Sylvie Lévesque
- Montréal Health Innovations Coordinating Center, 5000 Belanger Street, Montréal, Québec H1T 1C8, Canada
| | - Éric Rhéaume
- Research Center, Montréal Heart Institute, 5000 Belanger Street, Montréal, Québec H1T 1C8, Canada
- Department of Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Jean-Claude Tardif
- Research Center, Montréal Heart Institute, 5000 Belanger Street, Montréal, Québec H1T 1C8, Canada
- Department of Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| |
Collapse
|
4
|
Zhang C, Wei C, Huang X, Hou C, Liu C, Zhang S, Zhao Z, Liu Y, Zhang R, Zhou L, Li Y, Yuan X, Zhang J. MPC-n (IgG) improves long-term cognitive impairment in the mouse model of repetitive mild traumatic brain injury. BMC Med 2023; 21:199. [PMID: 37254196 DOI: 10.1186/s12916-023-02895-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 05/09/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND Contact sports athletes and military personnel who suffered a repetitive mild traumatic brain injury (rmTBI) are at high risk of neurodegenerative diseases such as advanced dementia and chronic traumatic encephalopathy (CTE). However, due to the lack of specific biological indicators in clinical practice, the diagnosis and treatment of rmTBI are quite limited. METHODS We used 2-methacryloyloxyethyl phosphorylcholine (MPC)-nanocapsules to deliver immunoglobulins (IgG), which can increase the delivery efficiency and specific target of IgG while reducing the effective therapeutic dose of the drug. RESULTS Our results demonstrated that MPC-capsuled immunoglobulins (MPC-n (IgG)) significantly alleviated cognitive impairment, hippocampal atrophy, p-Tau deposition, and myelin injury in rmTBI mice compared with free IgG. Furthermore, MPC-n (IgG) can also effectively inhibit the activation of microglia and the release of inflammatory factors. CONCLUSIONS In the present study, we put forward an efficient strategy for the treatment of rmTBI-related cognitive impairment and provide evidence for the administration of low-dose IgG.
Collapse
Affiliation(s)
- Chaonan Zhang
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Cheng Wei
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xingqi Huang
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Changxin Hou
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Chuan Liu
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Shu Zhang
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zilong Zhao
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yafan Liu
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Ruiguang Zhang
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Lei Zhou
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Ying Li
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xubo Yuan
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China.
| | - Jianning Zhang
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
5
|
Baghbanbashi M, Yong HW, Zhang I, Lotocki V, Yuan Z, Pazuki G, Maysinger D, Kakkar A. Stimuli-Responsive Miktoarm Polymer-Based Formulations for Fisetin Delivery and Regulatory Effects in Hyperactive Human Microglia. Macromol Biosci 2022; 22:e2200174. [PMID: 35817026 DOI: 10.1002/mabi.202200174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/20/2022] [Indexed: 11/09/2022]
Abstract
Branched star polymers offer exciting opportunities in enhancing the efficacy of nanocarriers in delivering biologically active lipophilic agents. We demonstrate that the star polymeric architecture can be leveraged to yield soft nanoparticles of vesicular morphology with precisely located stimuli-sensitive chemical entities. Amphiphilic stars of AB2 (A = PEG, B = PCL) composition with/without oxidative stress or reduction responsive units at the core junction of A and B arms, are constructed using synthetic articulation. Fisetin, a natural flavonoid with remarkable anti-inflammatory and antioxidant properties, but of limited clinical value due to its poor aqueous solubility, was physically encapsulated into miktoarm star-derived aqueous polymersomes. We evaluated polymersomes and fisetin separately, and in combination, in human microglia (HMC3), to show if (i) polymersomes are toxic; (ii) fisetin reduces the abundance of reactive oxygen species (ROS); and (iii) fisetin modulates the activation of ERK1/2. These signaling molecules and pathways are implicated in inflammatory processes and cell survival. Fisetin, both incorporated and non-incorporated into polymersomes, reduced ROS and ERK1/2 phosphorylation in lipopolysaccharide-treated human microglia, normalizing excessive oxidative stress and ERK-mediated signaling. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mojhdeh Baghbanbashi
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada.,Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Avenue, Tehran, 1591634311, Iran
| | - Hui Wen Yong
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| | - Issan Zhang
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec, H3G 1Y6, Canada
| | - Victor Lotocki
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| | - Zhuoer Yuan
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec, H3G 1Y6, Canada
| | - Gholamreza Pazuki
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Avenue, Tehran, 1591634311, Iran
| | - Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec, H3G 1Y6, Canada
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| |
Collapse
|
6
|
Baghbanbashi M, Kakkar A. Polymersomes: Soft Nanoparticles from Miktoarm Stars for Applications in Drug Delivery. Mol Pharm 2022; 19:1687-1703. [PMID: 35157463 DOI: 10.1021/acs.molpharmaceut.1c00928] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Self-assembly of amphiphilic macromolecules has provided an advantageous platform to address significant issues in a variety of areas, including biology. Such soft nanoparticles with a hydrophobic core and hydrophilic corona, referred to as micelles, have been extensively investigated for delivering lipophilic therapeutics by physical encapsulation. Polymeric vesicles or polymersomes with similarities in morphology to liposomes continue to play an essential role in understanding the behavior of cell membranes and, in addition, have offered opportunities in designing smart nanoformulations. With the evolution in synthetic methodologies to macromolecular precursors, the construction of such assemblies can now be modulated to tailor their properties to match desired needs. This review brings into focus the current state-of-the-art in the design of polymersomes using amphiphilic miktoarm star polymers through a detailed analysis of the synthesis of miktoarm star polymers with tuned lengths of varied polymeric arms, their self-assembly, and applications in drug delivery.
Collapse
Affiliation(s)
- Mojhdeh Baghbanbashi
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada.,Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 1591634311, Iran
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
7
|
Basinska T, Gadzinowski M, Mickiewicz D, Slomkowski S. Functionalized Particles Designed for Targeted Delivery. Polymers (Basel) 2021; 13:2022. [PMID: 34205672 PMCID: PMC8234925 DOI: 10.3390/polym13122022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 12/03/2022] Open
Abstract
Pure bioactive compounds alone can only be exceptionally administered in medical treatment. Usually, drugs are produced as various forms of active compounds and auxiliary substances, combinations assuring the desired healing functions. One of the important drug forms is represented by a combination of active substances and particle-shaped polymer in the nano- or micrometer size range. The review describes recent progress in this field balanced with basic information. After a brief introduction, the paper presents a concise overview of polymers used as components of nano- and microparticle drug carriers. Thereafter, progress in direct synthesis of polymer particles with functional groups is discussed. A section is devoted to formation of particles by self-assembly of homo- and copolymer-bearing functional groups. Special attention is focused on modification of the primary functional groups introduced during particle preparation, including introduction of ligands promoting anchorage of particles onto the chosen living cell types by interactions with specific receptors present in cell membranes. Particular attention is focused on progress in methods suitable for preparation of particles loaded with bioactive substances. The review ends with a brief discussion of the still not answered questions and unsolved problems.
Collapse
Affiliation(s)
- Teresa Basinska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (M.G.); (D.M.)
| | | | | | - Stanislaw Slomkowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (M.G.); (D.M.)
| |
Collapse
|
8
|
Click chemistry strategies for the accelerated synthesis of functional macromolecules. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210126] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Liu D, Sun H, Xiao Y, Chen S, Cornel EJ, Zhu Y, Du J. Design principles, synthesis and biomedical applications of polymer vesicles with inhomogeneous membranes. J Control Release 2020; 326:365-386. [DOI: 10.1016/j.jconrel.2020.07.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022]
|
10
|
Hidalgo FJ, Lorentz NA, Luu TB, Tran JD, Wickremasinghe PD, Martini O, Iovine PM, Schellinger JG. Synthesis, Characterization, and Dynamic Behavior of Well-defined Dithiomaleimide-functionalized Maltodextrins. LETT ORG CHEM 2020. [DOI: 10.2174/1570178616666190212124838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
Maltodextrins have an increasing number of biomedical and industrial applications due to
their attractive physicochemical properties such as biodegradability and biocompatibility. Herein, we
describe the development of a synthetic pathway and characterization of thiol-responsive maltodextrin
conjugates with dithiomaleimide linkages. 19F NMR studies were also conducted to demonstrate the
exchange dynamics of the dithiomaleimide-functionalized sugar end groups.
Collapse
Affiliation(s)
- Francisco J. Hidalgo
- Department of Chemistry and Biochemistry University of San Diego, 5998 Alcala Park, San Diego, CA 92110, United States
| | - Nathan A.P. Lorentz
- Department of Chemistry and Biochemistry University of San Diego, 5998 Alcala Park, San Diego, CA 92110, United States
| | - TinTin B. Luu
- Department of Chemistry and Biochemistry University of San Diego, 5998 Alcala Park, San Diego, CA 92110, United States
| | - Jonathan D. Tran
- Department of Chemistry and Biochemistry University of San Diego, 5998 Alcala Park, San Diego, CA 92110, United States
| | - Praveen D. Wickremasinghe
- Department of Chemistry and Biochemistry University of San Diego, 5998 Alcala Park, San Diego, CA 92110, United States
| | - Olnita Martini
- Department of Chemistry and Biochemistry University of San Diego, 5998 Alcala Park, San Diego, CA 92110, United States
| | - Peter M. Iovine
- Department of Chemistry and Biochemistry University of San Diego, 5998 Alcala Park, San Diego, CA 92110, United States
| | - Joan G. Schellinger
- Department of Chemistry and Biochemistry University of San Diego, 5998 Alcala Park, San Diego, CA 92110, United States
| |
Collapse
|
11
|
Miao C, Zhu X, Zhang J, Zhao Y. Rational design of nonlinear crystalline-amorphous-responsive terpolymers for pH-guided fabrication of 0D–3D nano-objects. Polym Chem 2020. [DOI: 10.1039/d0py01035a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Crystallization/pH-induced self-assembly of starlike and tadpole-linear terpolymers allowed the formation of 0D spheres/vesicles, 1D cylinders, 2D platelets/nanosheets and 3D tadpoles/dendritic vesicles.
Collapse
Affiliation(s)
- Cheng Miao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Xiaomin Zhu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Jian Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Youliang Zhao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| |
Collapse
|
12
|
Gaitzsch J, Hirschi S, Freimann S, Fotiadis D, Meier W. Directed Insertion of Light-Activated Proteorhodopsin into Asymmetric Polymersomes from an ABC Block Copolymer. NANO LETTERS 2019; 19:2503-2508. [PMID: 30875467 DOI: 10.1021/acs.nanolett.9b00161] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanoscopic artificial vesicles containing functional protein transporters are fundamental for synthetic biology. Energy-providing modules, such as proton pumps, are a basis for simple nanoreactors. We report on the first insertion of a functional transmembrane protein into asymmetric polymersomes from an ABC triblock copolymer. The polymer with the composition poly(ethylene glycol)-poly(diisopropylaminoethyl methacrylate)-poly(styrenesulfonate) (PEG-PDPA-PSS) was synthesized by sequential controlled radical polymerization. PEG and PSS are two distinctively different hydrophilic blocks, allowing for a specific orientation of our protein, the light-activated proton pump proteorhodopsin (PR), into the final proteopolymersome. A very interesting aspect of the PEG-PDPA-PSS triblock copolymers is that it allowed for simultaneous vesicle formation and oriented insertion of PR simply by adjusting the pH. The intrinsic positive charge of PR's intracellular surface was enhanced by a His-tag, which aligns readily with the negative charges of the PSS on the outside of the polymersomes. The directed insertion of PR was confirmed by a light-dependent pH change of the proteopolymersome solution, indicating the intended orientation. We have hereby demonstrated the first successful oriented insertion of a proton pump into an artificial asymmetric membrane.
Collapse
Affiliation(s)
- Jens Gaitzsch
- Department of Chemistry , University of Basel , Klingelbergstrasse 80 , 4058 Basel , Switzerland
| | - Stephan Hirschi
- Institute of Biochemistry and Molecular Medicine , University of Bern , Bühlstrasse 28 , 3012 Bern , Switzerland
| | - Sven Freimann
- Department of Chemistry , University of Basel , Klingelbergstrasse 80 , 4058 Basel , Switzerland
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine , University of Bern , Bühlstrasse 28 , 3012 Bern , Switzerland
| | - Wolfgang Meier
- Department of Chemistry , University of Basel , Klingelbergstrasse 80 , 4058 Basel , Switzerland
| |
Collapse
|
13
|
Polymer membranes as templates for bio-applications ranging from artificial cells to active surfaces. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.12.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Hao L, Lin L, Zhou J. pH-Responsive Zwitterionic Copolymer DHA-PBLG-PCB for Targeted Drug Delivery: A Computer Simulation Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1944-1953. [PMID: 29692174 DOI: 10.1021/acs.langmuir.8b00626] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this work, the self-assembled behaviors of zwitterionic copolymer docosahexaenoic acid- b-poly(γ-benzyl-l-glutamate)- b-poly(carboxybetaine methacrylate) (DHA-PBLG-PCB) and the loading and release mechanism of the anticancer drug doxorubicin (DOX) was investigated via computer simulations. The effects of polymer concentration, drug content, and pH on polymeric micelles were explored by dissipative particle dynamics (DPD) simulations. Simulation results show that DHA-PBLG15-PCB10 can self-assemble into core-shell micelles; in addition, the drug-loaded micelles have a pH-responsive feature. DOX can be encapsulated into the core-shell micelle under normal physiological pH conditions, whereas it can be released under acidic pH conditions. The self-assembled behaviors of copolymer DHA-PBLG-PEG were also studied to have a comparison with those of DHA-PBLG-PCB. The DHA-PBLG15-PCB10 system has a stable structure and it has a great potential to serve as drug delivery vehicles for targeted drug delivery.
Collapse
Affiliation(s)
- Lingxia Hao
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology , South China University of Technology , Guangzhou , Guangdong 510640 , People's Republic of China
| | - Lin Lin
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology , South China University of Technology , Guangzhou , Guangdong 510640 , People's Republic of China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology , South China University of Technology , Guangzhou , Guangdong 510640 , People's Republic of China
| |
Collapse
|
15
|
Affiliation(s)
- Evgeniia V. Konishcheva
- Department of Physical Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
- Precision Macromolecular Chemistry, Institute Charles Sadron, UPR-22 CNRS, BP 84047, 23 rue du Loess, Cedex 2 67034 Strasbourg, France
| | - Ulmas E. Zhumaev
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Wolfgang P. Meier
- Department of Physical Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| |
Collapse
|
16
|
Guo Z, Zhang D, Song S, Shu Y, Chen X, Wang J. Complexes of magnetic nanospheres with amphiprotic polymer-Zn systems for the selective isolation of lactoferrin. J Mater Chem B 2018; 6:5596-5603. [PMID: 32254969 DOI: 10.1039/c8tb01341a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amphiprotic polymer-Zn complex magnetic nanospheres, termed Fe3O4@PCL-CMC-Zn, are designed and prepared via a step-wise synthetic strategy. Hydrophobic polycaprolactone (PCL) is firstly coated onto the magnetic Fe3O4 nanospheres, and then hydrophilic carboxymethylcellulose (CMC) is grafted onto the hydrophobic PCL blocks via an esterification reaction, followed by finally chelating with Zn2+ ions. The homogeneous core-shell structure and fastened amphiprotic polymer layer provide the as-prepared Fe3O4@PCL-CMC-Zn magnetic nanospheres with improved protein binding behavior, and the chelated Zn2+ offers the nanospheres favorable adsorption selectivity towards apo-lactoferrin. The adsorption capacity of apo-lactoferrin is high, up to 615.3 mg g-1. The exploitation of FeCl3 as a stripping reagent not only provides efficient recovery of the adsorbed apo-lactoferrin, i.e. a recovery of 83.2%, but also achieves the restoration of the lactoferrin structure. The Fe3O4@PCL-CMC-Zn magnetic nanospheres are then employed as a sorbent for the selective isolation of lactoferrin from human colostrum samples, obtaining high-purity lactoferrin as demonstrated by SDS-PAGE and Q-TOF LC-MS assays.
Collapse
Affiliation(s)
- Zhiyong Guo
- Research Center for Analytical Sciences, Department of Chemistry, Northeastern University, Box 332, Shenyang 110819, China.
| | | | | | | | | | | |
Collapse
|
17
|
Xie Y, Husband JT, Torrent-Sucarrat M, Yang H, Liu W, O’Reilly RK. Rational design of substituted maleimide dyes with tunable fluorescence and solvafluorochromism. Chem Commun (Camb) 2018; 54:3339-3342. [PMID: 29542762 PMCID: PMC5885783 DOI: 10.1039/c8cc00772a] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/08/2018] [Indexed: 12/14/2022]
Abstract
A series of maleimide derivatives were systematically designed and synthesized with tunable fluorescent properties. The facile modifications herein provide a simple methodology to expand the scope of maleimide-based dyes and also provide insight into the relationship between substitution pattern and optical properties.
Collapse
Affiliation(s)
- Yujie Xie
- Department of Chemistry, University of Warwick , Coventry , CV4 7AL , UK
| | | | - Miquel Torrent-Sucarrat
- Department of Organic Chemistry I , Universidad del País Vasco (UPV/EHU) , and Donostia International Physics Center (DIPC) , Manuel Lardizabal Ibilbidea 3 , Donostia 20018 , Spain
- Ikerbasque , Basque Foundation for Science , María Díaz de Haro 3, 6o̲ , Bilbao 48013 , Spain
| | - Huan Yang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry , Lanzhou University , Lanzhou 730000 , P. R. China
| | - Weisheng Liu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry , Lanzhou University , Lanzhou 730000 , P. R. China
| | - Rachel K. O’Reilly
- Department of Chemistry, University of Warwick , Coventry , CV4 7AL , UK
- School of Chemistry, University of Birmingham , Edgbaston , B15 2TT , UK .
| |
Collapse
|
18
|
Guo Y, Di Mare L, Li RKY, Wong JSS. Cargo Release from Polymeric Vesicles under Shear. Polymers (Basel) 2018; 10:E336. [PMID: 30966371 PMCID: PMC6414962 DOI: 10.3390/polym10030336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/10/2018] [Accepted: 03/16/2018] [Indexed: 12/20/2022] Open
Abstract
In this paper we study the release of cargo from polymeric nano-carriers under shear. Vesicles formed by two star block polymers- A 12 B 6 C 2 ( A B C ) and A 12 B 6 A 2 ( A B A )-and one linear block copolymer- A 14 B 6 ( A B ), are investigated using dissipative particle dynamics (DPD) simulations. A - and C -blocks are solvophobic and B -block is solvophilic. The three polymers form vesicles of different structures. The vesicles are subjected to shear both in bulk and between solvophobic walls. In bulk shear, the mechanisms of cargo release are similar for all vesicles, with cargo travelling through vesicle membrane with no preferential release location. When sheared between walls, high cargo release rate is only observed with A B C vesicle after it touches the wall. For A B C vesicle, the critical condition for high cargo release rate is the formation of wall-polymersome interface after which the effect of shear rate in promoting cargo release is secondary. High release rate is achieved by the formation of solvophilic pathway allowing cargo to travel from the vesicle cavity to the vesicle exterior. The results in this paper show that well controlled target cargo release using polymersomes can be achieved with polymers of suitable design and can potentially be very useful for engineering applications. As an example, polymersomes can be used as carriers for surface active friction reducing additives which are only released at rubbing surfaces where the additives are needed most.
Collapse
Affiliation(s)
- Yingying Guo
- Department of Mechanical Engineering, Imperial College London, London SW 7 2AZ, UK.
| | - Luca Di Mare
- Department of Engineering Science, University of Oxford, Oxford Thermofluids Institute, Oxford OX2 0ES, UK.
| | - Robert K Y Li
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Ave, Kowloon Tong, Hong Kong, China.
| | - Janet S S Wong
- Department of Mechanical Engineering, Imperial College London, London SW 7 2AZ, UK.
| |
Collapse
|
19
|
Feng Y, Wan Y, Jin M, Wan D. Large-scale preparation of a 3D patchy surface with dissimilar dendritic amphiphiles. SOFT MATTER 2018; 14:1043-1049. [PMID: 29334106 DOI: 10.1039/c7sm02328f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We show here the first example of the large-scale surface decoration of a macroscopic and porous monolith with dissimilar micropatches. Branched polyethylenimine (PEI) is alkylated with poly(propylene glycol) (PPG), leading to a reverse-micelle-like dendritic amphiphile of PEI@PPG. Peralkylation and partial quaternization of the residual amino groups of PEI@PPG produces a cationic dendritic amphiphile of PEI-N+@PPG. The two dendritic amphiphiles jointly stabilize a water-in-oil high-internal-phase emulsion to prepare open-cellular monoliths of macroscopic size, with the monolith pore surface dictated by the cationic and neutral dendritic amphiphiles. The amino groups of the neutral amphiphile are further derivatized into anionic dithiocarbamates. The resulting monolith, along with the dissimilar functional patches on the surface, simultaneously eliminates multiple anionic and cationic micropollutants from water to very low residues, and affords the pH-triggered sequential release. Our strategy of using dissimilar dendritic amphiphiles rather than block copolymers as surface building blocks can confer the resulting surface with robust and predesigned microenvironments besides the conventional coacervate structure, and thus can afford more functions.
Collapse
Affiliation(s)
- Yanyan Feng
- Department of Polymer Materials, School of Materials Science and Engineering, Tongji University 4800 Cao-an Rd, Shanghai 201804, China.
| | - Yujia Wan
- Department of Polymer Materials, School of Materials Science and Engineering, Tongji University 4800 Cao-an Rd, Shanghai 201804, China.
| | - Ming Jin
- Department of Polymer Materials, School of Materials Science and Engineering, Tongji University 4800 Cao-an Rd, Shanghai 201804, China.
| | - Decheng Wan
- Department of Polymer Materials, School of Materials Science and Engineering, Tongji University 4800 Cao-an Rd, Shanghai 201804, China.
| |
Collapse
|
20
|
Konishcheva E, Daubian D, Gaitzsch J, Meier W. Synthesis of Linear ABC Triblock Copolymers and Their Self-Assembly in Solution. Helv Chim Acta 2018. [DOI: 10.1002/hlca.201700287] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Evgeniia Konishcheva
- Department of Physical Chemistry; University of Basel; Mattenstrasse 24a, BPR 1096 4058 Basel Switzerland
| | - Davy Daubian
- Department of Physical Chemistry; University of Basel; Mattenstrasse 24a, BPR 1096 4058 Basel Switzerland
| | - Jens Gaitzsch
- Department of Physical Chemistry; University of Basel; Mattenstrasse 24a, BPR 1096 4058 Basel Switzerland
| | - Wolfgang Meier
- Department of Physical Chemistry; University of Basel; Mattenstrasse 24a, BPR 1096 4058 Basel Switzerland
| |
Collapse
|
21
|
Zhao X, Wu W, Zhang J, Dai W, Zhao Y. Thermoresponse and self-assembly of an ABC star quarterpolymer with O2 and redox dual-responsive Y junctions. Polym Chem 2018. [DOI: 10.1039/c8py00085a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The stimuli-tunable LCST-type phase transition and self-assembly behaviors of a multi-responsive 3-miktoarm star bearing O2/redox-sensitive and H-bond-switchable Y junctions were revealed.
Collapse
Affiliation(s)
- Xiaoqi Zhao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Wentao Wu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Jian Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Wenxue Dai
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Youliang Zhao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| |
Collapse
|
22
|
Gaitzsch J, Messager L, Morecroft E, Meier W. Vesicles in Multiple Shapes: Fine-Tuning Polymersomes' Shape and Stability by Setting Membrane Hydrophobicity. Polymers (Basel) 2017; 9:E483. [PMID: 30965785 PMCID: PMC6418632 DOI: 10.3390/polym9100483] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 12/23/2022] Open
Abstract
Amphiphilic block-copolymers are known to self-assemble into micelles and vesicles. In this paper, we discuss the multiple options between and beyond these boundaries using amphiphilic AB diblock and ABC triblock copolymers. We adjust the final structure reached by the composition of the mixture, by the preparation temperature, and by varying the time-scale of formation. This leads to the formation of vesicles and micelles, but also internal micelles in larger sheets, lamellar vesicles, and closed tubes, thus broadening the amount of self-assembly structures available and deepening our understanding of them.
Collapse
Affiliation(s)
- Jens Gaitzsch
- Departement of Chemistry, University of Basel, Mattenstrasse 24a, BPR1096, 4058 Basel, Switzerland.
| | - Lea Messager
- LAGEP-Université Claude Bernard Lyon 1, 43 Boulevard du 11 novembre 1918, Bâtiment CPE-308G, M69622 Villeurbanne Cedex, France.
| | - Eloise Morecroft
- Institute of Chemical Biology, Exhibition Road, London SW7 2AZ, UK.
| | - Wolfgang Meier
- Departement of Chemistry, University of Basel, Mattenstrasse 24a, BPR1096, 4058 Basel, Switzerland.
| |
Collapse
|
23
|
Ellis E, Zhang K, Lin Q, Ye E, Poma A, Battaglia G, Loh XJ, Lee TC. Biocompatible pH-responsive nanoparticles with a core-anchored multilayer shell of triblock copolymers for enhanced cancer therapy. J Mater Chem B 2017; 5:4421-4425. [PMID: 32263969 DOI: 10.1039/c7tb00654c] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Drug nanocarriers are synthesised via a facile self-assembly approach using gold nanoparticles (Au NPs) as a structural core. The nanocarriers feature a multilayer shell of POEGMA-PDPA-PMPC triblock copolymers with a chain-end thiol functional group for anchoring to the Au NP surface. This water-soluble triblock copolymer was synthesised via atom transfer radical polymerisation (ATRP) from a bi-functional initiator containing a disulphide bridge. The resultant nanocarriers exhibit high biocompatibility plus excellent colloidal stability and antifouling capability in bio-media (50% PBS/FBS). Encapsulation and release of a hydrophobic drug can be effectively triggered by a pH-stimulus. Meanwhile drug-loaded nanocarriers show enhanced efficacy towards cancer cells compared to plain drug.
Collapse
Affiliation(s)
- Elizabeth Ellis
- Department of Chemistry, University College London (UCL), UK
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Xu F, Wu D, Huang Y, Wei H, Gao Y, Feng X, Yan D, Mai Y. Multi-Dimensional Self-Assembly of a Dual-Responsive ABC Miktoarm Star Terpolymer. ACS Macro Lett 2017; 6:426-430. [PMID: 35610847 DOI: 10.1021/acsmacrolett.7b00031] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This letter reports the first 2D self-assembly of ABC miktoarm star terpolymers based on dual-responsive polycaprolactone-arm-poly(N-isopropylacrylamide)-arm-poly(2-dimethylaminoethyl methacrylate) (μ-CID), which self-assembled into multilayer nanosheets comprising polycaprolactone single crystals in tetrahydrofuran (THF)/methanol mixed solvents. Interestingly, the nanosheets showed pH-responsive morphological transitions in aqueous solutions, yielding multidimensional assemblies, including 2D hexagonal aggregates, patchy nanofibrils, and patchy vesicles, at different pH values. The nanosheets also exhibited thermoresponsive transition to spherical patchy micelles at a temperature above the lower critical solution temperature (LCST) of the poly(N-isopropylacrylamide) block. This study offers a novel system for fundamental study on the self-assembly of miktoarm star terpolymers.
Collapse
Affiliation(s)
- Fugui Xu
- School
of Chemistry and Chemical Engineering, School of Electronic Information
and Electrical Engineering, Shanghai Key Laboratory of Electrical
Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Dongdong Wu
- School
of Chemistry and Chemical Engineering, School of Electronic Information
and Electrical Engineering, Shanghai Key Laboratory of Electrical
Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yinjuan Huang
- School
of Chemistry and Chemical Engineering, School of Electronic Information
and Electrical Engineering, Shanghai Key Laboratory of Electrical
Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Hao Wei
- School
of Chemistry and Chemical Engineering, School of Electronic Information
and Electrical Engineering, Shanghai Key Laboratory of Electrical
Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yong Gao
- College
of Chemistry and Key Lab of Environment Friendly Chemistry and Application
in Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan Province, China
| | - Xinliang Feng
- School
of Chemistry and Chemical Engineering, School of Electronic Information
and Electrical Engineering, Shanghai Key Laboratory of Electrical
Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Deyue Yan
- School
of Chemistry and Chemical Engineering, School of Electronic Information
and Electrical Engineering, Shanghai Key Laboratory of Electrical
Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yiyong Mai
- School
of Chemistry and Chemical Engineering, School of Electronic Information
and Electrical Engineering, Shanghai Key Laboratory of Electrical
Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
25
|
Liu H, Zhang J, Dai W, Zhao Y. Synthesis and self-assembly of a dual-responsive monocleavable ABCD star quaterpolymer. Polym Chem 2017. [DOI: 10.1039/c7py01638g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A modularly synthesized core-functionalized PEG-PSt-PCL-PAA miktoarm star can self-assemble into hollow nanocapsules that are sensitive to pH/redox stimuli and H-bond/polyion complexation.
Collapse
Affiliation(s)
- Huanhuan Liu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Jian Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Wenxue Dai
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Youliang Zhao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| |
Collapse
|
26
|
Eissa AM, Wilson P, Chen C, Collins J, Walker M, Haddleton DM, Cameron NR. Reversible surface functionalisation of emulsion-templated porous polymers using dithiophenol maleimide functional macromolecules. Chem Commun (Camb) 2017; 53:9789-9792. [DOI: 10.1039/c7cc03811a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Reversible, easy-to-monitor approach to the surface functionalisation of thiol–acrylate polyHIPEs that can be utilised in a wide range of applications.
Collapse
Affiliation(s)
- A. M. Eissa
- School of Engineering
- University of Warwick
- Coventry
- UK
- Department of Materials Science and Engineering
| | - P. Wilson
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | - C. Chen
- School of Engineering
- University of Warwick
- Coventry
- UK
| | - J. Collins
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | - M. Walker
- Department of Physics
- University of Warwick
- Coventry
- UK
| | | | - N. R. Cameron
- School of Engineering
- University of Warwick
- Coventry
- UK
- Department of Materials Science and Engineering
| |
Collapse
|
27
|
Tang Z, Wilson P, Kempe K, Chen H, Haddleton DM. Reversible Regulation of Thermoresponsive Property of Dithiomaleimide-Containing Copolymers via Sequential Thiol Exchange Reactions. ACS Macro Lett 2016; 5:709-713. [PMID: 35614659 DOI: 10.1021/acsmacrolett.6b00310] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The facile and efficient functionalization of thermoresponsive polymers based on sequential, reversible thiol-exchange reactions is reported. Well-defined dithiomaleimide-containing polymers have been synthesized via Cu(0)-mediated SET-LRP and characterized by 1H NMR and size exclusion chromatography (SEC). The resulting thermosensitive copolymers were subsequently reacted with various thiols to demonstrate the applicability of the strategy, and the thiol-exchange reaction was found to be very fast and efficient. The cloud point of the prepared copolymers can be continually and reversibly tuned, and desirable functionality can be dynamically exchanged upon sequential addition of functional thiol reagents. Through the substitution by thioglucose, an ON-to-OFF switch for fluorescence of the copolymers along with the generation of a glycopolymer was achieved.
Collapse
Affiliation(s)
- Zengchao Tang
- Department
of Chemistry, University of Warwick, CV4 7AL Coventry, United Kingdom
- College
of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, PR China
| | - Paul Wilson
- Department
of Chemistry, University of Warwick, CV4 7AL Coventry, United Kingdom
| | - Kristian Kempe
- Department
of Chemistry, University of Warwick, CV4 7AL Coventry, United Kingdom
| | - Hong Chen
- College
of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, PR China
| | - David M. Haddleton
- Department
of Chemistry, University of Warwick, CV4 7AL Coventry, United Kingdom
- College
of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, PR China
| |
Collapse
|