1
|
Vrbata D, Kereiche S, Kalíková K, Uchman M. Stimuli-responsive multifunctional micelles of ABC vs. ACB triblock terpolymers using reversible covalent bonding of phenylboronic acid: controlled synthesis, self-assembly and model drug release. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
2
|
Garcia EA, Pessoa D, Herrera-Alonso M. Oxidative instability of boronic acid-installed polycarbonate nanoparticles. SOFT MATTER 2020; 16:2473-2479. [PMID: 32043107 DOI: 10.1039/c9sm02499a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Oxidative stress, caused by the overproduction of reactive oxygen species (ROS), is often observed in degenerative and/or metabolic diseases, tumors, and inflamed tissues. Boronic acids are emerging as a unique class of responsive biomaterials targeting ROS because of their reactivity toward H2O2. Herein, we examine the oxidative reactivity of nanoparticles from a boronic acid-installed polycarbonate. The extent of oxidation under different concentrations of H2O2 was tracked by the change in fluorescence intensity of an encapsulated solvatochromic reporter dye, demonstrating their sensitivity to biologically-relevant concentrations of hydrogen peroxide. Oxidation-triggered particle destabilization, however, was shown to be highly dependent on the concentration of the final oxidized polymer product, and was only achieved if it fell below polymer critical micelle concentration. Our results indicate that these nanocarriers serve as an excellent dual pH/H2O2 responsive vehicle for drug delivery.
Collapse
Affiliation(s)
- Elena Alexandra Garcia
- Department of Chemical and Biological Engineering, School of Advanced Materials Discovery, Colorado State University, Fort Collins, Colorado 80523, USA.
| | | | | |
Collapse
|
3
|
Kubo T, Scheutz GM, Latty TS, Sumerlin BS. Synthesis of functional and boronic acid-containing aliphatic polyesters via Suzuki coupling. Chem Commun (Camb) 2019; 55:5655-5658. [PMID: 31025997 DOI: 10.1039/c9cc01975h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Imparting additional functionalities along the side chains of polyesters remains a challenge due to the laborious nature of monomer synthesis and limited polymer functionalization methods for polyesters. To address this challenge, a carbon-carbon bond forming reaction was studied to introduce pendent functional groups in polylactides. This functionalization approach was applied for preparing boronic acid-containing polylactides, an unexplored class of polymers.
Collapse
Affiliation(s)
- Tomohiro Kubo
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611, USA.
| | | | | | | |
Collapse
|
4
|
Tan JPK, Voo ZX, Lim S, Venkataraman S, Ng KM, Gao S, Hedrick JL, Yang YY. Effective encapsulation of apomorphine into biodegradable polymeric nanoparticles through a reversible chemical bond for delivery across the blood-brain barrier. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 17:236-245. [PMID: 30738234 DOI: 10.1016/j.nano.2019.01.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/24/2022]
Abstract
Apomorphine (AMP, used for treatment of Parkinson's disease) is susceptible to oxidation. Its oxidized products are toxic. To overcome these issues, AMP was conjugated to phenylboronic acid-functionalized polycarbonate through pH-sensitive covalent boronate ester bond between phenylboronic acid and catechol in AMP. Various conditions (use of base as catalyst, reaction time and initial drug loading) were optimized to achieve high AMP conjugation degree and mitigate polymer degradation caused by amine in AMP. Pyridine accelerated AMP conjugation and yielded ~74% conjugation within 5 min. Tertiary amine groups were incorporated to polycarbonate, and served as efficient catalyst (~80% conjugation within 5 min). AMP-conjugated polymer self-assembled into nanoparticles. AMP release from the nanoparticles was minimal at pH 7.4, while in acidic environment (endolysosomes) rapid release was observed. Encapsulation protected AMP from oxidization. The nanoparticles were significantly accumulated in the brain tissue after intranasal delivery. These AMP-loaded nanoparticles have potential use for treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Jeremy Pang Kern Tan
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore 138669, Singapore
| | - Zhi Xiang Voo
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore 138669, Singapore; IBM Almaden Research Center, San Jose, California, United States
| | - Shaun Lim
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore 138669, Singapore
| | - Shrinivas Venkataraman
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore 138669, Singapore
| | - Kai Ming Ng
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore 138669, Singapore
| | - Shujun Gao
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore 138669, Singapore
| | - James L Hedrick
- IBM Almaden Research Center, San Jose, California, United States
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore 138669, Singapore.
| |
Collapse
|
5
|
Yan B, Hou J, Wei C, Xiao Y, Lang M, Huang F. Synthesis of main chain sulfur-containing aliphatic polycarbonates by organocatalytic ring-opening polymerization of macrocyclic carbonates. Polym Chem 2019. [DOI: 10.1039/c9py01205b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first application of organocatalysts is reported to achieve highly active and living ring-opening polymerization (ROP) of thioether-based macrocyclic carbonates for preparing well-defined main chain thioether functional APCs.
Collapse
Affiliation(s)
- Bingkun Yan
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Jiaqian Hou
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Chao Wei
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Yan Xiao
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Meidong Lang
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Farong Huang
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| |
Collapse
|
6
|
Becker G, Wurm FR. Functional biodegradable polymers via ring-opening polymerization of monomers without protective groups. Chem Soc Rev 2018; 47:7739-7782. [PMID: 30221267 DOI: 10.1039/c8cs00531a] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Biodegradable polymers are of current interest and chemical functionality in such materials is often demanded in advanced biomedical applications. Functional groups often are not tolerated in the polymerization process of ring-opening polymerization (ROP) and therefore protective groups need to be applied. Advantageously, several orthogonally reactive functions are available, which do not demand protection during ROP. We give an insight into available, orthogonally reactive cyclic monomers and the corresponding functional synthetic and biodegradable polymers, obtained from ROP. Functionalities in the monomer are reviewed, which are tolerated by ROP without further protection and allow further post-modification of the corresponding chemically functional polymers after polymerization. Synthetic concepts to these monomers are summarized in detail, preferably using precursor molecules. Post-modification strategies for the reported functionalities are presented and selected applications highlighted.
Collapse
Affiliation(s)
- Greta Becker
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | | |
Collapse
|
7
|
Wei C, Xu Y, Yan B, Hou J, Du Z, Lang M. Well-Defined Selenium-Containing Aliphatic Polycarbonates via Lipase-Catalyzed Ring-Opening Polymerization of Selenic Macrocyclic Carbonate Monomer. ACS Macro Lett 2018; 7:336-340. [PMID: 35632908 DOI: 10.1021/acsmacrolett.8b00039] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The synthesis of well-defined, biodegradable selenium-containing polymers remains a formidable challenge in polymer chemistry. Herein, a selenic cyclic carbonate dimer monomer (MSe) was developed to generate well-defined, biodegradable aliphatic polycarbonates with selenide functionality on the backbone. The monomer was synthesized via the intermolecular cyclization of di(1-hydroxyethylene) selenide and diphenyl carbonate with lipase CA as catalysts in a mass of anhydrous toluene with very dilute monomer concentration. Then living ring-opening polymerization (ROP) was executed by solution method using the same lipase CA as catalysts. Similarly, the copolymerizations with commercial trimethylene carbonate (TMC) generated random copolymers demonstrated by 13C NMR, regulating the density of selenium functional groups. The resulting polymers exhibited a living polymerization characteristic, as evidenced by polymerization kinetics, predictable molecular weights, narrow molecular-weight distribution, and controlled copolymer compositions. Using hydrophilic macroinitiators (PEG), amphiphilic di/triblock copolymers could be obtained, suggesting their potential as controlled drug delivery system (DDS) and hydrogel scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Chao Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials and Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yue Xu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials and Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Bingkun Yan
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials and Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiaqian Hou
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials and Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhengzhen Du
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials and Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Meidong Lang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials and Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
8
|
Sun J, Fransen S, Yu X, Kuckling D. Synthesis of pH-cleavable poly(trimethylene carbonate)-based block copolymers via ROP and RAFT polymerization. Polym Chem 2018. [DOI: 10.1039/c8py00606g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
pH-responsive PDMAAm-b-PTMC block copolymers and their particles were prepared by combining ROP and RAFT polymerization using imine-containing macro-RAFT CTA.
Collapse
Affiliation(s)
- Jingjiang Sun
- Paderborn University
- Chemistry Department
- D-33098 Paderborn
- Germany
| | - Stefan Fransen
- Paderborn University
- Chemistry Department
- D-33098 Paderborn
- Germany
| | - Xiaoqian Yu
- Paderborn University
- Chemistry Department
- D-33098 Paderborn
- Germany
| | - Dirk Kuckling
- Paderborn University
- Chemistry Department
- D-33098 Paderborn
- Germany
| |
Collapse
|
9
|
|
10
|
Fukushima K, Inoue Y, Haga Y, Ota T, Honda K, Sato C, Tanaka M. Monoether-Tagged Biodegradable Polycarbonate Preventing Platelet Adhesion and Demonstrating Vascular Cell Adhesion: A Promising Material for Resorbable Vascular Grafts and Stents. Biomacromolecules 2017; 18:3834-3843. [PMID: 28972745 DOI: 10.1021/acs.biomac.7b01210] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We developed a biodegradable polycarbonate that demonstrates antithrombogenicity and vascular cell adhesion via organocatalytic ring-opening polymerization of a trimethylene carbonate (TMC) analogue bearing a methoxy group. The monoether-tagged polycarbonate demonstrates a platelet adhesion property that is 93 and 89% lower than those of poly(ethylene terephthalate) and polyTMC, respectively. In contrast, vascular cell adhesion properties of the polycarbonate are comparable to those controls, indicating a potential for selective cell adhesion properties. This difference in the cell adhesion property is well associated with surface hydration, which affects protein adsorption and denaturation. Fibrinogen is slightly denatured on the monoether-tagged polycarbonate, whereas fibronectin is highly activated to expose the RGD motif for favorable vascular cell adhesion. The surface hydration, mainly induced by the methoxy side chain, also contributes to slowing the enzymatic degradation. Consequently, the polycarbonate exhibits decent blood compatibility, vascular cell adhesion properties, and biodegradability, which is promising for applications in resorbable vascular grafts and stents.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|