1
|
Xue T, Guntermann R, Biewald A, Blätte D, Medina DD, Hartschuh A, Bein T. Interpenetrated Donor-Acceptor Heterojunctions in 2D Conjugated Dibenzo[ g, p]chrysene-Based Kagome Covalent Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48085-48093. [PMID: 39193985 DOI: 10.1021/acsami.4c09286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Dibenzo[g,p]chrysene can be viewed as a constrained propeller-shaped tetraphenylethylene with reduced curvature and has been utilized to construct dual-pore kagome covalent organic frameworks (COFs) with tightly packed two-dimensional (2D) layers owing to its rigid and more planar structural characteristics. Here, we introduce 2D COFs based on the node 4,4',4″,4‴-(dibenzo[g,p]chrysene-2,7,10,15-tetraphenyl)tetraamine (DBCTPTA) featuring extended conjugation compared to the dibenzo[g,p]chrysene-3,6,11,14-tetraamine (DBCTA) node. We establish two exceptionally crystalline imine-linked 2D COFs with a hexagonal dual-pore kagome structure based on the DBCTPTA core. The newly synthesized thienothiophene (TT) and benzodithiophene (BDT)-based DBCTPTA COFs show a tight stacking behavior between adjacent layers. Furthermore, we obtained an unprecedented, interpenetrated electron-donor/acceptor host-guest system with an electron-donating BDT DBCTPTA COF synthesized in situ with the soluble fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) serving as molecular acceptor. The BDT DBCTPTA COF@PCBM film shows a much shorter amplitude-averaged PL lifetime of 7 ± 2 ps compared to 30 ± 4 ps of the BDT DBCTPTA COF film, indicating the light-induced charge transfer process. The successful in situ formation of interpenetrated donor-acceptor heterojunctions within 2D COFs offers a promising strategy for establishing D-A heterojunctions in diverse framework materials with open channel systems.
Collapse
Affiliation(s)
- Tianhao Xue
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 5-13, 81377 Munich, Germany
| | - Roman Guntermann
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 5-13, 81377 Munich, Germany
| | - Alexander Biewald
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 5-13, 81377 Munich, Germany
| | - Dominic Blätte
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 5-13, 81377 Munich, Germany
| | - Dana D Medina
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 5-13, 81377 Munich, Germany
| | - Achim Hartschuh
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 5-13, 81377 Munich, Germany
| | - Thomas Bein
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 5-13, 81377 Munich, Germany
| |
Collapse
|
2
|
Paliwal S, Li W, Liu P, Govind Rajan A. Generalized Model for Inhibitor-Modulated 2D Polymer Growth to Understand the Controlled Synthesis of Covalent Organic Frameworks. JACS AU 2024; 4:2862-2873. [PMID: 39211631 PMCID: PMC11350570 DOI: 10.1021/jacsau.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 09/04/2024]
Abstract
Two-dimensional (2D) polymers, also known as 2D covalent organic frameworks (COFs), are increasingly finding use in applications such as membrane separations, catalysis, and energy conversion. Current research is focused on the development of new synthesis routes for COFs and obtaining a mechanistic understanding of the growth process to control it in a better manner. In this regard, synthesis methods such as reversible polycondensation termination use monofunctional inhibitor species to achieve a controlled growth rate for COFs. However, so far, the role of the inhibitors in modulating the kinetics of COF growth is inadequately understood. In this work, inspired by the Mayo-Lewis framework, we develop a generalized kinetic model to describe the synthesis of a 2D COF monolayer. Our model involves six parameters corresponding to the rate constants of attachment and detachment of monomer and inhibitor species, as well as enhancement factors that quantify the effect of the local coordination environment of the attaching/detaching species on the reaction kinetics. We measure the inhibitor concentration-dependent growth kinetics of the COF experimentally and fit our model to experimental yield data, with the same parameters working across multiple inhibitor concentrations. As the growth process is inherently stochastic, we use this knowledge to develop a comprehensive kinetic Monte Carlo (KMC) simulation of 2D COF synthesis, demonstrating that scaled rate constants are required in the inherently local KMC simulations rather than those obtained from the global kinetic model. The KMC simulations point to an inverse flake size-inhibitor concentration relationship, in agreement with experiments, indicating that flake sizes could be precisely regulated by changing the inhibitor concentrations. Overall, our work promises to improve the understanding of 2D COF synthesis and will help in controlling the growth process to obtain the desired flake size distribution and product morphology.
Collapse
Affiliation(s)
- Shubhani Paliwal
- Department
of Chemical Engineering, Indian Institute
of Science, Bengaluru, Karnataka 560012, India
- Department
of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.
| | - Wei Li
- State
Key Lab of Chemical Engineering, College of Chemical and Biological
Engineering, Zhejiang University, Hangzhou 310027, China
- Institute
of Zhejiang University − Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Pingwei Liu
- State
Key Lab of Chemical Engineering, College of Chemical and Biological
Engineering, Zhejiang University, Hangzhou 310027, China
- Institute
of Zhejiang University − Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Ananth Govind Rajan
- Department
of Chemical Engineering, Indian Institute
of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
3
|
Sargazi M, Kaykhaii M. Magnetic Covalent Organic Frameworks-Fundamentals and Applications in Analytical Chemistry. Crit Rev Anal Chem 2024; 54:1200-1226. [PMID: 35939351 DOI: 10.1080/10408347.2022.2107872] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Magnetic covalent organic frameworks are new emerging materials which, besides many other applications, have found unique applications in analytical chemistry as separating media and adsorbents. They have outstanding features such as special morphology, chemical and thermal stability, high adsorption capacity, good magnetic response, high specific surface area, uniform pore size distribution, strong π-π interactions with analytes and high reusability that makes reported studies on their properties and applications increased in the recent years. After discussing the methods of synthesis of MCOFs with different geometries that cause their special physic-chemical properties, this review focuses on their high potential which has been exhibited in various applications in extraction and pre-concentration of different analytes such as organic compounds, heavy metal ions and biological samples. The article also highlights the applications of magnetic covalent organic frameworks in other chemical analysis such as adsorbent and being used in sensors.
Collapse
Affiliation(s)
| | - Massoud Kaykhaii
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| |
Collapse
|
4
|
Xue R, Liu Y, Wu X, Lv Y, Guo J, Yang GY. Covalent Organic Frameworks Meet Titanium Oxide. ACS NANO 2024. [PMID: 39028766 DOI: 10.1021/acsnano.4c06845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
In order to expand the applicability of materials and improve their performance, the combined use of different materials has increasingly been explored. Among these materials, inorganic-organic hybrid materials often exhibit properties superior to those of single materials. Covalent organic frameworks (COFs) are famous crystalline porous materials constructed by organic building blocks linked by covalent bonds. In recent years, the combination of COFs with other materials has shown interesting properties in diverse fields, and the composite materials of COFs and TiO2 have been investigated more and more. These two outstanding materials are combined through covalent bonding, physical mixing, and other methods and exhibit excellent performance in various fields, including photocatalysis, electrocatalysis, sensors, separation, and energy storage and conversion. In this Review, the current preparation methods and applications of COF-TiO2 hybrid materials are introduced in detail, and their future development and possible problems are discussed and prospected, which is of great significance for related research. It is believed that these interesting hybrid materials will show greater application value as research progresses.
Collapse
Affiliation(s)
- Rui Xue
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
| | - Yinsheng Liu
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Xueyan Wu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
| | - Yan Lv
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
| | - Jixi Guo
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
5
|
He N, Zou Y, Chen C, Tan M, Zhang Y, Li X, Jia Z, Zhang J, Long H, Peng H, Yu K, Jiang B, Han Z, Liu N, Li Y, Ma L. Constructing ordered and tunable extrinsic porosity in covalent organic frameworks via water-mediated soft-template strategy. Nat Commun 2024; 15:3896. [PMID: 38719899 PMCID: PMC11079003 DOI: 10.1038/s41467-024-48160-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
As one of the most attractive methods for the synthesis of ordered hierarchically porous crystalline materials, the soft-template method has not appeared in covalent organic frameworks (COFs) due to the incompatibility of surfactant self-assembly and guided crystallization process of COF precursors in the organic phase. Herein, we connect the soft templates to the COF backbone through ionic bonds, avoiding their crystallization incompatibilities, thus introducing an additional ordered arrangement of soft templates into the anionic microporous COFs. The ion exchange method is used to remove the templates while maintaining the high crystallinity of COFs, resulting in the construction of COFs with ordered hierarchically micropores/mesopores, herein named OHMMCOFs (OHMMCOF-1 and OHMMCOF-2). OHMMCOFs exhibit significantly enhanced functional group accessibility and faster mass transfer rate. The extrinsic porosity can be adjusted by changing the template length, concentration, and ratio. Cationic guanidine-based COFs (OHMMCOF-3) are also constructed using the same method, which verifies the scalability of the soft-template strategy. This work provides a path for constructing ordered and tunable extrinsic porosity in COFs with greatly improved mass transfer efficiency and functional group accessibility.
Collapse
Affiliation(s)
- Ningning He
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, PR China
| | - Yingdi Zou
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, PR China
| | - Cheng Chen
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, PR China
| | - Minghao Tan
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, PR China
| | - Yingdan Zhang
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, PR China
| | - Xiaofeng Li
- Institute of Materials, China Academy of Engineering Physics, Mianyang, 621907, PR China
| | - Zhimin Jia
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, PR China
| | - Jie Zhang
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, PR China
| | - Honghan Long
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, PR China
| | - Haiyue Peng
- Institute of Nuclear Science and Technology, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Sichuan University, Chengdu, 610064, PR China
| | - Kaifu Yu
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, PR China
| | - Bo Jiang
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, PR China
| | - Ziqian Han
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, PR China
| | - Ning Liu
- Institute of Nuclear Science and Technology, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Sichuan University, Chengdu, 610064, PR China
| | - Yang Li
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, PR China.
| | - Lijian Ma
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, PR China.
| |
Collapse
|
6
|
Shahzad U, Marwani HM, Saeed M, Asiri AM, Repon MR, Althomali RH, Rahman MM. Progress and Perspectives on Promising Covalent-Organic Frameworks (COFs) Materials for Energy Storage Capacity. CHEM REC 2024; 24:e202300285. [PMID: 37986206 DOI: 10.1002/tcr.202300285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/23/2023] [Indexed: 11/22/2023]
Abstract
In recent years, a new class of highly crystalline advanced permeable materials covalent-organic frameworks (COFs) have garnered a great deal of attention thanks to their remarkable properties, such as their large surface area, highly ordered pores and channels, and controllable crystalline structures. The lower physical stability and electrical conductivity, however, prevent them from being widely used in applications like photocatalytic activities and innovative energy storage and conversion devices. For this reason, many studies have focused on finding ways to improve upon these interesting materials while also minimizing their drawbacks. This review article begins with a brief introduction to the history and major milestones of COFs development before moving on to a comprehensive exploration of the various synthesis methods and recent successes and signposts of their potential applications in carbon dioxide (CO2 ) sequestration, supercapacitors (SCs), lithium-ion batteries (LIBs), and hydrogen production (H2 -energy). In conclusion, the difficulties and potential of future developing with highly efficient COFs ideas for photocatalytic as well as electrochemical energy storage applications are highlighted.
Collapse
Affiliation(s)
- Umer Shahzad
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hadi M Marwani
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohsin Saeed
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Abdullah M Asiri
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Md Reazuddin Repon
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentų 56, LT-51424, Kaunas, Lithuania
- Laboratory of Plant Physiology, Nature Research Centre, Akademijos g. 2, 08412, Vilnius, Lithuania
- Department of Textile Engineering, Daffodil International University, Dhaka, 1216, Bangladesh
| | - Raed H Althomali
- Department of Chemistry, College of Art and Science, Prince Sattam bin Abdulaziz University, Wadi Al-Dawasir, 11991, Saudi Arabia
| | - Mohammed M Rahman
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
7
|
Devi T, Saleh NM, Kamarudin NHN, Roslan NJ, Jalil R, Hamid HA. Efficient adsorption of organic pollutants phthalates and bisphenol A (BPA) utilizing magnetite functionalized covalent organic frameworks (MCOFs): A promising future material for industrial applications. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115706. [PMID: 37992639 DOI: 10.1016/j.ecoenv.2023.115706] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/26/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
The utilization of phthalates and bisphenol A (BPA) as the major component in plastic and its derivative industry has raised concerns among the public due to the harmful effects caused by these organic pollutants. These pollutants are found to exhibit unique physicochemical properties that allow the pollutants to have prolonged existence in the environment, thus causing damage to the environment. Since phthalates and bisphenol A are used in a variety of industrial applications, the industry must recover these compounds from its water before releasing the pollutants into the environment. As a result, these materials have a promising future in industrial applications. Therefore, the discovery of new quick and reliable abatement technologies is important to ensure that these organic pollutants can be detected and removed from the water sources. This review highlights the use of the adsorption method to remove phthalates and BPA from water sources by employing novel modified adsorbent magnetite functionalized covalent organic frameworks (MCOFs). MCOFs is a new class of porous materials that have demonstrated promising features in a variety of applications due to their adaptable structures, significant surface areas, configurable porosity, and customizable chemistry. The structural attributes, functional design strategies, and specialized for environmental applications before offering some closing thoughts and suggestions for further research were discussed in this paper in addition to developing an innovative solution for the industry to the accessibility for clean water.
Collapse
Affiliation(s)
- Tanusha Devi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, The National University of Malaysia (UKM), 43600 UKM Bangi, Selangor, Malaysia
| | - Noorashikin Md Saleh
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, The National University of Malaysia (UKM), 43600 UKM Bangi, Selangor, Malaysia.
| | - Nur Hidayatul Nazirah Kamarudin
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, The National University of Malaysia (UKM), 43600 UKM Bangi, Selangor, Malaysia
| | - Nursyafiqah Jori Roslan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, The National University of Malaysia (UKM), 43600 UKM Bangi, Selangor, Malaysia
| | - Rafidah Jalil
- Forest Products Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor, Malaysia
| | - Husna Abdul Hamid
- Unison Nutraceuticals Sdn. Bhd., No.13, Jln. TU 52, Tasek Utama Industrial Estate, Ayer Keroh, 75450 Melaka, Malaysia
| |
Collapse
|
8
|
Bai Y, Wang C, Lu W, Xie C, Song W, Zhang Z, Wang J. Exploration of the Performance and Mechanism of Uranium Adsorption by a Covalent Organic Framework Possessing the Thiazole Structure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16163-16173. [PMID: 37922413 DOI: 10.1021/acs.langmuir.3c02448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
This study prepared an active 2-D covalent organic skeleton (HDU-27) with a network structure, high crystallinity, considerable specific surface area, excellent pore structure, and excellent stability. Kinetic studies manifested that HDU-27 could effectively capture uranium as monolayer chemisorption within a very short kinetic equilibrium time (10 min). In particular, the temperature significantly and positively impacted the uranium adsorption performance of HDU-27. At 298, 313, and 328 K, the adsorption capacity reached 269.2, 488.8, and 576.2 mg g-1, respectively, suggesting the potential to treat high-temperature industrial wastewater containing uranium. HDU-27 had high stability and recoverability with an adsorption efficiency of 98.5% after five adsorption-desorption cycles. According to X-ray photoelectron spectroscopy, the mechanism of interaction between U(VI) and HDU-27 was mainly the chelation of UO22+ by the N atom in the thiazole structure and the strong coordination of the O atom in the keto structure with UO22+. More excitingly, HDU-27 could chemically reduce soluble U(VI) to insoluble U(IV) and release binding sites for the adsorption of additional U(VI). In conclusion, HDU-27 has outstanding potential for uranium adsorption from industrial wastewater containing uranium.
Collapse
Affiliation(s)
- Yuxuan Bai
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Chen Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Wen Lu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Chengde Xie
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Wenhui Song
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Zhixiong Zhang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Jianjun Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| |
Collapse
|
9
|
Gnanasekaran L, Manoj D, Rajendran S, Gracia F, Jalil AA, Chen WH, Soto-Moscoso M, Gracia-Pinilla MA. Mesoporous NiO/Ni 2O 3 nanoflowers for favorable visible light photocatalytic degradation of 4-chlorophenol. ENVIRONMENTAL RESEARCH 2023; 236:116790. [PMID: 37517483 DOI: 10.1016/j.envres.2023.116790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/01/2023]
Abstract
The present study highlights the treatment of industrial effluent, which is one of the most life-threatening factors. Herein, for the first time, two types of NiO (green and black) photocatalysts were prepared by facile chemical precipitation and thermal decomposition methods separately. The synthesized NiO materials were demonstrated with various instrumental techniques for finding their characteristics. The X-ray diffraction studies (XRD) and X-ray photoelectron spectroscopy (XPS) revealed the presence of Ni2O3 in black NiO material. The transmission electron microscopic (TEM) images engrained the nanospherical shaped green NiO and nanoflower shaped black NiO/Ni2O3 materials. Further, the band gap of black NiO nanoflower was 2.9 eV compared to green NiO having 3.8 eV obtained from UV-vis spectroscopy. Meanwhile, both NiO catalysts were employed for visible light degradation, which yields a 60.3% efficiency of black NiO comparable to a 4.3% efficiency of green NiO within 180 min of exposure. The higher degrading efficiency of black NiO was due to the presence of Ni2O3 and the development of pores, which was evident from the Barrett-Joyner-Halenda (BJH) method. Type IV hysteresis was observed in black NiO nanoflowers with high surface area and pore size measurements. This black NiO/Ni2O3 synthesized from the thermal decomposition method has promoted better photocatalytic degradation of 4-chlorophenol upon exposure to visible light and is applicable for other industrial pollutants.
Collapse
Affiliation(s)
- Lalitha Gnanasekaran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile; University Centre for Research & Development, Department of Mechanical Engineering, Chandigarh University, Mohali, Punjab, 140413, India
| | - Devaraj Manoj
- Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamil Nadu, India; Centre for Material Chemistry, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamil Nadu, India
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile.
| | - F Gracia
- Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Beauchef 851, 6th Floor, Santiago, Chile
| | - A A Jalil
- Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM Johor Bahru, Johor, Malaysia; Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung, 411, Taiwan
| | | | - M A Gracia-Pinilla
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Físico-Matemáticas, Av. Universidad, Cd. Universitaria, San Nicolás de los Garza, NL, Mexico; University of Twente, Mesoscale Chemical System, MESA+ Institute, Enschede 7500AE, The Netherlands
| |
Collapse
|
10
|
Benkhaled BT, Chaix A, Gomri C, Buys S, Namar N, Sehoulia N, Jadhav R, Richard J, Lichon L, Nguyen C, Gary-Bobo M, Semsarilar M. Novel Biocompatible Trianglamine Networks for Efficient Iodine Capture. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42942-42953. [PMID: 37647569 DOI: 10.1021/acsami.3c08061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Herein, we report for the first time a biocompatible cross-linked trianglamine (Δ) network for the efficient iodine removal from the vapor phase, water, and seawater. In the vapor phase, the cross-linked network could capture 6 g g-1 of iodine, ranking among the most performant materials for iodine vapor capture. In the liquid phase, this cross-linked network is also capable of capturing iodine at high rates from aqueous media (water and seawater). This network displayed fast adsorption kinetics, and they are fully recyclable. This study reveals the high affinity of iodine for the intrinsic cavity of the trianglamine. The synthesized materials are extremely interesting since they are environmentally friendly and inexpensive and the synthesis could easily be scaled up to be used as the material of choice in response to accidents in the nuclear industry.
Collapse
Affiliation(s)
| | - Arnaud Chaix
- IEM, Univ Montpellier, CNRS, ENSCM, Institut Européen des Membranes, Montpellier 34095, France
| | - Chaimaa Gomri
- IEM, Univ Montpellier, CNRS, ENSCM, Institut Européen des Membranes, Montpellier 34095, France
| | - Sébastien Buys
- IEM, Univ Montpellier, CNRS, ENSCM, Institut Européen des Membranes, Montpellier 34095, France
| | - Nabil Namar
- IEM, Univ Montpellier, CNRS, ENSCM, Institut Européen des Membranes, Montpellier 34095, France
| | - Nadine Sehoulia
- IEM, Univ Montpellier, CNRS, ENSCM, Institut Européen des Membranes, Montpellier 34095, France
| | - Rohitkumar Jadhav
- IEM, Univ Montpellier, CNRS, ENSCM, Institut Européen des Membranes, Montpellier 34095, France
| | - Jason Richard
- IEM, Univ Montpellier, CNRS, ENSCM, Institut Européen des Membranes, Montpellier 34095, France
| | - Laure Lichon
- IBMM, Univ Montpellier, CNRS, ENSCM, Institut des Biomolécules Max Mousseron, Montpellier 34095, France
| | - Christophe Nguyen
- IBMM, Univ Montpellier, CNRS, ENSCM, Institut des Biomolécules Max Mousseron, Montpellier 34095, France
| | - Magali Gary-Bobo
- IBMM, Univ Montpellier, CNRS, ENSCM, Institut des Biomolécules Max Mousseron, Montpellier 34095, France
| | - Mona Semsarilar
- IEM, Univ Montpellier, CNRS, ENSCM, Institut Européen des Membranes, Montpellier 34095, France
| |
Collapse
|
11
|
Yang J, Huang L, You J, Yamauchi Y. Magnetic Covalent Organic Framework Composites for Wastewater Remediation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301044. [PMID: 37156746 DOI: 10.1002/smll.202301044] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/03/2023] [Indexed: 05/10/2023]
Abstract
Covalent organic frameworks (COFs) with high specific surface area, tailored structure, easy functionalization, and excellent chemical stability have been extensively exploited as fantastic materials in various fields. However, in most cases, COFs prepared in powder form suffer from the disadvantages of tedious operation, strong tendency to agglomerate, and poor recyclability, greatly limiting their practical application in environmental remediation. To tackle these issues, the fabrication of magnetic COFs (MCOFs) has attracted tremendous attention. In this review, several reliable strategies for the fabrication of MCOFs are summarized. In addition, the recent application of MCOFs as outstanding adsorbents for the removal of contaminants including toxic metal ions, dyes, pharmaceuticals and personal care products, and other organic pollutants is discussed. Moreover, in-depth discussions regarding the structural parameters affecting the practical potential of MCOFs are highlighted in detail. Finally, the current challenges and future prospects of MCOFs in this field are provided with the expectation to boost their practical application.
Collapse
Affiliation(s)
- Juan Yang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, LiuFang Campus, No. 206, Donghu New & High Technology Development Zone Wuhan, Guanggu 1st Road, Wuhan, Hubei, 430205, P. R. China
| | - Lijin Huang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388 Lumo Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Jungmok You
- Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, South Korea
| | - Yusuke Yamauchi
- Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, South Korea
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| |
Collapse
|
12
|
Mohajer F, Mohammadi Ziarani G, Badiei A, Iravani S, Varma RS. Recent advances in covalent organic frameworks (COFs) for wound healing and antimicrobial applications. RSC Adv 2023; 13:8136-8152. [PMID: 36922952 PMCID: PMC10009765 DOI: 10.1039/d2ra07194k] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/04/2023] [Indexed: 03/16/2023] Open
Abstract
Covalent organic frameworks (COFs) are crystal-like organic structures such as cartography buildings prepared from appropriately pre-designed construction block precursors. Moreover, after the expansion of the first COF in 2005, numerous researchers have been developing different materials for versatile applications such as sensing/imaging, cancer theranostics, drug delivery, tissue engineering, wound healing, and antimicrobials. COFs have harmonious pore size, enduring porosity, thermal stability, and low density. In addition, a wide variety of functional groups could be implanted during their construction to provide desired constituents, including antibodies and enzymes. The reticular organic frameworks comprising porous hybrid materials connected via a covalent bond have been studied for improving wound healing and dressing applications due to their long-standing antibacterial properties. Several COF-based systems have been planned for controlled drug delivery with wound healing purposes, targeting drugs to efficiently inhibit the growth of pathogenic microorganisms at the wound spot. In addition, COFs can be deployed for combinational therapy using photodynamic and photothermal antibacterial therapy along with drug delivery for healing chronic wounds and bacterial infections. Herein, the most recent advancements pertaining to the applications of COF-based systems against bacterial infections and for wound healing are considered, concentrating on challenges and future guidelines.
Collapse
Affiliation(s)
- Fatemeh Mohajer
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University Tehran Iran
| | | | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran Iran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences Isfahan 81746-73461 Iran
| | - Rajender S Varma
- Institute for Nanomaterials, Advanced Technologies and Innovation (CxI), Technical University of Liberec (TUL) Studentská 1402/2 Liberec 1 461 17 Czech Republic
| |
Collapse
|
13
|
Hao M, Liu Y, Wu W, Wang S, Yang X, Chen Z, Tang Z, Huang Q, Wang S, Yang H, Wang X. Advanced porous adsorbents for radionuclides elimination. ENERGYCHEM 2023:100101. [DOI: doi.org/10.1016/j.enchem.2023.100101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
|
14
|
Gu H, Liu X, Wang S, Chen Z, Yang H, Hu B, Shen C, Wang X. COF-Based Composites: Extraordinary Removal Performance for Heavy Metals and Radionuclides from Aqueous Solutions. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 260:23. [DOI: doi.org/10.1007/s44169-022-00018-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/30/2022] [Indexed: 06/25/2023]
|
15
|
Ninakanti R, Dingenen F, Borah R, Peeters H, Verbruggen SW. Plasmonic Hybrid Nanostructures in Photocatalysis: Structures, Mechanisms, and Applications. Top Curr Chem (Cham) 2022; 380:40. [PMID: 35951165 DOI: 10.1007/s41061-022-00390-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/27/2022] [Indexed: 11/26/2022]
Abstract
(Sun)Light is an abundantly available sustainable source of energy that has been used in catalyzing chemical reactions for several decades now. In particular, studies related to the interaction of light with plasmonic nanostructures have been receiving increased attention. These structures display the unique property of localized surface plasmon resonance, which converts light of a specific wavelength range into hot charge carriers, along with strong local electromagnetic fields, and/or heat, which may all enhance the reaction efficiency in their own way. These unique properties of plasmonic nanoparticles can be conveniently tuned by varying the metal type, size, shape, and dielectric environment, thus prompting a research focus on rationally designed plasmonic hybrid nanostructures. In this review, the term "hybrid" implies nanomaterials that consist of multiple plasmonic or non-plasmonic materials, forming complex configurations in the geometry and/or at the atomic level. We discuss the synthetic techniques and evolution of such hybrid plasmonic nanostructures giving rise to a wide variety of material and geometric configurations. Bimetallic alloys, which result in a new set of opto-physical parameters, are compared with core-shell configurations. For the latter, the use of metal, semiconductor, and polymer shells is reviewed. Also, more complex structures such as Janus and antenna reactor composites are discussed. This review further summarizes the studies exploiting plasmonic hybrids to elucidate the plasmonic-photocatalytic mechanism. Finally, we review the implementation of these plasmonic hybrids in different photocatalytic application domains such as H2 generation, CO2 reduction, water purification, air purification, and disinfection.
Collapse
Affiliation(s)
- Rajeshreddy Ninakanti
- Sustainable Energy, Air and Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Fons Dingenen
- Sustainable Energy, Air and Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Rituraj Borah
- Sustainable Energy, Air and Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Hannelore Peeters
- Sustainable Energy, Air and Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Sammy W Verbruggen
- Sustainable Energy, Air and Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| |
Collapse
|
16
|
A critical review of covalent organic frameworks-based sorbents in extraction methods. Anal Chim Acta 2022; 1224:340207. [DOI: 10.1016/j.aca.2022.340207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 12/15/2022]
|
17
|
Niu L, Zhao X, Tang Z, Wu F, Wang J, Lei Q, Liang W, Wang X, Teng M, Zhang X. One-Step mechanochemical preparation of magnetic covalent organic framework for the degradation of organic pollutants by heterogeneous and homogeneous Fenton-like synergistic reaction. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Zhang W, Zuo H, Cheng Z, Shi Y, Guo Z, Meng N, Thomas A, Liao Y. Macroscale Conjugated Microporous Polymers: Controlling Versatile Functionalities Over Several Dimensions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104952. [PMID: 35181945 DOI: 10.1002/adma.202104952] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Since discovered in 2007, conjugated microporous polymers (CMPs) have been developed for numerous applications including gas adsorption, sensing, organic and photoredox catalysis, energy storage, etc. While featuring abundant micropores, the structural rigidity derived from CMPs' stable π-conjugated skeleton leads to insolubility and thus poor processability, which severely limits their applicability, e.g., in CMP-based devices. Hence, the development of CMPs whose structure can not only be controlled on the micro- but also on the macroscale have attracted tremendous interest. In conventional synthesis procedures, CMPs are obtained as powders, but in recent years various bottom-up synthesis strategies have been developed, which yield CMPs as thin films on substrates or as hybrid materials, allowing to span length scales from individual conjugated monomers to micro-/macrostructures. This review surveys recent advances on the construction of CMPs into macroscale structures, including membranes, films, aerogels, sponges, and other architectures. The focus is to describe the underlying fabrication techniques and the implications which follow from the macroscale morphologies, involving new chemistry and physics in such materials for applications like molecular separation/filtration/adsorption, energy storage and conversion, photothermal transformation, sensing, or catalysis.
Collapse
Affiliation(s)
- Weiyi Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Hongyu Zuo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zhonghua Cheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yu Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zhengjun Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Nan Meng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Arne Thomas
- Technische Universität Berlin, Department of Chemistry, Functional Materials, Sekretariat BA 2, Hardenbergstr. 40, 10623, Berlin, Germany
| | - Yaozu Liao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
19
|
Huang Y, Hao X, Ma S, Wang R, Wang Y. Covalent organic framework-based porous materials for harmful gas purification. CHEMOSPHERE 2022; 291:132795. [PMID: 34748797 DOI: 10.1016/j.chemosphere.2021.132795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/23/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Covalent organic frameworks (COFs) with 2D or 3D networks are a class of novel porous crystalline materials, and have attracted more and more attention in the field of gas purification owing to their attractive physicochemical properties, such as high surface area, adjustable functionality and structure, low density, and high stability. However, few systematic reviews about the application statuses of COFs in gas purification are available, especially about non-CO2 harmful gases. In this review, the recent progress of COFs about the capture, catalysis, and detection of common harmful gases (such as CO2, NOx, SO2, H2S, NH3 and volatile pollutants) were comprehensively discussed. The design strategies of COF functional materials from porosity adjustment to surface functionalization (including bottom-up approach, post-synthetic approach, and blending with other materials) for certain application were summarized in detail. Furthermore, the faced challenges and future research directions of COFs in the harmful gas treatment were clearly proposed to inspire the development of COFs.
Collapse
Affiliation(s)
- Yan Huang
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China.
| | - Xiaoqian Hao
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Shuanglong Ma
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China.
| | - Rui Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Yazhou Wang
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China
| |
Collapse
|
20
|
Long Z, Shi C, Wu C, Yuan L, Qiao H, Wang K. Heterostructure Fe 2O 3 nanorods@imine-based covalent organic framework for long cycling and high-rate lithium storage. NANOSCALE 2022; 14:1906-1920. [PMID: 35045148 DOI: 10.1039/d1nr07209a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Fe2O3 as an anode for lithium-ion batteries has attracted intense attention because of its high theoretical capacity, natural abundance, and good safety. However, the inferior cycling stability, low-rate performance, and limited composite varieties hinder the application of Fe2O3-based materials. In this work, an Fe2O3@COF-LZU1 (FO@LZU1) anode was prepared via an imine-based covalent organic framework (COF-LZU1) covering on the exterior surface of Fe2O3 after rational optimization. With its unique heterostructure, the COF-LZU1 layer not only effectively alleviated the volume expansion during cycling but also improved the charge-transfer capability because of the π-conjugated system. Moreover, the organic functional group (CN, benzene ring) for COF-LZU1 provided more redox-active sites for Li+ storage. Under the contributions of both Fe2O3 nanorods and COF-LZU1, the FO@LZU150% exhibited an ultrahigh initial capacity and long-term cycling performance with initial discharge capacities of 2143 and 2171 mA h g-1 after 300 cycles under 0.1 A g-1, and rate performance of 1310 and 501 mA h g-1 at 0.3 and 3 A g-1, respectively. In addition, a high retention capacity of 1185 mA h g-1 was achieved at 1 A g-1 after 500 cycles. Furthermore, a full-cell with the FO@LZU150% anode and LiCoO2 cathode exhibited superior cycling and rate performance, which still maintained a reversible capacity of 260 mA h g-1 after 200 cycles even at a current density of 1 A g-1. The proposed strategy offers a new perspective for exploring the high-rate capability and designability of Fe2O3-based electrode materials.
Collapse
Affiliation(s)
- Zhiwen Long
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Chu Shi
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Caiqin Wu
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Luhan Yuan
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Hui Qiao
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Keliang Wang
- Fraunhofer USA, Inc., Center Midwest, Division for Coatings and Diamond Technologies, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
21
|
Ali N, Hassan Riead MM, Bilal M, Yang Y, Khan A, Ali F, Karim S, Zhou C, Wenjie Y, Sher F, Iqbal HMN. Adsorptive remediation of environmental pollutants using magnetic hybrid materials as platform adsorbents. CHEMOSPHERE 2021; 284:131279. [PMID: 34175517 DOI: 10.1016/j.chemosphere.2021.131279] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023]
Abstract
Effective separation and remediation of environmentally hazardous pollutants are burning areas of research because of a constant increase in environmental pollution problems. An extensive number of emerging contaminants in the environmental matrices result in serious health consequences in animals, humans, and plants, even at trace levels. Therefore, it is of paramount significance to quantify these undesirable pollutants, even at a very low concentration, from the natural environment. Magnetic solid-phase extraction (MSPE) has recently achieved huge attention because of its strong magnetic domain and easy separation through an external magnetic field compared with simple solid-phase extraction. Therefore, MSPE appeared the most promising technique for removing and pre-concentration of emerging pollutants at trace level. Compared to the normal solid-phase extraction, MSPE as magnetic hybrid adsorbents offers the unique advantages of distinct nanomaterials and magnetic hybrid materials. It can exhibit efficient dispersion and rapid recycling when applying to a very complex matrix. This review highlights the possible environmental applications of magnetic hybrid nanoscale materials as effective MSPE sorbents to remediate a diverse range of environmentally toxic pollutants. We believe this study tends to evoke a variety of research thrust that may lead to novel remediation approaches in the forthcoming years.
Collapse
Affiliation(s)
- Nisar Ali
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu Province, PR China.
| | - Md Mahamudul Hassan Riead
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu Province, PR China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Yong Yang
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu Province, PR China
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Farman Ali
- Department of Chemistry, Hazara University, KPK, Mansehra, 21300, Pakistan
| | - Shafiul Karim
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu Province, PR China
| | - Cao Zhou
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu Province, PR China
| | - Ye Wenjie
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu Province, PR China
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey, 64849, Mexico.
| |
Collapse
|
22
|
Bhakare MA, Lokhande KD, Dhumal PS, Bondarde MP, Some S. Multifunctional heteroatom doped sustainable carbon nanocomposite for rapid removal of persistent organic pollutant and iodine from water. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
23
|
Tang J, Su C, Shao Z. Covalent Organic Framework (COF)-Based Hybrids for Electrocatalysis: Recent Advances and Perspectives. SMALL METHODS 2021; 5:e2100945. [PMID: 34928017 DOI: 10.1002/smtd.202100945] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/25/2021] [Indexed: 06/14/2023]
Abstract
Developing highly efficient electrocatalysts for renewable energy conversion and environment purification has long been a research priority in the past 15 years. Covalent organic frameworks (COFs) have emerged as a burgeoning family of organic materials internally connected by covalent bonds and have been explored as promising candidates in electrocatalysis. The reticular geometry of COFs can provide an excellent platform for precise incorporation of the active sites in the framework, and the fine-tuning hierarchical porous architectures can enable efficient accessibility of the active sites and mass transportation. Considerable advances are made in rational design and controllable fabrication of COF-based organic-inorganic hybrids, that containing organic frameworks and inorganic electroactive species to induce novel physicochemical properties, and take advantage of the synergistic effect for targeted electrocatalysis with the hybrid system. Branches of COF-based hybrids containing a diversity form of metals, metal compounds, as well as metal-free carbons have come to the fore as highly promising electrocatalysts. This review aims to provide a systematic and profound understanding of the design principles behind the COF-based hybrids for electrocatalysis applications. Particularly, the structure-activity relationship and the synergistic effects in the COF-based hybrid systems are discussed to shed some light on the future design of next-generation electrocatalysts.
Collapse
Affiliation(s)
- Jiayi Tang
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA6102, Australia
| | - Chao Su
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA6102, Australia
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
24
|
Evans AM, Strauss MJ, Corcos AR, Hirani Z, Ji W, Hamachi LS, Aguilar-Enriquez X, Chavez AD, Smith BJ, Dichtel WR. Two-Dimensional Polymers and Polymerizations. Chem Rev 2021; 122:442-564. [PMID: 34852192 DOI: 10.1021/acs.chemrev.0c01184] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Synthetic chemists have developed robust methods to synthesize discrete molecules, linear and branched polymers, and disordered cross-linked networks. However, two-dimensional polymers (2DPs) prepared from designed monomers have been long missing from these capabilities, both as objects of chemical synthesis and in nature. Recently, new polymerization strategies and characterization methods have enabled the unambiguous realization of covalently linked macromolecular sheets. Here we review 2DPs and 2D polymerization methods. Three predominant 2D polymerization strategies have emerged to date, which produce 2DPs either as monolayers or multilayer assemblies. We discuss the fundamental understanding and scope of each of these approaches, including: the bond-forming reactions used, the synthetic diversity of 2DPs prepared, their multilayer stacking behaviors, nanoscale and mesoscale structures, and macroscale morphologies. Additionally, we describe the analytical tools currently available to characterize 2DPs in their various isolated forms. Finally, we review emergent 2DP properties and the potential applications of planar macromolecules. Throughout, we highlight achievements in 2D polymerization and identify opportunities for continued study.
Collapse
Affiliation(s)
- Austin M Evans
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael J Strauss
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Amanda R Corcos
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zoheb Hirani
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Woojung Ji
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Leslie S Hamachi
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Xavier Aguilar-Enriquez
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Anton D Chavez
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Brian J Smith
- Department of Chemistry, Bucknell University,1 Dent Drive, Lewisburg, Pennsylvania 17837, United States
| | - William R Dichtel
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
25
|
Kumar S, Kulkarni VV, Jangir R. Covalent‐Organic Framework Composites: A Review Report on Synthesis Methods. ChemistrySelect 2021. [DOI: 10.1002/slct.202102435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Shubham Kumar
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology, Ichchanath Surat 395 007 Gujarat INDIA
| | - Vihangraj V. Kulkarni
- Faculty of Environmental Engineering Department of Civil Engineering National Institute of Technology Silchar Silchar 788010 Assam INDIA
| | - Ritambhara Jangir
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology, Ichchanath Surat 395 007 Gujarat, INDIA
| |
Collapse
|
26
|
State of the art two-dimensional covalent organic frameworks: Prospects from rational design and reactions to applications for advanced energy storage technologies. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214152] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
Xu T, Li J, Jia M, Li G, Liu Y. Contiguous layer based metal-organic framework with conjugated π-electron ligand for high iodine capture. Dalton Trans 2021; 50:13096-13102. [PMID: 34581332 DOI: 10.1039/d1dt00947h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a novel 3-dimensional (3D) Cu(II) metal-organic framework (MOF), [Cu3(μ2-O)2(p-tr2Ph)2(HCOO)][NO3]·3DMF·3H2O (compound 1), which is constructed by directly interlocking regionalized hollow two-dimensional (2D) layers, has been conceived and solvothermally synthesized. Such a distinctive regionalized pore system effectively maintains the uniformity of the pore structure, isolates the counterions and bridging ligands in the partition layer, and endows compound 1 with high porosity. In consequence, compound 1 exhibits excellent adsorption ability of iodine in cyclohexane. The removal efficiency in cyclohexane solution (0.01 mol L-1) can reach up to 80% in 8 min, and the absorption ability towards iodine can reach about 1.15 g g-1. Moreover, iodine can also be controllably released in ethanol. The release rate was up to 4 × 10-5 mol L-1 min-1. Furthermore, compound 1 also showed prominent recyclability due to the high stability, and the maximum sorption amount could be retained after 3 cycles. This study paves a new way towards opening up MOFs' potential application in capturing radioactive iodine to protect the environment.
Collapse
Affiliation(s)
- Tong Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Jiantang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Mingwei Jia
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Guanghua Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Yunling Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| |
Collapse
|
28
|
Emmerling ST, Germann LS, Julien PA, Moudrakovski I, Etter M, Friščić T, Dinnebier RE, Lotsch BV. In situ monitoring of mechanochemical covalent organic framework formation reveals templating effect of liquid additive. Chem 2021. [DOI: 10.1016/j.chempr.2021.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Zhang L, Li J, Zhang H, Liu Y, Cui Y, Jin F, Wang K, Liu G, Zhao Y, Zeng Y. High iodine uptake in two-dimensional covalent organic frameworks. Chem Commun (Camb) 2021; 57:5558-5561. [PMID: 33969842 DOI: 10.1039/d1cc00737h] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Two 2-dimensional covalent organic frameworks (COFs; TJNU-203 and TJNU-204) with high crystallinity and large specific surface area are rationally fabricated using a three-connected distorted building block and linear linkers. The two COFs show high iodine uptake (5.885 g g-1 for TJNU-203 and 5.335 g g-1 for TJNU-204) on account of physical-chemical adsorption, which make them one among the best porous materials for iodine adsorption.
Collapse
Affiliation(s)
- Lingyan Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Ministry of Education), College of Chemistry, Tianjin Normal University, Tianjin, 300387, P. R. China.
| | - Jinheng Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Ministry of Education), College of Chemistry, Tianjin Normal University, Tianjin, 300387, P. R. China.
| | - Huixin Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Ministry of Education), College of Chemistry, Tianjin Normal University, Tianjin, 300387, P. R. China.
| | - Yu Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Ministry of Education), College of Chemistry, Tianjin Normal University, Tianjin, 300387, P. R. China. and Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore.
| | - Yumeng Cui
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Ministry of Education), College of Chemistry, Tianjin Normal University, Tianjin, 300387, P. R. China.
| | - Fenchun Jin
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Ministry of Education), College of Chemistry, Tianjin Normal University, Tianjin, 300387, P. R. China.
| | - Ke Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Ministry of Education), College of Chemistry, Tianjin Normal University, Tianjin, 300387, P. R. China.
| | - Guiyan Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Ministry of Education), College of Chemistry, Tianjin Normal University, Tianjin, 300387, P. R. China.
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore.
| | - Yongfei Zeng
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Ministry of Education), College of Chemistry, Tianjin Normal University, Tianjin, 300387, P. R. China.
| |
Collapse
|
30
|
Liu Y, Zhou W, Teo WL, Wang K, Zhang L, Zeng Y, Zhao Y. Covalent-Organic-Framework-Based Composite Materials. Chem 2020. [DOI: 10.1016/j.chempr.2020.08.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
31
|
Jarju JJ, Lavender AM, Espiña B, Romero V, Salonen LM. Covalent Organic Framework Composites: Synthesis and Analytical Applications. Molecules 2020; 25:E5404. [PMID: 33218211 PMCID: PMC7699276 DOI: 10.3390/molecules25225404] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 01/25/2023] Open
Abstract
In the recent years, composite materials containing covalent organic frameworks (COFs) have raised increasing interest for analytical applications. To date, various synthesis techniques have emerged that allow for the preparation of crystalline and porous COF composites with various materials. Herein, we summarize the most common methods used to gain access to crystalline COF composites with magnetic nanoparticles, other oxide materials, graphene and graphene oxide, and metal nanoparticles. Additionally, some examples of stainless steel, polymer, and metal-organic framework composites are presented. Thereafter, we discuss the use of these composites for chromatographic separation, environmental remediation, and sensing.
Collapse
Affiliation(s)
- Jenni J. Jarju
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal; (J.J.J.); (A.M.L.); (B.E.)
| | - Ana M. Lavender
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal; (J.J.J.); (A.M.L.); (B.E.)
| | - Begoña Espiña
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal; (J.J.J.); (A.M.L.); (B.E.)
| | - Vanesa Romero
- Department of Food and Analytical Chemistry, Marine Research Center (CIM), University of Vigo, As Lagoas, Marcosende, 36310 Vigo, Spain
| | - Laura M. Salonen
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal; (J.J.J.); (A.M.L.); (B.E.)
| |
Collapse
|
32
|
Liu F, Nie C, Dong Q, Ma Z, Liu W, Tong M. AgI modified covalent organic frameworks for effective bacterial disinfection and organic pollutant degradation under visible light irradiation. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122865. [PMID: 32470769 DOI: 10.1016/j.jhazmat.2020.122865] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 06/11/2023]
Abstract
Covalent organic frameworks (COFs) have recently been demonstrated to have great application potentials in water treatment. Their photocatalytic performance towards bacterial disinfection and organic pollutant degradation yet has seldom been investigated. In this study, AgI modified COFs (using 2,5-diaminopyridine and 1,3,5-triformylphloroglucinol as precursors) (COF-PD/AgI) were fabricated and their applications to photocatalytically disinfect bacteria and degrade organic pollutants were investigated. COF-PD/AgI exhibited effective photocatalytic performance towards Escherichia coli disinfection and organic pollutant (Rhodamine B and acetaminophen) degradation. SEM images were employed to investigate cell disinfection process, while theoretical density functional theory (DFT) calculation and intermediates determination were used to elucidate organic pollutant degradation processes. Scavenger experiments, ESR spectra and chemical probes experiments confirmed O2-, h+ and OH played important roles in the photocatalytic process. The formation of dual-band Z-scheme heterojunction improved photocatalytic performance. COF-PD/AgI remained high photocatalytic activity in the four consecutive cycles and could serve as a promising photocatalyst for water purification.
Collapse
Affiliation(s)
- Fuyang Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Chenyi Nie
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Qiqi Dong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Zhiyao Ma
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China.
| |
Collapse
|
33
|
Advances in magnetic porous organic frameworks for analysis and adsorption applications. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116048] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Wang Y, An L, Zhang Y, Zhang X, Gao Z, Zhang Y. Improving iodine adsorption performance of porous organic polymers by rational decoration with nitrogen heterocycle. J Appl Polym Sci 2020. [DOI: 10.1002/app.50054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yu‐Ting Wang
- School of Materials Science and Engineering, Tianjin Key Lab on Metal and Molecule‐Based Material Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University Tianjin China
| | - Lian‐Cai An
- School of Materials Science and Engineering, Tianjin Key Lab on Metal and Molecule‐Based Material Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University Tianjin China
| | - Yun‐Qin Zhang
- School of Materials Science and Engineering, Tianjin Key Lab on Metal and Molecule‐Based Material Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University Tianjin China
| | - Xin‐Kun Zhang
- School of Materials Science and Engineering, Tianjin Key Lab on Metal and Molecule‐Based Material Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University Tianjin China
| | - Zhu‐Feng Gao
- School of Materials Science and Engineering, Tianjin Key Lab on Metal and Molecule‐Based Material Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University Tianjin China
| | - Ying‐Hui Zhang
- School of Materials Science and Engineering, Tianjin Key Lab on Metal and Molecule‐Based Material Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University Tianjin China
| |
Collapse
|
35
|
Geng T, Ma L, Chen G, Zhang C, Zhang W, Niu Q. Fluorescent conjugated microporous polymers containing pyrazine moieties for adsorbing and fluorescent sensing of iodine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:20235-20245. [PMID: 32239401 DOI: 10.1007/s11356-019-06534-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 09/12/2019] [Indexed: 06/11/2023]
Abstract
Two kinds of fluorescent conjugated microporous polymers containing pyrazine moieties were prepared by the polymerization reaction of 2,5-di-triphenylamine-yl-pyrazine (DTPAPz) and N,N,N',N'-tetrapheny-2,5-(diazyl) pyrazine (TDPz) with 2,4,6-trichloro-1,3,5-triazine (TCT) through Friedel-Crafts reaction using the methanesulfonic acid as a catalysts. Both CMPs have high thermal stability and decomposition temperature reaches above 596 and 248 °C under nitrogen atmosphere, respectively. By right of porous morphology and electron-donating nitrogen, as well as electron-rich π-conjugated structures, the adsorption performance for iodine vapor on the CMPs is very excellent, which can reach 441% and 312%. In addition, fluorescence studies showed that the two CMPs exhibited high fluorescence sensitivity to electron-deficient iodine, o-nitrophenol (o-NP), and picric acid (PA) via fluorescence quenching.
Collapse
Affiliation(s)
- Tongmou Geng
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, China.
| | - Lanzhen Ma
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, China
| | - Guofeng Chen
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, China
| | - Can Zhang
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, China
| | - Weiyong Zhang
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, China
| | - Qingyuan Niu
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, People's Republic of China
| |
Collapse
|
36
|
Fan H, Peng M, Strauss I, Mundstock A, Meng H, Caro J. High-Flux Vertically Aligned 2D Covalent Organic Framework Membrane with Enhanced Hydrogen Separation. J Am Chem Soc 2020; 142:6872-6877. [DOI: 10.1021/jacs.0c00927] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Hongwei Fan
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstraße 3A, 30167 Hannover, Germany
| | - Manhua Peng
- Institut für Festkörperphysik, Leibniz Universität Hannover, Appelstrasse 2, 30167 Hannover, Germany
| | - Ina Strauss
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstraße 3A, 30167 Hannover, Germany
| | - Alexander Mundstock
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstraße 3A, 30167 Hannover, Germany
| | - Hong Meng
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jürgen Caro
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstraße 3A, 30167 Hannover, Germany
| |
Collapse
|
37
|
Zhao L, Liu H, Du Y, Liang X, Wang W, Zhao H, Li W. An ionic liquid as a green solvent for high potency synthesis of 2D covalent organic frameworks. NEW J CHEM 2020. [DOI: 10.1039/d0nj01478h] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The PXRD and simulated profiles of PMDA–TAPA (a) and TFP–EB (b).
Collapse
Affiliation(s)
- Limin Zhao
- School of Materials Science and Engineering
- Liaocheng University
- Liaocheng 252059
- P. R. China
| | - Huimin Liu
- School of Materials Science and Engineering
- Liaocheng University
- Liaocheng 252059
- P. R. China
| | - Yue Du
- School of Materials Science and Engineering
- Liaocheng University
- Liaocheng 252059
- P. R. China
| | - Xiang Liang
- School of Materials Science and Engineering
- Liaocheng University
- Liaocheng 252059
- P. R. China
| | - Wenju Wang
- School of Energy and Power Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Hui Zhao
- School of Materials Science and Engineering
- Liaocheng University
- Liaocheng 252059
- P. R. China
| | - Wenzhi Li
- School of Materials Science and Engineering
- Liaocheng University
- Liaocheng 252059
- P. R. China
| |
Collapse
|
38
|
Li J, Jing X, Li Q, Li S, Gao X, Feng X, Wang B. Bulk COFs and COF nanosheets for electrochemical energy storage and conversion. Chem Soc Rev 2020; 49:3565-3604. [DOI: 10.1039/d0cs00017e] [Citation(s) in RCA: 314] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The current advances, structure-property relationship and future perspectives in covalent organic frameworks (COFs) and their nanosheets for electrochemical energy storage (EES) and conversion (EEC) are summarized.
Collapse
Affiliation(s)
- Jie Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- Key Laboratory of Cluster Science
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
| | - Xuechun Jing
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- Key Laboratory of Cluster Science
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
| | - Qingqing Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- Key Laboratory of Cluster Science
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
| | - Siwu Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- Key Laboratory of Cluster Science
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
| | - Xing Gao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- Key Laboratory of Cluster Science
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
| | - Xiao Feng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- Key Laboratory of Cluster Science
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
| | - Bo Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- Key Laboratory of Cluster Science
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
| |
Collapse
|
39
|
Zuo H, Li Y, Liao Y. Europium Ionic Liquid Grafted Covalent Organic Framework with Dual Luminescence Emissions as Sensitive and Selective Acetone Sensor. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39201-39208. [PMID: 31573792 DOI: 10.1021/acsami.9b14795] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chronical exposure to volatile acetone could damage to the liver and kidney or nerve, and cause inflammation. Design of novel materials for the sensitive and selective detection of acetone is of great importance. We report on a europium (Eu)-containing covalent organic framework (DhaTab-COF-EuIL) synthesized via a Schiff-base reaction between 2,5-dihydroxyterephthalaldehyde (Dha) and 1,3,5-tris(4-aminophenyl)benzene (Tab) followed by an ionic liquid (IL)-modification and then ion displacement. The resulting DhaTab-COF-EuIL is microporous and crystalline, and not only presents unique dual luminescence emissions of Eu3+ and COF material, but also exhibits remarkable luminescence quenching toward acetone. Especially, the DhaTab-COF-EuIL could be a novel luminescent sensor, displaying high sensitivity and selectivity for the detection of volatile acetone with a limit of detection down to 1%.
Collapse
Affiliation(s)
- Hongyu Zuo
- School of Materials Science and Engineering , University of Shanghai for Science and Technology , Shanghai 200093 , China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering , Donghua University , Shanghai 201620 , China
| | - Ying Li
- School of Materials Science and Engineering , University of Shanghai for Science and Technology , Shanghai 200093 , China
| | - Yaozu Liao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering , Donghua University , Shanghai 201620 , China
| |
Collapse
|
40
|
Jiang SY, Gan SX, Zhang X, Li H, Qi QY, Cui FZ, Lu J, Zhao X. Aminal-Linked Covalent Organic Frameworks through Condensation of Secondary Amine with Aldehyde. J Am Chem Soc 2019; 141:14981-14986. [DOI: 10.1021/jacs.9b08017] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Shu-Yan Jiang
- Key Laboratory
of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules,
Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shi-Xian Gan
- Key Laboratory
of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules,
Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Shanghai Engineering
Research Center of Green Energy Chemical Engineering, Shanghai Normal University, Shanghai 200234, China
| | - Xi Zhang
- Key Laboratory
of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules,
Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Hui Li
- Shanghai Engineering
Research Center of Green Energy Chemical Engineering, Shanghai Normal University, Shanghai 200234, China
| | - Qiao-Yan Qi
- Key Laboratory
of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules,
Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Fu-Zhi Cui
- Key Laboratory
of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules,
Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jian Lu
- Key Laboratory
of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules,
Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xin Zhao
- Key Laboratory
of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules,
Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
41
|
Romero V, Fernandes SPS, Rodriguez-Lorenzo L, Kolen'ko YV, Espiña B, Salonen LM. Recyclable magnetic covalent organic framework for the extraction of marine biotoxins. NANOSCALE 2019; 11:6072-6079. [PMID: 30869704 DOI: 10.1039/c9nr00388f] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A novel procedure for the preparation of magnetic covalent organic frameworks (COFs) is reported. In situ functionalization of Fe3O4 with dopamine rapidly afforded amino-functionalized magnetic nanoparticles, which after decoration with a COF building block and subsequent COF growth gave access to magnetic composite mTpBD-Me2. The optimized synthesis conditions yielded crystalline and superparamagnetic material with no loss in surface area as compared to bulk COF. The composite material was employed for the first time in magnetic solid-phase extraction of marine biotoxins from seawater with high efficiency, where calculated maximum adsorption capacities of 812 mg g-1 and 830 mg g-1 were found for okadaic acid (OA) and dinophysistoxin-1 (DTX-1), respectively, corresponding to an increase of ∼500-fold for OA and ∼300-fold for DTX-1 as compared to the commonly used non-magnetic macroporous resins. Nearly quantitative desorption efficiency of both biotoxins was obtained using 2-propanol as solvent, rendering the composite materials recyclable with merely minor losses in adsorption capacity after five consecutive cycles of adsorption/desorption. In addition, retention of crystallinity after the adsorption cycles highlights the stability of the composite in seawater. These results illustrate the great efficiency of the novel material in biotoxin adsorption and show great promise for its application in environmental monitoring programs.
Collapse
Affiliation(s)
- Vanesa Romero
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal.
| | | | | | | | | | | |
Collapse
|
42
|
El‐Mahdy AFM, Hung Y, Mansoure TH, Yu H, Chen T, Kuo S. A Hollow Microtubular Triazine‐ and Benzobisoxazole‐Based Covalent Organic Framework Presenting Sponge‐Like Shells That Functions as a High‐Performance Supercapacitor. Chem Asian J 2019; 14:1429-1435. [DOI: 10.1002/asia.201900296] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Ahmed F. M. El‐Mahdy
- Department of Materials and Optoelectronic ScienceCenter of Crystal ResearchNational Sun Yat-Sen University Kaohsiung 80424 Taiwan
- Chemistry DepartmentFaculty of ScienceAssiut University Assiut 71516 Egypt
| | - Ying‐Hui Hung
- Department of Materials and Optoelectronic ScienceCenter of Crystal ResearchNational Sun Yat-Sen University Kaohsiung 80424 Taiwan
| | - Tharwat Hassan Mansoure
- Chemistry DepartmentFaculty of ScienceAssiut University Assiut 71516 Egypt
- Institute of ChemistryAcademic Sinica 128 Academic Road, Sec. 2 Nankang Taipei 11529 Taiwan
- Nanoscience and Technology ProgramTaiwan International Graduate ProgramAcademic Sinica and National Taiwan University Taipei 11529 Taiwan
- Department of ChemistryNational Taiwan University Taipei 106 Taiwan
| | - Hsiao‐Hua Yu
- Institute of ChemistryAcademic Sinica 128 Academic Road, Sec. 2 Nankang Taipei 11529 Taiwan
- Nanoscience and Technology ProgramTaiwan International Graduate ProgramAcademic Sinica and National Taiwan University Taipei 11529 Taiwan
- Department of ChemistryNational Taiwan University Taipei 106 Taiwan
- Center for Emergent Functional Matter ScienceNational Chiao Tung University Hsinchu 30010 Taiwan
| | - Tao Chen
- Ningbo Institute of Material Technology and EngineeringChinese Academy of Science Zhongguan West Road 1219 315201 Ningbo China
| | - Shiao‐Wei Kuo
- Department of Materials and Optoelectronic ScienceCenter of Crystal ResearchNational Sun Yat-Sen University Kaohsiung 80424 Taiwan
- Department of Medicinal and Applied ChemistryKaohsiung Medical University Kaohsiung 807 Taiwan
| |
Collapse
|
43
|
Fernandes SPS, Romero V, Espiña B, Salonen LM. Tailoring Covalent Organic Frameworks To Capture Water Contaminants. Chemistry 2019; 25:6461-6473. [DOI: 10.1002/chem.201806025] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Indexed: 01/23/2023]
Affiliation(s)
- Soraia P. S. Fernandes
- International Iberian Nanotechnology Laboratory (INL) Av. Mestre José Veiga Braga 4715-330 Portugal
- Department of Chemistry, QOPNAUniversity of Aveiro 3810-193 Aveiro Portugal
| | - Vanesa Romero
- International Iberian Nanotechnology Laboratory (INL) Av. Mestre José Veiga Braga 4715-330 Portugal
- Department of Analytical and Food Chemistry, Faculty of ChemistryUniversity of Vigo As Lagoas-Marcosende 36310 Vigo Spain
| | - Begoña Espiña
- International Iberian Nanotechnology Laboratory (INL) Av. Mestre José Veiga Braga 4715-330 Portugal
| | - Laura M. Salonen
- International Iberian Nanotechnology Laboratory (INL) Av. Mestre José Veiga Braga 4715-330 Portugal
| |
Collapse
|
44
|
Huang X, Wang N, Li F, Zhu X, Liao K, Chan V, Zhang L. Molecular engineering of supercapacitor electrodes with monodispersed N-doped carbon nanoporous spheres. NEW J CHEM 2019. [DOI: 10.1039/c9nj03810h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Water phase synthesis of polytriazine nanospheres as the high-nitrogen content carbon spheres precursor for a high-performance EDLC electrode.
Collapse
Affiliation(s)
- Xinhua Huang
- School of Materials Science and Engineering
- Anhui University of Science and Technology
- Huainan
- P. R. China
| | - Nuoya Wang
- School of Materials Science and Engineering
- Anhui University of Science and Technology
- Huainan
- P. R. China
| | - Fei Li
- School of Materials Science and Engineering
- Anhui University of Science and Technology
- Huainan
- P. R. China
| | - Xingxing Zhu
- School of Materials Science and Engineering
- Anhui University of Science and Technology
- Huainan
- P. R. China
| | - Kin Liao
- Department of Aerospace Engineering/Mechanical Engineering
- Khalifa University
- Abu Dhabi
- UAE
| | - Vincent Chan
- Department of Biomedical Engineering
- Khalifa University
- Abu Dhabi
- UAE
| | - Lidong Zhang
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- P. R. China
| |
Collapse
|
45
|
Zhang S, Yang Q, Wang C, Luo X, Kim J, Wang Z, Yamauchi Y. Porous Organic Frameworks: Advanced Materials in Analytical Chemistry. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1801116. [PMID: 30581707 PMCID: PMC6299720 DOI: 10.1002/advs.201801116] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/30/2018] [Indexed: 04/14/2023]
Abstract
Porous organic frameworks (POFs), a general term for covalent-organic frameworks (COFs), covalent triazine frameworks (CTFs), porous aromatic frameworks (PAFs), etc., are constructed from organic building monomers with strong covalent bonds and have generated great interest among researchers. The remarkable features, such as large surface areas, permanent porosity, high thermal and chemical stability, and convenient functionalization, promote the great potential of POFs in diverse applications. A critical overview of the important development in the design and synthesis of COFs, CTFs, and PAFs is provided and their state-of-the-art applications in analytical chemistry are discussed. POFs and their functional composites have been explored as advanced materials in "turn-off" or "turn-on" fluorescence detection and novel stationary phases for chromatographic separation, as well as a promising adsorbent for sample preparation methods. In addition, the prospects for the synthesis and utilization of POFs in analytical chemistry are also presented. These prospects can offer an outlook and reference for further study of the applications of POFs.
Collapse
Affiliation(s)
- Shuaihua Zhang
- Department of ChemistryCollege of ScienceHebei Agricultural UniversityBaoding071001HebeiChina
| | - Qian Yang
- Department of ChemistryCollege of ScienceHebei Agricultural UniversityBaoding071001HebeiChina
| | - Chun Wang
- Department of ChemistryCollege of ScienceHebei Agricultural UniversityBaoding071001HebeiChina
| | - Xiliang Luo
- Key Laboratory of Sensor Analysis of Tumor Marker (Ministry of Education)Shandong Key Laboratory of Biochemical Analysis, and Key Laboratory of Analytical Chemistry for Life Science in Universities of ShandongCollege of Chemistry and Molecular EngineeringQingdao University of Science and TechnologyQingdao266042China
| | - Jeonghun Kim
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneQLD4072Australia
| | - Zhi Wang
- Department of ChemistryCollege of ScienceHebei Agricultural UniversityBaoding071001HebeiChina
| | - Yusuke Yamauchi
- Key Laboratory of Sensor Analysis of Tumor Marker (Ministry of Education)Shandong Key Laboratory of Biochemical Analysis, and Key Laboratory of Analytical Chemistry for Life Science in Universities of ShandongCollege of Chemistry and Molecular EngineeringQingdao University of Science and TechnologyQingdao266042China
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneQLD4072Australia
- International Center for Materials Nanoarchitectonics (MANA)National Institute for Materials Science (NIMS)1‐1 NamikiTsukubaIbaraki305‐0044Japan
- Department of Plant & Environmental New ResourcesKyung Hee University1732 Deogyeong‐daeroGiheung‐gu, Yongin‐siGyeonggi‐do446‐701South Korea
| |
Collapse
|
46
|
Yuan YC, Sun B, Cao AM, Wang D, Wan LJ. Heterogeneous nucleation and growth of highly crystalline imine-linked covalent organic frameworks. Chem Commun (Camb) 2018; 54:5976-5979. [PMID: 29790505 DOI: 10.1039/c8cc02381f] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A heterogeneous nucleation and growth method is reported to synthesize imine-linked covalent organic frameworks (COFs). Excellent crystallinity and a high surface area are obtained. The introduction of heterogeneous nuclei suppresses the fast precipitation of amorphous structures at the early stage while promoting the crystallization of COFs during the growth process.
Collapse
Affiliation(s)
- Yu-Chen Yuan
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China.
| | | | | | | | | |
Collapse
|