1
|
Yu L, Cui Y, Xing M, Sun Y, Li Z, Liu Y, Qu X, Chen S. Crystallization-Driven Controlled 2D Self-Assemblies via Aqueous RAFT Emulsion Polymerization. Macromol Rapid Commun 2024; 45:e2400549. [PMID: 39137300 DOI: 10.1002/marc.202400549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/28/2024] [Indexed: 08/15/2024]
Abstract
Aqueous emulsion polymerization is a robust technique for preparing nanoparticles of block copolymers; however, it typically yields spherical nanoassemblies. The scale preparation of nanoassemblies with nonspherical high-order morphologies is a challenge, particularly 2D core-shell nanosheets. In this study, the polymerization-induced self-assembly (PISA) and crystallization-driven self-assembly (CDSA) are combined to demonstrate the preparation of 2D nanosheets and their aggregates via aqueous reversible addition-fragmentation chain transfer (RAFT) emulsion polymerization. First, the crucial crystallizable component for CDSA, hydroxyethyl methacrylate polycaprolactone (HPCL) macromonomer is synthesized by ring opening polymerization (ROP). Subsequently, the RAFT emulsion polymerization of HPCL is conducted to generate crystallizable nanomicelles by a grafting-through approach. This PISA process simultaneously prepared spherical latices and bottlebrush block copolymers comprising poly(N',N'-dimethylacrylamide)-block-poly(hydroxyethyl methacrylate polycaprolactone) (PDMA-b-PHPCL). The latexes are now served as seeds for inducing the formation of 2D hexagonal nanosheets, bundle-shaped and flower-like aggregation via the CDSA of PHPCL segments and unreacted HPCL during cooling. Electron microscope analysis trace the morphology evolution of these 2D nanoparticles and reveal that an appropriate crystallized component of PHPCL blocks play a pivotal role in forming a hierarchical structure. This work demonstrates significant potential for large-scale production of 2D nanoassemblies through RAFT emulsion polymerization.
Collapse
Affiliation(s)
- Li Yu
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Science, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Yuhong Cui
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Science, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Mingxue Xing
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Science, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Yuemeng Sun
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Science, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Zhengxiao Li
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Science, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Yingchun Liu
- Jinghua Plastics Industry Co. Ltd., Langfang, 065800, P. R. China
| | - Xiongwei Qu
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Science, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Shengli Chen
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Science, Hebei University of Technology, Tianjin, 300401, P. R. China
| |
Collapse
|
2
|
Hou W, Yin X, Zhou Y, Zhou Z, Liu Z, Du J, Shi Y, Chen Y. Kinetically Controlled Preparation of Worm-like Micelles with Tunable Diameter/Length and Structural Stability. J Am Chem Soc 2024; 146:24094-24104. [PMID: 39141924 DOI: 10.1021/jacs.4c08206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Anisotropic nanoparticles such as worm-like micelles have aroused much attention due to their promising applications from templates to drug delivery. The fabrication of worm-like micelles with tunable structural stability and control over their diameter and length is of great importance but still challenging. Herein, we report a kinetically controlled ring-opening metathesis polymerization-induced self-assembly (ROMPISA) for the robust preparation of kinetically trapped worm-like micelles with tunable diameter/length at enlarged experimental windows by the rational manipulation of kinetic factors, including solvent property, temperature, and π-π stacking effects. The resultant worm structures were thermodynamically metastable and capable of excellent structural stability at room temperature due to the kinetic trapping effect. At elevated temperatures, these thermodynamically metastable worms could undergo morphology evolution into vesicular structures in a controlled manner. Moreover, the structural stability of worms could also be significantly enhanced by in situ cross-linking. Overall, this kinetically controlled ROMPISA opens a new avenue for PISA chemistry that is expected to prepare "smart" polymer materials by manipulating kinetic factors.
Collapse
Affiliation(s)
- Wangmeng Hou
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiuzhe Yin
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yingqing Zhou
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhuo Zhou
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhijia Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jianzhong Du
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Yi Shi
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
3
|
Zheng Y, Niino H, Chatani S, Goto A. Preparation of Block Copolymer Self-Assemblies via Pisa in a Non-Polar Medium Based on RCMP. Macromol Rapid Commun 2024; 45:e2300635. [PMID: 38284465 DOI: 10.1002/marc.202300635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/18/2024] [Indexed: 01/30/2024]
Abstract
Polymerization-induced self-assembly (PISA) is conducted in a non-polar medium (n-dodecane) via reversible complexation-mediated polymerization (RCMP). Stearyl methacrylate (SMA) is used to synthesize a macroinitiator, and subsequent block polymerization of benzyl methacrylate (BzMA) from the macroinitiator in n-dodecane afforded a PSMA-PBzMA block copolymer, where PSMA is poly(stearyl methacrylate) and PBzMA is poly(benzyl methacrylate). Because PSMA is soluble but PBzMA is insoluble in n-dodecane, the block copolymer formed a self-assembly during the block polymerization (PISA). Spherical micelles, worms, and vesicles are obtained, depending on the degrees of polymerization of PSMA and PBzMA. "One-pot" PISA is also attained; namely, BzMA is directly added to the reaction mixture of the macroinitiator synthesis, and PISA is conducted in the same pot without purification of the macroinitiator. The spherical micelle and vesicle structures are also fixed using a crosslinkable monomer during PISA. RCMP-PISA is highly attractive as it is odorless and metal-free. The "one-pot" synthesis does not require the purification of the macroinitiator. RCMP-PISA can provide a practical approach to synthesize self-assemblies in non-polar media.
Collapse
Affiliation(s)
- Yichao Zheng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459
| | - Hiroshi Niino
- Hiroshima R&D Center, Mitsubishi Chemical Corporation, 20-1 Miyuki-cho, Otake, Hiroshima, 739-0693, Japan
| | - Shunsuke Chatani
- Hiroshima R&D Center, Mitsubishi Chemical Corporation, 20-1 Miyuki-cho, Otake, Hiroshima, 739-0693, Japan
| | - Atsushi Goto
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459
| |
Collapse
|
4
|
Deng Y, Li C, Fan J, Guo X. Photo Fenton RAFT Polymerization of (Meth)Acrylates in DMSO Sensitized by Methylene Blue. Macromol Rapid Commun 2023; 44:e2300258. [PMID: 37496370 DOI: 10.1002/marc.202300258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/28/2023] [Indexed: 07/28/2023]
Abstract
A novel open-to-air photo RAFT polymerization of a series of acrylate and methacrylate monomers mediated by matching chain transfer agent irradiated by far-red light in DMSO is reported. Hydroxyl radical (•OH) generated from methylene blue (MB) sensitized decomposition of H2 O2 via photo-Fenton like-reaction is used for polymerization initiation. The "living/control" characteristic is evidenced by kinetic study, in which a pseudo first order curve and linearly increases of molecular weight with the increase of monomer conversion are observed. The living end-group fidelity is characterized by MALDI-TOF-MS and 1 H NMR results, and confirmed by successful chain extension. The temporary controllability is proved by light on/off switch experiment.
Collapse
Affiliation(s)
- Yuanming Deng
- Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Cuiting Li
- Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jiangtao Fan
- Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xie Guo
- Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
5
|
Zhang H, Pan Y, Li Y, Tang C, Xu Z, Li C, Xu F, Mai Y. Hybrid Polymer Vesicles: Controllable Preparation and Potential Applications. Biomacromolecules 2023; 24:3929-3953. [PMID: 37579246 DOI: 10.1021/acs.biomac.3c00499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Hybrid polymer vesicles contain functional nanoparticles (NPs) in their walls, interfaces, coronae, or cavities. NPs render the hybrid vesicles with specific physical properties, while polymers endow them with structural stability and may significantly reduce the high toxicity of NPs. Therefore, hybrid vesicles integrate fascinating multifunctions from both NPs and polymeric vesicles, which have gained tremendous attention because of their diverse promising applications. Various types of delicate hybrid polymeric vesicles with size control and tunable localization of NPs in different parts of vesicles have been constructed via in situ and ex situ strategies, respectively. Their potential applications have been widely explored, as well. This review presents the progress of block copolymer (BCP) vesicle systems containing different types of NPs including metal NPs, magnetic NPs, and semiconducting quantum dots (QDs), etc. The strategies for controlling the location of NPs within hybrid vesicles are discussed. Typical potential applications of the elegant hybrid vesicles are also highlighted.
Collapse
Affiliation(s)
- Han Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yi Pan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yinghua Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chen Tang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhi Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chen Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Fugui Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
6
|
Sun H, Gao Y, Fan Y, Du J, Jiang J, Gao C. Polymeric Bowl-Shaped Nanoparticles: Hollow Structures with a Large Opening on the Surface. Macromol Rapid Commun 2023; 44:e2300196. [PMID: 37246639 DOI: 10.1002/marc.202300196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/14/2023] [Indexed: 05/30/2023]
Abstract
Polymeric bowl-shaped nanoparticles (BNPs) are anisotropic hollow structures with large openings on the surface, which have shown advantages such as high specific area and efficient encapsulation, delivery and release of large-sized cargoes on demand compared to solid nanoparticles or closed hollow structures. Several strategies have been developed to prepare BNPs based on either template or template-free methods. For instance, despite the widely used self-assembly strategy, alternative methods including emulsion polymerization, swelling and freeze-drying of polymeric spheres, and template-assisted approaches have also been developed. It is attractive but still challenging to fabricate BNPs due to their unique structural features. However, there is still no comprehensive summary of BNPs up to now, which significantly hinders the further development of this field. In this review, the recent progress of BNPs will be highlighted from the perspectives of design strategies, preparation methods, formation mechanisms, and emerging applications. Moreover, the future perspectives of BNPs will also be proposed.
Collapse
Affiliation(s)
- Hui Sun
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Yaning Gao
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Yirong Fan
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China
| | - Jinhui Jiang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China
| | - Chenchen Gao
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| |
Collapse
|
7
|
Zhao X, Sun C, Xiong F, Wang T, Li S, Huo F, Yao X. Polymerization-Induced Self-Assembly for Efficient Fabrication of Biomedical Nanoplatforms. RESEARCH (WASHINGTON, D.C.) 2023; 6:0113. [PMID: 37223484 PMCID: PMC10202185 DOI: 10.34133/research.0113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/19/2023] [Indexed: 05/25/2023]
Abstract
Amphiphilic copolymers can self-assemble into nano-objects in aqueous solution. However, the self-assembly process is usually performed in a diluted solution (<1 wt%), which greatly limits scale-up production and further biomedical applications. With recent development of controlled polymerization techniques, polymerization-induced self-assembly (PISA) has emerged as an efficient approach for facile fabrication of nano-sized structures with a high concentration as high as 50 wt%. In this review, after the introduction, various polymerization method-mediated PISAs that include nitroxide-mediated polymerization-mediated PISA (NMP-PISA), reversible addition-fragmentation chain transfer polymerization-mediated PISA (RAFT-PISA), atom transfer radical polymerization-mediated PISA (ATRP-PISA), and ring-opening polymerization-mediated PISA (ROP-PISA) are discussed carefully. Afterward, recent biomedical applications of PISA are illustrated from the following aspects, i.e., bioimaging, disease treatment, biocatalysis, and antimicrobial. In the end, current achievements and future perspectives of PISA are given. It is envisioned that PISA strategy can bring great chance for future design and construction of functional nano-vehicles.
Collapse
|
8
|
Shape-Shifting Thermoresponsive Block Copolymer Nano-Objects. J Colloid Interface Sci 2023; 634:906-920. [PMID: 36566636 DOI: 10.1016/j.jcis.2022.12.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
In this Feature Article, we review our recent progress in the design of shape-shifting thermoresponsive diblock copolymer nano-objects, which are prepared using various hydroxyl-functional (meth)acrylic monomers (e.g. 2‑hydroxypropyl methacrylate, 4‑hydroxybutyl acrylate or hydroxybutyl methacrylate) to generate the thermoresponsive block. Unlike traditional thermoresponsive polymers such as poly(N-isopropylacrylamide), there is no transition between soluble and insoluble polymer chains in aqueous solution. Instead, thermally driven transitions between a series of copolymer morphologies (e.g. spheres, worms, vesicles or lamellae) occur on adjusting the aqueous solution temperature owing to a subtle change in the partial degree of hydration of the permanently insoluble thermoresponsive block. Such remarkable self-assembly behavior is unprecedented in colloid science: no other amphiphilic diblock copolymer or surfactant system undergoes such behavior at a fixed chemical composition and concentration. Such shape-shifting nano-objects are characterized by transmission electron microscopy, dynamic light scattering, small-angle X-ray scattering, rheology and variable temperature 1H NMR spectroscopy. Potential applications for this fascinating new class of amphiphiles are briefly considered.
Collapse
|
9
|
Shirinichi F, Ibrahim T, Rodriguez M, Sun H. Assembling the best of two worlds: Biomolecule‐polymer nanoparticles via polymerization‐induced self‐assembly. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Farbod Shirinichi
- Department of Chemistry and Chemical & Biomedical Engineering, Tagliatela College of Engineering University of New Haven West Haven Connecticut USA
| | - Tarek Ibrahim
- Department of Chemistry and Chemical & Biomedical Engineering, Tagliatela College of Engineering University of New Haven West Haven Connecticut USA
| | - Mia Rodriguez
- Department of Chemistry and Chemical & Biomedical Engineering, Tagliatela College of Engineering University of New Haven West Haven Connecticut USA
| | - Hao Sun
- Department of Chemistry and Chemical & Biomedical Engineering, Tagliatela College of Engineering University of New Haven West Haven Connecticut USA
| |
Collapse
|
10
|
The switching behavior of CO2/N2 responsive emulsion systems formed by an amine functionalized quaternary ammonium surfactant. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Wu J, Zhang L, Chen Y, Tan J. Linear and Star Block Copolymer Nanoparticles Prepared by Heterogeneous RAFT Polymerization Using an ω,ω-Heterodifunctional Macro-RAFT Agent. ACS Macro Lett 2022; 11:910-918. [PMID: 35793539 DOI: 10.1021/acsmacrolett.2c00314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Herein, an ω,ω-heterodifunctional macromolecular reversible addition-fragmentation chain transfer (macro-RAFT) agent containing two different RAFT end groups was synthesized and employed to mediate aqueous photoinitiated RAFT dispersion polymerization of a methacrylic monomer. Because of the different RAFT controllability of two RAFT end groups toward methacrylic monomers, the RAFT end group with good controllability dominated the polymerization while the other RAFT end group with poor controllability was unreacted, leading to the formation of linear block copolymers. Because of the unique structure of the linear block copolymers, a diverse set of block copolymer nanoparticles with rich RAFT groups at the interface of the hydrophilic corona/the hydrophobic core were successfully prepared. Finally, μ-A(BC)C miktoarm star block copolymer nanoparticles were prepared by RAFT seeded emulsion polymerization of an acrylic monomer, which enables the further morphological control over polymer nanoparticles. We believe that the utilization of an ω,ω-heterodifunctional macro-RAFT agent in heterogeneous RAFT polymerization will offer considerable opportunities for the rational synthesis of well-defined molecular architectures and polymer nanoparticles.
Collapse
Affiliation(s)
- Jiarui Wu
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.,Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.,Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
12
|
Jacob LI, Pauer W, Schroeter B. Influence of redox initiator component ratios on the emulsion copolymerisation of vinyl acetate and neodecanoic acid vinyl ester. RSC Adv 2022; 12:14197-14208. [PMID: 35558856 PMCID: PMC9092359 DOI: 10.1039/d2ra01811j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/03/2022] [Indexed: 11/21/2022] Open
Abstract
Redox initiated emulsion polymerisation of vinyl acetate and neodecanoic acid vinyl ester was investigated at temperatures ranging from -1 °C to 87 °C (initiation temperature between -1 °C and 60 °C), using varying molar ratios of the following redox components: l-ascorbic acid, tert-butyl hydroperoxide and ammonium iron(iii) sulfate dodecahydrate as a catalyst. The high flexibility of redox initiators enables product properties, as well as space-time-yield, to be adjusted as required. Polymers being products by process, it was presumed that modifying the conversion rate would lead to a different product. However, it was shown that the reaction rate is adjustable by varying the catalyst amount without changing the product properties, such as molecular weight, particle size, glass transition temperature and polymer structure, while reducing the overall process time by 40-86% (at equimolar ratios of reducing and oxidising agent). In contrast, variation of the tert-butyl hydroperoxide content resulted in changes of the molecular weight. The influence of the initiation temperature and of the redox system on the reaction rate was determined, enabling control over the reaction rate in the whole temperature range. Meanwhile, overall process times of approximately 2-240 min and high conversions of 90-99% could be achieved. Statistical modelling confirmed the results and facilitated predictions, enabling the conversion rate to be adjusted to the desired properties. The possibility of being able to adjust the conversion rate and product properties independently of each other creates additional degrees of freedom in process design.
Collapse
Affiliation(s)
- Laurence Isabelle Jacob
- Institute for Technical and Macromolecular Chemistry, University of Hamburg Bundesstraße 45 20146 Hamburg Germany
| | - Werner Pauer
- Institute for Technical and Macromolecular Chemistry, University of Hamburg Bundesstraße 45 20146 Hamburg Germany
| | - Baldur Schroeter
- Institute of Thermal Separation Processes, Hamburg University of Technology Eißendorfer Straße 38 21073 Hamburg Germany +49 40 42878 3962
| |
Collapse
|
13
|
Hunter SJ, Penfold NJW, Jones ER, Zinn T, Mykhaylyk OO, Armes SP. Synthesis of Thermoresponsive Diblock Copolymer Nano-Objects via RAFT Aqueous Emulsion Polymerization of Hydroxybutyl Methacrylate. Macromolecules 2022; 55:3051-3062. [PMID: 35492576 PMCID: PMC9047412 DOI: 10.1021/acs.macromol.2c00379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/01/2022] [Indexed: 02/08/2023]
Affiliation(s)
- Saul J. Hunter
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, Yorkshire S3 7HF, U.K
| | - Nicholas J. W. Penfold
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, Yorkshire S3 7HF, U.K
| | | | - Thomas Zinn
- ESRF - The European Synchrotron, 38043 Grenoble, France
| | - Oleksandr O. Mykhaylyk
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, Yorkshire S3 7HF, U.K
| | - Steven P. Armes
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, Yorkshire S3 7HF, U.K
| |
Collapse
|
14
|
Wan J, Fan B, Thang SH. RAFT-mediated polymerization-induced self-assembly (RAFT-PISA): current status and future directions. Chem Sci 2022; 13:4192-4224. [PMID: 35509470 PMCID: PMC9006902 DOI: 10.1039/d2sc00762b] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/17/2022] [Indexed: 12/13/2022] Open
Abstract
Polymerization-induced self-assembly (PISA) combines polymerization and self-assembly in a single step with distinct efficiency that has set it apart from the conventional solution self-assembly processes. PISA holds great promise for large-scale production, not only because of its efficient process for producing nano/micro-particles with high solid content, but also thanks to the facile control over the particle size and morphology. Since its invention, many research groups around the world have developed new and creative approaches to broaden the scope of PISA initiations, morphologies and applications, etc. The growing interest in PISA is certainly reflected in the increasing number of publications over the past few years, and in this review, we aim to summarize these recent advances in the emerging aspects of RAFT-mediated PISA. These include (1) non-thermal initiation processes, such as photo-, enzyme-, redox- and ultrasound-initiation; the achievements of (2) high-order structures, (3) hybrid materials and (4) stimuli-responsive nano-objects by design and adopting new monomers and new processes; (5) the efforts in the realization of upscale production by utilization of high throughput technologies, and finally the (6) applications of current PISA nano-objects in different fields and (7) its future directions.
Collapse
Affiliation(s)
- Jing Wan
- School of Chemistry, Monash University Clayton VIC 3800 Australia
| | - Bo Fan
- School of Chemistry, Monash University Clayton VIC 3800 Australia
| | - San H Thang
- School of Chemistry, Monash University Clayton VIC 3800 Australia
| |
Collapse
|
15
|
Shahrokhinia A, Rijal S, Sonmez Baghirzade B, Scanga RA, Biswas P, Tafazoli S, Apul OG, Reuther JF. Chain Extensions in PhotoATRP-Induced Self-Assembly (PhotoATR-PISA): A Route to Ultrahigh Solids Concentrations and Click Nanoparticle Networks as Adsorbents for Water Treatment. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ali Shahrokhinia
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Sahaj Rijal
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Busra Sonmez Baghirzade
- Department of Civil and Environmental Engineering, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Randall A. Scanga
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Priyanka Biswas
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Shayesteh Tafazoli
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Onur G. Apul
- Department of Civil and Environmental Engineering, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
- Department of Civil and Environmental Engineering, University of Maine, Orono, Maine 04469, United States
| | - James F. Reuther
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| |
Collapse
|
16
|
Cumming J, Deane OJ, Armes SP. Reversible Addition-Fragmentation Chain Transfer Aqueous Dispersion Polymerization of 4-Hydroxybutyl Acrylate Produces Highly Thermoresponsive Diblock Copolymer Nano-Objects. Macromolecules 2022; 55:788-798. [PMID: 35431331 PMCID: PMC9007527 DOI: 10.1021/acs.macromol.1c02431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/29/2021] [Indexed: 02/08/2023]
Abstract
The reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization of 2-hydroxypropyl methacrylate (HPMA) using a poly(glycerol monomethacrylate) (PGMA) precursor is an important prototypical example of polymerization-induced self-assembly. 4-Hydroxybutyl acrylate (HBA) is a structural isomer of HPMA, but the former monomer exhibits appreciably higher aqueous solubility. For the two corresponding homopolymers, PHBA is more weakly hydrophobic than PHPMA. Moreover, PHBA has a significantly lower glass transition temperature (T g) so it exhibits much higher chain mobility than PHPMA at around ambient temperature. In view of these striking differences, we have examined the RAFT aqueous dispersion polymerization of HBA using a PGMA precursor with the aim of producing a series of PGMA57-300-PHBA100-1580 diblock copolymer nano-objects by systematic variation of the mean degree of polymerization of each block. A pseudo-phase diagram is constructed using transmission electron microscopy to assign the copolymer morphology after employing glutaraldehyde to cross-link the PHBA chains and hence prevent film formation during grid preparation. The thermoresponsive character of the as-synthesized linear nano-objects is explored using dynamic light scattering and temperature-dependent rheological measurements. Comparison with the analogous PGMA x -PHPMA y formulation is made where appropriate. In particular, we demonstrate that replacing the structure-directing PHPMA block with PHBA leads to significantly greater thermoresponsive behavior over a much wider range of diblock copolymer compositions. Given that PGMA-PHPMA worm gels can induce stasis in human stem cells (see Canton et al., ACS Central Science, 2016, 2, 65-74), our findings are likely to have implications for the design of next-generation PGMA-PHBA worm gels for cell biology applications.
Collapse
Affiliation(s)
- Juliana
M. Cumming
- Dainton Building, Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, UK
| | - Oliver J. Deane
- Dainton Building, Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, UK
| | - Steven P. Armes
- Dainton Building, Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, UK
| |
Collapse
|
17
|
Kim HJ, Ishizuka F, Kuchel RP, Chatani S, Niino H, Zetterlund PB. Synthesis of low glass transition temperature worms comprising a poly(styrene- stat-n-butyl acrylate) core segment via polymerization-induced self-assembly in RAFT aqueous emulsion polymerization. Polym Chem 2022. [DOI: 10.1039/d1py01636a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Synthesis of nanodimensional polymeric worms of low glass transition temperature using aqueous polymerization-induced self-assembly.
Collapse
Affiliation(s)
- Hyun Jin Kim
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Fumi Ishizuka
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Rhiannon P. Kuchel
- Electron Microscope Unit, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shunsuke Chatani
- Hiroshima R&D Center, Mitsubishi Chemical Corporation, 20-1 Miyuki-cho, Otake, Hiroshima 739-0693, Japan
| | - Hiroshi Niino
- Hiroshima R&D Center, Mitsubishi Chemical Corporation, 20-1 Miyuki-cho, Otake, Hiroshima 739-0693, Japan
| | - Per B. Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
18
|
Li W, Zhang H, Zhai Z, Huang X, Shang S, Song Z. Photo-controlled self-assembly behavior of novel amphiphilic polymers with a rosin-based azobenzene group. NEW J CHEM 2022. [DOI: 10.1039/d1nj04575j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel ‘bola’ rosin-based photo-responsive amphiphilic polymers PMPn show an extremely high photoresponsive efficiency and various assembly morphological changes.
Collapse
Affiliation(s)
- Wanbing Li
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Nanjing 210042, Jiangsu Province, P. R. China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Haibo Zhang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Nanjing 210042, Jiangsu Province, P. R. China
| | - Zhaolan Zhai
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Nanjing 210042, Jiangsu Province, P. R. China
| | - Xujuan Huang
- School of Chemical and Chemistry, Yancheng Institute of Technology, Yancheng 210042, Jiangsu Province, P. R. China
| | - Shibin Shang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Nanjing 210042, Jiangsu Province, P. R. China
| | - Zhanqian Song
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Nanjing 210042, Jiangsu Province, P. R. China
| |
Collapse
|
19
|
Niu B, Chen Y, Zhang L, Tan J. Organic–inorganic hybrid nanomaterials prepared via polymerization-induced self-assembly: recent developments and future opportunities. Polym Chem 2022. [DOI: 10.1039/d2py00180b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review highlights recent developments in the preparation of organic–inorganic hybrid nanomaterials via polymerization-induced self-assembly.
Collapse
Affiliation(s)
- Bing Niu
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
20
|
Zhang X, Wei Z, Liu K, Wang L, Yang W. A 3B-type miktoarm star polymer nanoassemblies prepared by reversible addition–fragmentation chain transfer (RAFT) dispersion polymerization. Polym Chem 2022. [DOI: 10.1039/d2py00935h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The investigation on a series of A3B-type miktoarm star polymer assemblies by RAFT PISA has revealed the role of A3B architecture in delaying morphological transitions, and the formation of larger vesicles as well as other interesting morphologies.
Collapse
Affiliation(s)
- Xinru Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhiqiang Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Kai Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Li Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wantai Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Research Center for the Syntheses and Applications of Waterborne Polymers, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing 100029, China
| |
Collapse
|
21
|
Chen C, Fei C, Xu C, Ma Y, Zhao C, Yang W. Preparation of core–shell nanoparticles via emulsion polymerization induced self-assembly using a maleamic acid-α-methyl styrene copolymer as a macro-initisurf. Polym Chem 2022. [DOI: 10.1039/d2py01042a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
An amphiphilic maleamic acid-α-methyl styrene copolymer (macro-initisurf) acting as a macroinitiator and emulsifier for the emulsion polymerization induced self-assembly of acrylate monomers to prepare core–shell nanoparticles.
Collapse
Affiliation(s)
- Chuxuan Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chaozhi Fei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Can Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuhong Ma
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Engineering Research Center for the Synthesis and Applications of Waterborne Polymers, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Changwen Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials and Key Laboratory of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Ministry of Education, Beijing 100029, China
| | - Wantai Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials and Key Laboratory of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Ministry of Education, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
22
|
Zhong F, Pan CY. Dispersion Polymerization versus Emulsifier-Free Emulsion Polymerization for Nano-Object Fabrication: A Comprehensive Comparison. Macromol Rapid Commun 2021; 43:e2100566. [PMID: 34813132 DOI: 10.1002/marc.202100566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/01/2021] [Indexed: 01/05/2023]
Abstract
Although the preparation of nano-objects by emulsifier-free controlled/living radical emulsion polymerization has drawn much attention, the morphologies of these formed objects are difficult to predict and to reproduce because of the much more complex nucleation mechanisms of emulsion polymerization compared to only one self-assembling nucleation mechanism of controlled radical dispersion polymerization. The present study compares dispersion polymerization with emulsifier-free emulsion polymerization in terms of nucleation mechanism, polymerization kinetics, and disappearance behavior of the macrochain transfer agent, gel permeation chromatograms curves of the obtained block copolymer as well as the structural and morphological differences between the produced nano-objects on the basis of published data. Moreover, the effects of the inherently heterogeneous nature of emulsion polymerization on the mechanism of reversible addition-fragmentation transfer polymerization and the nano-object morphology are examined, and efficient agitation and adequate solubility of the core-forming monomer in water are identified as the most crucial factors for the fabrication of nonspherical nano-objects.
Collapse
Affiliation(s)
- Feng Zhong
- College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui, 230601, China
| | - Cai-Yuan Pan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
23
|
Yuan B, Huang T, Wang X, Ding Y, Jiang L, Zhang Y, Tang J. Oxygen-Tolerant RAFT Polymerization Catalyzed by a Recyclable Biomimetic Mineralization Enhanced Biological Cascade System. Macromol Rapid Commun 2021; 43:e2100559. [PMID: 34713523 DOI: 10.1002/marc.202100559] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/17/2021] [Indexed: 12/12/2022]
Abstract
An enzyme cascade system including glucose oxidase (GOx) and iron porphyrin (DhHP-6) is encapsulated in a metal-organic framework called zeolitic imidazolate framework-8 (ZIF-8) through one-step facile synthesis. The composite (GOx&DhHP-6@ZIF-8) is then used to initiate oxygen-tolerant reversible addition-fragmentation chain-transfer polymerization for different methacrylate monomers, such as 2-diethylaminoethyl methacrylate, 2-hydroxyethyl methacrylate, and poly(ethylene glycol) methyl ether methacrylate (Mn = 500 g mol-1 ). The composite shows the robustness toward solvent and temperatures, all polymerizations using above monomers and catalyzing by GOx&DhHP-6@ZIF-8 exhibits high monomer conversion (>85%) and narrow molar mass dispersity (<1.3). Besides, acrylic and acrylamide monomers such as 2-hydroxyethyl acrylate and N,N-dimethylacrylamide are also carried to demonstrate the broad applicability. Proton nuclear magnetic resonance characterization and chain extension experiments confirm the retaining end groups of the resultant polymers, which is a significant feature of living polymerization. More importantly, the process of recycling the composite through a centrifuge is simplistic, and the composite still maintains similar activity compared to the original composites after five times. This low-cost and easily separated composite catalyst represents a versatile strategy to synthesize well-defined functional polymers suitable for industrial-scale production.
Collapse
Affiliation(s)
- Bolei Yuan
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Tingting Huang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xinghuo Wang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yi Ding
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Lin Jiang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yunhe Zhang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China.,Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun, 130012, China
| | - Jun Tang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
24
|
Deane OJ, Jennings J, Armes SP. Shape-shifting thermoreversible diblock copolymer nano-objects via RAFT aqueous dispersion polymerization of 4-hydroxybutyl acrylate. Chem Sci 2021; 12:13719-13729. [PMID: 34760156 PMCID: PMC8549797 DOI: 10.1039/d1sc05022b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 09/27/2021] [Indexed: 11/21/2022] Open
Abstract
2-Hydroxypropyl methacrylate (HPMA) is a useful model monomer for understanding aqueous dispersion polymerization. 4-Hydroxybutyl acrylate (HBA) is an isomer of HPMA: it has appreciably higher aqueous solubility so its homopolymer is more weakly hydrophobic. Moreover, PHBA possesses a significantly lower glass transition temperature than PHPMA, which ensures greater chain mobility. The reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization of HBA using a poly(ethylene glycol) (PEG113) precursor at 30 °C produces PEG113-PHBA200-700 diblock copolymer nano-objects. Using glutaraldehyde to crosslink the PHBA chains allows TEM studies, which reveal the formation of spheres, worms or vesicles under appropriate conditions. Interestingly, the partially hydrated highly mobile PHBA block enabled linear PEG113-PHBA x spheres, worms or vesicles to be reconstituted from freeze-dried powders on addition of water at 20 °C. Moreover, variable temperature 1H NMR studies indicated that the apparent degree of hydration of the PHBA block increases from 5% to 80% on heating from 0 °C to 60 °C indicating uniform plasticization. In contrast, the PHPMA x chains within PEG113-PHPMA x nano-objects become dehydrated on raising the temperature: this qualitative difference is highly counter-intuitive given that PHBA and PHPMA are isomers. The greater (partial) hydration of the PHBA block at higher temperature drives the morphological evolution of PEG113-PHBA260 spheres to form worms or vesicles, as judged by oscillatory rheology, dynamic light scattering, small-angle X-ray scattering and TEM studies. Finally, a variable temperature phase diagram is constructed for 15% w/w aqueous dispersions of eight PEG113-PHBA200-700 diblock copolymers. Notably, PEG113-PHBA350 can switch reversibly from spheres to worms to vesicles to lamellae during a thermal cycle.
Collapse
Affiliation(s)
- Oliver J Deane
- Dainton Building, Department of Chemistry, University of Sheffield Brook Hill Sheffield South Yorkshire S3 7HF UK
| | - James Jennings
- Dainton Building, Department of Chemistry, University of Sheffield Brook Hill Sheffield South Yorkshire S3 7HF UK
| | - Steven P Armes
- Dainton Building, Department of Chemistry, University of Sheffield Brook Hill Sheffield South Yorkshire S3 7HF UK
| |
Collapse
|
25
|
|
26
|
In situ cross-linking in RAFT-mediated emulsion polymerization: Reshaping the preparation of cross-linked block copolymer nano-objects by polymerization-induced self-assembly. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Cao J, Tan Y, Chen Y, Zhang L, Tan J. Expanding the Scope of Polymerization-Induced Self-Assembly: Recent Advances and New Horizons. Macromol Rapid Commun 2021; 42:e2100498. [PMID: 34418199 DOI: 10.1002/marc.202100498] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/18/2021] [Indexed: 12/26/2022]
Abstract
Over the past decade or so, polymerization-induced self-assembly (PISA) has become a versatile method for rational preparation of concentrated block copolymer nanoparticles with a diverse set of morphologies. Much of the PISA literature has focused on the preparation of well-defined linear block copolymers by using linear macromolecular chain transfer agents (macro-CTAs) with high chain transfer constants. In this review, a recent process is highlighted from an unusual angle that has expanded the scope of PISA including i) synthesis of block copolymers with nonlinear architectures (e.g., star block copolymer, branched block copolymer) by PISA, ii) in situ synthesis of blends of polymers by PISA, and iii) utilization of macro-CTAs with low chain transfer constants in PISA. By highlighting these important examples, new insights into the research of PISA and future impact these methods will have on polymer and colloid synthesis are provided.
Collapse
Affiliation(s)
- Junpeng Cao
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yingxin Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China.,Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China.,Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, 510006, China
| |
Collapse
|
28
|
Zhu Y, Egap E. Light-Mediated Polymerization Induced by Semiconducting Nanomaterials: State-of-the-Art and Future Perspectives. ACS POLYMERS AU 2021; 1:76-99. [PMID: 36855427 PMCID: PMC9954404 DOI: 10.1021/acspolymersau.1c00014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Direct capture of solar energy for chemical transformation via photocatalysis proves to be a cost-effective and energy-saving approach to construct organic compounds. With the recent growth in photosynthesis, photopolymerization has been established as a robust strategy for the production of specialty polymers with complex structures, precise molecular weight, and narrow dispersity. A key challenge in photopolymerization is the scarcity of effective photomediators (photoinitiators, photocatalysts, etc.) that can provide polymerization with high yield and well-defined polymer products. Current efforts on developing photomediators have mainly focused on organic dyes and metal complexes. On the other hand, nanomaterials (NMs), particularly semiconducting nanomaterials (SNMs), are suitable candidates for photochemical reactions due to their unique optical and electrical properties, such as high absorption coefficients, large charge diffusion lengths, and broad absorption spectra. This review provides a comprehensive insight into SNMs' photomediated polymerizations and highlights the roles SNMs play in photopolymerizations, types of polymerizations, applications in producing advanced materials, and the future directions.
Collapse
Affiliation(s)
- Yifan Zhu
- †Department
of Materials Science and Nanoengineering and ‡Department of Chemical and Biomolecular
Engineering, Rice University, Houston, Texas 77005, United States
| | - Eilaf Egap
- †Department
of Materials Science and Nanoengineering and ‡Department of Chemical and Biomolecular
Engineering, Rice University, Houston, Texas 77005, United States,
| |
Collapse
|
29
|
Hwang K, Song S, Kang YY, Suh J, Jeon HB, Kwag G, Paik HJ, Kim W. EFFECT OF EMULSION SBR PREPARED BY ASYMMETRIC REVERSIBLE ADDITION-FRAGMENTATION TRANSFER AGENT ON PROPERTIES OF SILICA-FILLED COMPOUNDS. RUBBER CHEMISTRY AND TECHNOLOGY 2021. [DOI: 10.5254/rct.21.79904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
ABSTRACT
The development of ultra-high-performance tires that satisfy fuel efficiency, traction, handling performance, and abrasion resistance has gained significant importance in the tire industry. Solution SBR has been used as a raw material, owing to its useful characteristics (e.g., narrow dispersity controllable microstructure and chain-end functionalization). In a recent improvement, emulsion SBR (ESBR), a high-molecular-weight compound with narrow dispersity, has been reported for application in the tire tread compounds. In particular, S,S-dibenzyl trithiocarbonate (DBTC) reversible addition-fragmentation transfer (RAFT) ESBR has exhibited excellent abrasion resistance and fuel efficiency in unfilled and carbon black–filled vulcanizates. However, owing to the symmetrical structure of DBTC RAFT ESBR, the polymer chain was shortened by the reaction of a silane coupling agent with trithiocarbonate, leading to poor abrasion resistance and fuel efficiency in the case of silica-filled vulcanizates. In this study, benzyl (4-methoxyphenyl) trithiocarbonate (BMPTC), an asymmetric RAFT agent that promotes unilateral polymer growth, was synthesized and used in the polymerization of BMPTC RAFT ESBR. Chain cleavage was not observed. Upon application to silica-filled vulcanizates, BMPTC RAFT ESBR exhibited improved abrasion resistance (by 9%), improved fuel efficiency (by 20%), and improved wet traction performance (by 10%) compared with the DBTC RAFT ESBR.
Collapse
Affiliation(s)
- Kiwon Hwang
- School of Chemical Engineering, Pusan National University, Busan 609-735, Republic of Korea
| | - Sanghoon Song
- School of Chemical Engineering, Pusan National University, Busan 609-735, Republic of Korea
| | - Yu yeong Kang
- Department of Chemistry, Kwangwoon University, Wolgye-Dong, Nowon-Gu, Seoul 139-701, Republic of Korea
| | - JaeKon Suh
- R&BD Center, Korea KUMHO Petrochemical Co., Ltd., P.O. Box 64, Yuseong, Daejon 305-600, Republic of Korea
| | - Heung Bae Jeon
- Department of Chemistry, Kwangwoon University, Wolgye-Dong, Nowon-Gu, Seoul 139-701, Republic of Korea
| | - GwangHoon Kwag
- R&BD Center, Korea KUMHO Petrochemical Co., Ltd., P.O. Box 64, Yuseong, Daejon 305-600, Republic of Korea
| | - Hyun-Jong Paik
- Department of Polymer Science and Engineering, Pusan National University, Busan 609-735, Republic of Korea
| | - Wonho Kim
- School of Chemical Engineering, Pusan National University, Busan 609-735, Republic of Korea
| |
Collapse
|
30
|
Cao J, Tan Y, Chen Y, Zhang L, Tan J. How the Reactive End Group of Macro-RAFT Agent Affects RAFT-Mediated Emulsion Polymerization-Induced Self-Assembly. Macromol Rapid Commun 2021; 42:e2100333. [PMID: 34219313 DOI: 10.1002/marc.202100333] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Indexed: 12/18/2022]
Abstract
Polymerization-induced self-assembly via reversible addition-fragmentation chain transfer (RAFT)-mediated emulsion polymerization is an emerging method in which macro-RAFT agents are chain extended with hydrophobic monomers in water to form block copolymer nano-objects. However, almost all RAFT-mediated emulsion polymerizations are limited to AB diblock copolymers by using monofunctional macro-RAFT agents with non-reactive end groups. In this study, the first investigation on how the reactive end group of macro-RAFT agent affects RAFT-mediated emulsion polymerization is reported. Three macro-RAFT agents with different end groups are synthesized and employed in RAFT-mediated emulsion polymerization. Effects of end groups on morphologies of block copolymer nano-objects and polymerization process are studied. Block copolymer nano-objects prepared by using an asymmetric difunctional macro-RAFT agent can be functionalized by further chain extension on the surface. It is expected that the current study will not only expand the scope of RAFT-mediated emulsion polymerization, but also provide a novel strategy to prepare functional polymer nanoparticles.
Collapse
Affiliation(s)
- Junpeng Cao
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yingxin Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangdong University of Technology, Guangzhou, 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
31
|
Li RY, An ZS. Photoenzymatic RAFT Emulsion Polymerization with Oxygen Tolerance. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2556-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Li JW, Chen M, Zhou JM, Pan CY, Zhang WJ, Hong CY. RAFT dispersion copolymerization of styrene and N-methacryloxysuccinimide: Promoted morphology transition and post-polymerization cross-linking. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
33
|
Shahrokhinia A, Scanga RA, Biswas P, Reuther JF. PhotoATRP-Induced Self-Assembly (PhotoATR-PISA) Enables Simplified Synthesis of Responsive Polymer Nanoparticles in One-Pot. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02106] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ali Shahrokhinia
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Randall A. Scanga
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Priyanka Biswas
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - James F. Reuther
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| |
Collapse
|
34
|
Abstract
This review summarizes the recent non-thermal initiation methods in RAFT mediated polymerization-induced self-assembly (PISA), including photo-, redox/oscillatory reaction-, enzyme- and ultrasound wave-initiation.
Collapse
Affiliation(s)
- Nankai An
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education
- Department of Chemistry
- Tsinghua University
- 100084 Beijing
- China
| | - Xi Chen
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education
- Department of Chemistry
- Tsinghua University
- 100084 Beijing
- China
| | - Jinying Yuan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education
- Department of Chemistry
- Tsinghua University
- 100084 Beijing
- China
| |
Collapse
|
35
|
Hunter SJ, Lovett JR, Mykhaylyk OO, Jones ER, Armes SP. Synthesis of diblock copolymer spheres, worms and vesicles via RAFT aqueous emulsion polymerization of hydroxybutyl methacrylate. Polym Chem 2021. [DOI: 10.1039/d1py00517k] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RAFT aqueous emulsion polymerization of hydroxybutyl methacrylate using a poly(glycerol monomethacrylate) precursor leads to diblock copolymer spheres, worms or vesicles. A pseudo-phase diagram is constructed and the vesicles are briefly evaluated as a Pickering emulsifier.
Collapse
Affiliation(s)
- Saul J. Hunter
- Dainton Building
- Department of Chemistry
- The University of Sheffield
- Sheffield
- UK
| | - Joseph R. Lovett
- Dainton Building
- Department of Chemistry
- The University of Sheffield
- Sheffield
- UK
| | | | | | - Steven P. Armes
- Dainton Building
- Department of Chemistry
- The University of Sheffield
- Sheffield
- UK
| |
Collapse
|
36
|
Xu S, Corrigan N, Boyer C. Forced gradient copolymerisation: a simplified approach for polymerisation-induced self-assembly. Polym Chem 2021. [DOI: 10.1039/d0py00889c] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this work, a novel and versatile gradient copolymerisation approach to simplify polymeric nanoparticle synthesis through polymerisation-induced self-assembly (PISA) is reported.
Collapse
Affiliation(s)
- Sihao Xu
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| | - Nathaniel Corrigan
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| |
Collapse
|
37
|
Hunter SJ, Armes SP. Pickering Emulsifiers Based on Block Copolymer Nanoparticles Prepared by Polymerization-Induced Self-Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:15463-15484. [PMID: 33325720 PMCID: PMC7884006 DOI: 10.1021/acs.langmuir.0c02595] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/27/2020] [Indexed: 05/28/2023]
Abstract
Block copolymer nanoparticles prepared via polymerization-induced self-assembly (PISA) represent an emerging class of organic Pickering emulsifiers. Such nanoparticles are readily prepared by chain-extending a soluble homopolymer precursor using a carefully selected second monomer that forms an insoluble block in the chosen solvent. As the second block grows, it undergoes phase separation that drives in situ self-assembly to form sterically stabilized nanoparticles. Conducting such PISA syntheses in aqueous solution leads to hydrophilic nanoparticles that enable the formation of oil-in-water emulsions. Alternatively, hydrophobic nanoparticles can be prepared in non-polar media (e.g., n-alkanes), which enables water-in-oil emulsions to be produced. In this review, the specific advantages of using PISA to prepare such bespoke Pickering emulsifiers are highlighted, which include fine control over particle size, copolymer morphology, and surface wettability. This has enabled various fundamental scientific questions regarding Pickering emulsions to be addressed. Moreover, block copolymer nanoparticles can be used to prepare Pickering emulsions over various length scales, with mean droplet diameters ranging from millimeters to less than 200 nm.
Collapse
Affiliation(s)
- Saul J. Hunter
- Department of Chemistry,
Dainton Building, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| | - Steven P. Armes
- Department of Chemistry,
Dainton Building, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| |
Collapse
|
38
|
Zhang Q, Zeng R, Zhang Y, Chen Y, Zhang L, Tan J. Two Polymersome Evolution Pathways in One Polymerization-Induced Self-Assembly (PISA) System. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01624] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Qichao Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Ruiming Zeng
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuxuan Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
39
|
Tran TN, Piogé S, Fontaine L, Pascual S. Hydrogen‐Bonding UCST‐Thermosensitive Nanogels by Direct Photo‐RAFT Polymerization‐Induced Self‐Assembly in Aqueous Dispersion. Macromol Rapid Commun 2020; 41:e2000203. [DOI: 10.1002/marc.202000203] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/19/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Thi Nga Tran
- Institut des Molécules et Matériaux du MansUMR 6283 CNRS–Le Mans Université Avenue Olivier Messiaen Le Mans Cedex 72085 France
| | - Sandie Piogé
- Institut des Molécules et Matériaux du MansUMR 6283 CNRS–Le Mans Université Avenue Olivier Messiaen Le Mans Cedex 72085 France
| | - Laurent Fontaine
- Institut des Molécules et Matériaux du MansUMR 6283 CNRS–Le Mans Université Avenue Olivier Messiaen Le Mans Cedex 72085 France
| | - Sagrario Pascual
- Institut des Molécules et Matériaux du MansUMR 6283 CNRS–Le Mans Université Avenue Olivier Messiaen Le Mans Cedex 72085 France
| |
Collapse
|
40
|
He J, Cao J, Chen Y, Zhang L, Tan J. Thermoresponsive Block Copolymer Vesicles by Visible Light-Initiated Seeded Polymerization-Induced Self-Assembly for Temperature-Regulated Enzymatic Nanoreactors. ACS Macro Lett 2020; 9:533-539. [PMID: 35648508 DOI: 10.1021/acsmacrolett.0c00151] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Block copolymer vesicles loaded with active compounds have been employed as decent candidates to mimic complex biological systems that attract considerable interest in different research communities. We herein report a visible light-initiated seeded reversible addition-fragmentation chain transfer (RAFT)-mediated polymerization-induced self-assembly (PISA) for in situ preparation of enzyme-loaded cross-linked block copolymer vesicles without compromising the bioactivity. Permeability of the vesicular membrane can be regulated through changing the solution temperature, allowing further control over the enzymatic reaction rate of enzyme-loaded vesicles. Finally, non-cross-linked thermoresponsive block copolymer vesicles that can transform into worm-like micelles at low temperature are also prepared by this method, allowing the release of bimacromolecules from the vesicles under mild conditions.
Collapse
Affiliation(s)
- Jun He
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Junpeng Cao
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
41
|
Hwang K, Mun H, Kim W. Effect of Reversible Addition-Fragmentation Transfer Emulsion Styrene Butadiene Rubber (RAFT ESBR) on the Properties of Carbon Black-Filled Compounds. Polymers (Basel) 2020; 12:E933. [PMID: 32316510 PMCID: PMC7240540 DOI: 10.3390/polym12040933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/26/2020] [Accepted: 04/15/2020] [Indexed: 01/29/2023] Open
Abstract
Tread is an important component that directly affects the performance of passenger car radial (PCR) tires. Styrene-butadiene rubber (SBR) is mainly used for tire tread and it includes solution styrene-butadiene rubber (SSBR) and emulsion styrene-butadiene rubber (ESBR). Although SSBR is mainly used, the manufacturing process for SSBR is more challenging than ESBR, which is environmentally friendly, but has the disadvantage of a broad molecular weight distribution. To overcome this, a reversible addition-fragmentation radical transfer (RAFT) polymerization technique is used in ESBR polymerization. An environmentally friendly RAFT ESBR with a narrow dispersity can be polymerized. Here, carbon black-filled compounds were manufactured while using RAFT ESBR, and their properties were compared to ESBR. The analysis showed a low crosslink density of RAFT ESBR, due to the high polysulfide crosslink structure. We manufactured a carbon black-filled compound with the same crosslink density and structure as the ESBR carbon black-filled compound, and the effect of the dispersity of the base polymer was investigated. RAFT ESBR showed 9% better abrasion resistance and 29% better fuel efficiency than ESBR, according to the analysis of the data. The narrow dispersity can reduce energy loss and positively influence the abrasion resistance and fuel efficiency.
Collapse
Affiliation(s)
| | | | - Wonho Kim
- Department of Polymer Science & Chemical Engineering, Pusan National University, Busan 609-735, Korea; (K.H.); (H.M.)
| |
Collapse
|
42
|
Sütekin SD, Güven O. Preparation of poly(
tert
‐butyl acrylate)‐poly(acrylic acid) amphiphilic copolymers via radiation‐induced
reversible addition–fragmentation chain transfer
mediated polymerization of
tert
‐butyl acrylate. POLYM INT 2020. [DOI: 10.1002/pi.6004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | - Olgun Güven
- Department of ChemistryHacettepe University Ankara Turkey
| |
Collapse
|
43
|
D'Agosto F, Rieger J, Lansalot M. RAFT‐vermittelte polymerisationsinduzierte Selbstorganisation (PISA). Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201911758] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Franck D'Agosto
- Univ Lyon Université Claude Bernard Lyon 1 CPE Lyon CNRS UMR 5265 Chemistry, Catalysis, Polymers and Processes (C2P2) 43 Bd du 11 Novembre 1918 69616 Villeurbanne Frankreich
| | - Jutta Rieger
- Sorbonne Université and CNRS UMR 8232 Institut Parisien de Chimie Moléculaire (IPCM), Polymer Chemistry Team (ECP) 4 Place Jussieu 75005 Paris Frankreich
| | - Muriel Lansalot
- Univ Lyon Université Claude Bernard Lyon 1 CPE Lyon CNRS UMR 5265 Chemistry, Catalysis, Polymers and Processes (C2P2) 43 Bd du 11 Novembre 1918 69616 Villeurbanne Frankreich
| |
Collapse
|
44
|
D'Agosto F, Rieger J, Lansalot M. RAFT‐Mediated Polymerization‐Induced Self‐Assembly. Angew Chem Int Ed Engl 2020; 59:8368-8392. [DOI: 10.1002/anie.201911758] [Citation(s) in RCA: 250] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Franck D'Agosto
- Univ Lyon Université Claude Bernard Lyon 1 CPE Lyon CNRS UMR 5265 Chemistry, Catalysis, Polymers and Processes (C2P2) 43 Bd du 11 Novembre 1918 69616 Villeurbanne France
| | - Jutta Rieger
- Sorbonne Université and CNRS UMR 8232 Institut Parisien de Chimie Moléculaire (IPCM) Polymer Chemistry Team (ECP) 4 Place Jussieu 75005 Paris France
| | - Muriel Lansalot
- Univ Lyon Université Claude Bernard Lyon 1 CPE Lyon CNRS UMR 5265 Chemistry, Catalysis, Polymers and Processes (C2P2) 43 Bd du 11 Novembre 1918 69616 Villeurbanne France
| |
Collapse
|
45
|
Liu D, Cai W, Zhang L, Boyer C, Tan J. Efficient Photoinitiated Polymerization-Induced Self-Assembly with Oxygen Tolerance through Dual-Wavelength Type I Photoinitiation and Photoinduced Deoxygenation. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02710] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Dongdong Liu
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Weibin Cai
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
46
|
Deane OJ, Musa OM, Fernyhough A, Armes SP. Synthesis and Characterization of Waterborne Pyrrolidone-Functional Diblock Copolymer Nanoparticles Prepared via Surfactant-free RAFT Emulsion Polymerization. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02394] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Oliver J. Deane
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Osama M. Musa
- Ashland Specialty Ingredients, 1005 US 202/206, Bridgewater, New Jersey 08807, United States
| | - Alan Fernyhough
- Ashland Specialty Ingredients, Listers Mills, Heaton Road, Bradford, West Yorkshire BD9 4SH, U.K
| | - Steven P. Armes
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| |
Collapse
|
47
|
Li H, Xu Q, Xu X, Zhang L, Cheng Z, Zhu X. One-Step Photocontrolled Polymerization-Induced Self-Assembly (Photo-PISA) by Using In Situ Bromine-Iodine Transformation Reversible-Deactivation Radical Polymerization. Polymers (Basel) 2020; 12:E150. [PMID: 31936063 PMCID: PMC7022840 DOI: 10.3390/polym12010150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/31/2019] [Accepted: 01/06/2020] [Indexed: 01/18/2023] Open
Abstract
Polymerization-induced self-assembly (PISA) has become an effective strategy to synthesize high solid content polymeric nanoparticles with various morphologies in situ. In this work, one-step PISA was achieved by in situ photocontrolled bromine-iodine transformation reversible-deactivation radical polymerization (hereinafter referred to as Photo-BIT-RDRP). The water-soluble macroinitiator precursor α-bromophenylacetate polyethylene glycol monomethyl ether ester (mPEG1k-BPA) was synthesized in advance, and then the polymer nanomicelles (mPEG1k-b-PBnMA and mPEG1k-b-PHPMA, where BnMA means benzyl methacrylate and HPMA is hydroxypropyl methacrylate) were successfully formed from a PISA process of hydrophobic monomer of BnMA or HPMA under irradiation with blue LED light at room temperature. In addition, the typical living features of the photocontrolled PISA process were confirmed by the linear increase of molecular weights of the resultant amphiphilic block copolymers with monomer conversions and narrow molecular weight distributions (Mw/Mn < 1.20). Importantly, the photocontrolled PISA process is realized by only one-step method by using in situ photo-BIT-RDRP, which avoids the use of transition metal catalysts in the traditional ATRP system, and simplifies the synthesis steps of nanomicelles. This strategy provides a promising pathway to solve the problem of active chain end (C-I) functionality loss in two-step polymerization of BIT-RDRP.
Collapse
Affiliation(s)
| | | | | | - Lifen Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-ai Road, Suzhou 215123, China; (H.L.); (Q.X.); (X.X.); (X.Z.)
| | - Zhenping Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-ai Road, Suzhou 215123, China; (H.L.); (Q.X.); (X.X.); (X.Z.)
| | | |
Collapse
|
48
|
Sarkar J, Jackson AW, van Herk AM, Goto A. Synthesis of nano-capsules via aqueous emulsion RCMP-PISA and encapsulation. Polym Chem 2020. [DOI: 10.1039/d0py00465k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Synthesis of nano-capsules using aqueous RCMP-PISA and encapsulation of rhodamine-B (Rh-B).
Collapse
Affiliation(s)
- Jit Sarkar
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore
| | - Alexander W. Jackson
- Institute of Chemical and Engineering Sciences
- Agency for Science
- Technology and Research
- Singapore
| | - Alexander M. van Herk
- Institute of Chemical and Engineering Sciences
- Agency for Science
- Technology and Research
- Singapore
| | - Atsushi Goto
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore
| |
Collapse
|
49
|
Galanopoulo P, Dugas PY, Lansalot M, D'Agosto F. Poly(ethylene glycol)-b-poly(vinyl acetate) block copolymer particles with various morphologies via RAFT/MADIX aqueous emulsion PISA. Polym Chem 2020. [DOI: 10.1039/d0py00467g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The polymerization-induced self-assembly (PISA) of amphiphilic diblock copolymers of poly(ethylene glycol)-b-poly(vinyl acetate) in water was achieved through macromolecular design via interchange of xanthate (MADIX) polymerization in emulsion.
Collapse
Affiliation(s)
| | | | - Muriel Lansalot
- Univ Lyon
- Université Claude Bernard Lyon 1
- CPE Lyon
- CNRS
- UMR 5265
| | - Franck D'Agosto
- Univ Lyon
- Université Claude Bernard Lyon 1
- CPE Lyon
- CNRS
- UMR 5265
| |
Collapse
|
50
|
Liu C, Hong CY, Pan CY. Polymerization techniques in polymerization-induced self-assembly (PISA). Polym Chem 2020. [DOI: 10.1039/d0py00455c] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The development of controlled/“living” polymerization greatly stimulated the prosperity of the fabrication and application of block copolymer nano-objects.
Collapse
Affiliation(s)
- Chao Liu
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Chun-Yan Hong
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Cai-Yuan Pan
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P. R. China
| |
Collapse
|