1
|
Seo S, Park JW, Kim DG, Seo JH. Physical Properties of Poly(ether-thiourea)-Based Elastomer Formed by Zigzag Hydrogen Bonding and Slidable Cross-Linking. ACS Macro Lett 2023; 12:1558-1563. [PMID: 37922152 DOI: 10.1021/acsmacrolett.3c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
In this study, the effects of zigzag hydrogen bonding and slidable cross-linking on the design of stretchable elastomers were explored. Poly(ether-thiourea) (TU), capable of generating strong zigzag hydrogen bonds without crystallization, was introduced as the main chain in the non-cross-linked region of the developed elastomer. Consequently, the toughness of the TU-based elastomer was 14 times higher than that of elastomers formed using linear poly(ethylene glycol), despite the relatively low molecular weight of TU (∼3k). When a slidable polyrotaxane cross-linker was introduced into the TU-based elastomer, its flexibility became twice as high as that of the rigid polymer cross-linker. Moreover, the mechanical properties of the elastomer were prevented from deterioration against repeated deformation under the limited strain condition of 150%.
Collapse
Affiliation(s)
- Sojung Seo
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jin-Woo Park
- Department of Periodontology, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-Gu, Daegu 41940, Republic of Korea
| | - Dong-Gyun Kim
- Advanced Materials Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Ji-Hun Seo
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
2
|
Pan B, Park SM, Ying WB, Yoon DK, Lee KJ. Azo-Functionalized Thermoplastic Polyurethane for Light-Driven Shape Memory Materials. Macromol Rapid Commun 2023; 44:e2200650. [PMID: 36350231 DOI: 10.1002/marc.202200650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/24/2022] [Indexed: 11/11/2022]
Abstract
Shape memory polymers have great potential in the fields of soft robotics, injectable medical devices, and as essential materials for advanced electronic devices. Herein, light-triggered shape-memory thermoplastic polyurethane (TPU) is reported using azido TPU grafted by the photoswitchable azo compound. The trans-cis transitions of the azobenzene on the side chain of the TPU induce the recoiling of the main chain, leading to shaping memory behavior. Under UV irradiation, cis-azo allows the oriented main chain to recoil to release residual stress and realize light-triggered shape memory behavior. The facile method proposed here for the preparation of azo-functionalized TPU can provide viable opportunities for soft robotics and smart TPU applications.
Collapse
Affiliation(s)
- Baohai Pan
- Department of Chemical Engineering and Applied Chemistry, College of Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Soon Mo Park
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Wu Bin Ying
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
| | - Dong Ki Yoon
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Kyung Jin Lee
- Department of Chemical Engineering and Applied Chemistry, College of Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| |
Collapse
|
3
|
Niu X, Wang M, Xia Y, Zhu Y, Jia X, Cao R, Wang X. Self-Healing, Thermadapt Triple-Shape Memory Ionomer Vitrimer for Shape Memory Triboelectric Nanogenerator. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50101-50111. [PMID: 36301079 DOI: 10.1021/acsami.2c13294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Benefiting from the associative exchange reaction, vitrimers could be deformed to various shapes while maintaining the integrity of the network, thus being regarded as promising candidates for shape memory polymers. However, it is still a challenge to design the highly desired smart electronic devices with triple and multishape memory performances through a facile method. Here, a novel dual-cross-linked poly(acrylonitrile-co-butyl acrylate-co-hydroxyethyl methacrylate-co-zinc methacrylate) (Zn-PABHM) copolymer was developed via a facile and one-pot free radical polymerization strategy. Ionic cross-linking, the transcarbamoylation reaction, and glass transition were used to fix the permanent shape and two temporary shapes of the obtained ionomer vitrimer, respectively. The thermomechanical and stress relaxation performances of Zn-PABHM vitrimer can be customized by tuning the proportion of the chemical cross-linking and physical cross-linking knots. Furthermore, the Zn-PABHM was employed to construct a shape memory triboelectric nanogenerator, which demonstrates distinctive performance and tunable electrical outputs (37.4-96.0 V) due to variable contact areas enabled by triple shape memory effects. Consequently, the triple-shape memory ionomer vitrimer obtained via a facile and one-pot synthetic strategy has great potential in smart multifunctional electronic devices.
Collapse
Affiliation(s)
- Xiling Niu
- Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng475004, P. R. China
| | - Min Wang
- The Institute of Seawater Desalination and Multipurpose Utilization, Ministry of Natural Resources (MNR), Tianjin300192, P. R. China
| | - Yifan Xia
- Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng475004, P. R. China
| | - Yan Zhu
- Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng475004, P. R. China
| | - Xiaoyong Jia
- Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng475004, P. R. China
| | - Ruirui Cao
- Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng475004, P. R. China
| | - Xin Wang
- Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng475004, P. R. China
| |
Collapse
|
4
|
Molero G, Liu C, Zhu Z, Chen Q, Peterson SR, Kolluru PV, Sue HJ, Uenuma S, Mayumi K, Ito K. Fracture Behavior of Polyrotaxane-Toughened Poly(Methyl Methacrylate). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2335-2345. [PMID: 35129976 DOI: 10.1021/acs.langmuir.1c03216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The fracture behavior of polyrotaxane (PR)-modified poly(methyl methacrylate) (PMMA) was investigated. PR is a supramolecule with rings threaded onto a linear backbone chain, which is capped by bulky end groups to prevent the rings from de-threading. The ring structure is α-cyclodextrin (CD), and it can be functionalized to enhance its affinity with the hosting polymer matrix. Adding only 1 wt % of PR containing methacrylate functional groups (mPR) at the terminal of some of the polycaprolactone-grafted chains on CD promotes massive crazing, resulting in a significant improvement in fracture toughness while maintaining the modulus and transparency of the PMMA matrix. Dynamic mechanical analysis and atomic force microscopy studies reveal that mPR strongly interact with PMMA, leading to higher molecular mobility and enhanced molecular cooperativity during deformation. This molecular cooperativity may be responsible for the formation of massive crazing in a PMMA matrix, which leads to greatly improved fracture toughness.
Collapse
Affiliation(s)
- Glendimar Molero
- Department of Materials Science and Engineering, Polymer Technology Center, Texas A&M University, College Station, Texas 77843, United States
| | - Cong Liu
- Department of Materials Science and Engineering, Polymer Technology Center, Texas A&M University, College Station, Texas 77843, United States
| | - Zewen Zhu
- Department of Materials Science and Engineering, Polymer Technology Center, Texas A&M University, College Station, Texas 77843, United States
| | - Qihui Chen
- Department of Materials Science and Engineering, Polymer Technology Center, Texas A&M University, College Station, Texas 77843, United States
| | - Suzanne R Peterson
- Department of Materials Science and Engineering, Polymer Technology Center, Texas A&M University, College Station, Texas 77843, United States
| | - Pavan V Kolluru
- Department of Materials Science and Engineering, Polymer Technology Center, Texas A&M University, College Station, Texas 77843, United States
| | - Hung-Jue Sue
- Department of Materials Science and Engineering, Polymer Technology Center, Texas A&M University, College Station, Texas 77843, United States
| | - Shuntaro Uenuma
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-city, Chiba 227-8561, Japan
| | - Koichi Mayumi
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-city, Chiba 227-8561, Japan
| | - Kohzo Ito
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-city, Chiba 227-8561, Japan
| |
Collapse
|
5
|
Lee J, Kang SK. Principles for Controlling the Shape Recovery and Degradation Behavior of Biodegradable Shape-Memory Polymers in Biomedical Applications. MICROMACHINES 2021; 12:757. [PMID: 34199036 PMCID: PMC8305960 DOI: 10.3390/mi12070757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/17/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022]
Abstract
Polymers with the shape memory effect possess tremendous potential for application in diverse fields, including aerospace, textiles, robotics, and biomedicine, because of their mechanical properties (softness and flexibility) and chemical tunability. Biodegradable shape memory polymers (BSMPs) have unique benefits of long-term biocompatibility and formation of zero-waste byproducts as the final degradable products are resorbed or absorbed via metabolism or enzyme digestion processes. In addition to their application toward the prevention of biofilm formation or internal tissue damage caused by permanent implant materials and the subsequent need for secondary surgery, which causes secondary infections and complications, BSMPs have been highlighted for minimally invasive medical applications. The properties of BSMPs, including high tunability, thermomechanical properties, shape memory performance, and degradation rate, can be achieved by controlling the combination and content of the comonomer and crystallinity. In addition, the biodegradable chemistry and kinetics of BSMPs, which can be controlled by combining several biodegradable polymers with different hydrolysis chemistry products, such as anhydrides, esters, and carbonates, strongly affect the hydrolytic activity and erosion property. A wide range of applications including self-expending stents, wound closure, drug release systems, and tissue repair, suggests that the BSMPs can be applied as actuators on the basis of their shape recovery and degradation ability.
Collapse
Affiliation(s)
- Junsang Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea;
| | - Seung-Kyun Kang
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea;
- Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Korea
- Institute of Engineering Research, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
6
|
Zirdehi EM, Dumlu H, Eggeler G, Varnik F. On the Size Effect of Additives in Amorphous Shape Memory Polymers. MATERIALS (BASEL, SWITZERLAND) 2021; 14:E327. [PMID: 33435200 PMCID: PMC7826723 DOI: 10.3390/ma14020327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 12/30/2020] [Accepted: 01/06/2021] [Indexed: 11/17/2022]
Abstract
Small additive molecules often enhance structural relaxation in polymers. We explore this effect in a thermoplastic shape memory polymer via molecular dynamics simulations. The additive-to-monomer size ratio is shown to play a key role here. While the effect of additive-concentration on the rate of shape recovery is found to be monotonic in the investigated range, a non-monotonic dependence on the size-ratio emerges at temperatures close to the glass transition. This work thus identifies the additives' size to be a qualitatively novel parameter for controlling the recovery process in polymer-based shape memory materials.
Collapse
Affiliation(s)
- Elias M. Zirdehi
- Interdisciplinary Centre for Advanced Materials Simulation (ICAMS), Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany;
| | - Hakan Dumlu
- Institute for Materials (IFM), Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany; (H.D.); (G.E.)
| | - Gunther Eggeler
- Institute for Materials (IFM), Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany; (H.D.); (G.E.)
| | - Fathollah Varnik
- Interdisciplinary Centre for Advanced Materials Simulation (ICAMS), Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany;
| |
Collapse
|
7
|
Zhang F, Xu C, Yin K, Duan J. Enhanced light extraction of light-emitting diodes with micro patterns by femtosecond laser micromachining for visible light communication. OPTICS LETTERS 2020; 45:6707-6710. [PMID: 33325875 DOI: 10.1364/ol.411206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
A significant enhancement of light extraction of light-emitting diodes (LEDs) with micro patterns has been experimentally investigated. The micro patterns on the surface of a polymer layer are fabricated by a femtosecond laser Bessel beam for obtaining microhole arrays with large depth, resulting in the reduction of photon loss by total internal reflection (TIR) at the surface of the LED. The light output power of the LED is apparently increased by introducing the array patterns without influencing its current-voltage (I-V) characteristics. Moreover, the electroluminescence spectra of a multi-color LED and its angular radiation profiles with orthogonal and hexagonal patterns also have been explored. In addition, the optical field distributions of the micro patterns simulated by the finite difference time domain method have expressed the modulation effect of the array depth. Finally, the patterned LED as a transmitter is embedded in the visible light communication system for evaluating the transmission signal quality.
Collapse
|