1
|
Murdock BE, Cen J, Squires AG, Kavanagh SR, Scanlon DO, Zhang L, Tapia-Ruiz N. Li-Site Defects Induce Formation of Li-Rich Impurity Phases: Implications for Charge Distribution and Performance of LiNi 0.5- xM xMn 1.5O 4 Cathodes (M = Fe and Mg; x = 0.05-0.2). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400343. [PMID: 38640450 DOI: 10.1002/adma.202400343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/08/2024] [Indexed: 04/21/2024]
Abstract
An understanding of the structural properties that allow for optimal cathode performance, and their origin, is necessary for devising advanced cathode design strategies and accelerating the commercialization of next-generation cathodes. High-voltage, Fe- and Mg-substituted LiNi0.5Mn1.5O4 cathodes offer a low-cost, cobalt-free, yet energy-dense alternative to commercial cathodes. In this work, the effect of substitution on several important structure properties is explored, including Ni/Mn ordering, charge distribution, and extrinsic defects. In the cation-disordered samples studied, a correlation is observed between increased Fe/Mg substitution, Li-site defects, and Li-rich impurity phase formation-the concentrations of which are greater for Mg-substituted samples. This is attributed to the lower formation energy of MgLi defects when compared to FeLi defects. Li-site defect-induced impurity phases consequently alter the charge distribution of the system, resulting in increased [Mn3+] with Fe/Mg substitution. In addition to impurity phases, other charge compensators are also investigated to explain the origin of Mn3+ (extrinsic defects, [Ni3+], oxygen vacancies and intrinsic off-stoichiometry), although their effects are found to be negligible.
Collapse
Affiliation(s)
- Beth E Murdock
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, UK
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot, OX11 0RA, UK
| | - Jiayi Cen
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot, OX11 0RA, UK
- Department of Chemistry and Thomas Young Centre, University College London, London, WC1H 0AJ, UK
| | - Alexander G Squires
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot, OX11 0RA, UK
- School of Chemistry, University of Birmingham, Birmingham, B15 2TT, UK
| | - Seán R Kavanagh
- Department of Materials and Centre for Processable Electronics, Imperial College London, London, SW7 2AZ, UK
| | - David O Scanlon
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot, OX11 0RA, UK
- School of Chemistry, University of Birmingham, Birmingham, B15 2TT, UK
| | - Li Zhang
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, UK
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot, OX11 0RA, UK
| | - Nuria Tapia-Ruiz
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, UK
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot, OX11 0RA, UK
| |
Collapse
|
2
|
Phelan CE, Björklund E, Singh J, Fraser M, Didwal PN, Rees GJ, Ruff Z, Ferrer P, Grinter DC, Grey CP, Weatherup RS. Role of Salt Concentration in Stabilizing Charged Ni-Rich Cathode Interfaces in Li-Ion Batteries. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:3334-3344. [PMID: 38617803 PMCID: PMC11008099 DOI: 10.1021/acs.chemmater.4c00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 04/16/2024]
Abstract
The cathode-electrolyte interphase (CEI) in Li-ion batteries plays a key role in suppressing undesired side reactions while facilitating Li-ion transport. Ni-rich layered cathode materials offer improved energy densities, but their high interfacial reactivities can negatively impact the cycle life and rate performance. Here we investigate the role of electrolyte salt concentration, specifically LiPF6 (0.5-5 m), in altering the interfacial reactivity of charged LiN0.8Mn0.1Co0.1O2 (NMC811) cathodes in standard carbonate-based electrolytes (EC/EMC vol %/vol % 3:7). Extended potential holds of NMC811/Li4Ti5O12 (LTO) cells reveal that the parasitic electrolyte oxidation currents observed are strongly dependent on the electrolyte salt concentration. X-ray photoelectron and absorption spectroscopy (XPS/XAS) reveal that a thicker LixPOyFz-/LiF-rich CEI is formed in the higher concentration electrolytes. This suppresses reactions with solvent molecules resulting in a thinner, or less-dense, reduced surface layer (RSL) with lower charge transfer resistance and lower oxidation currents at high potentials. The thicker CEI also limits access of acidic species to the RSL suppressing transition-metal dissolution into the electrolyte, as confirmed by nuclear magnetic resonance (NMR) spectroscopy and inductively coupled plasma optical emission spectroscopy (ICP-OES). This provides insight into the main degradation processes occurring at Ni-rich cathode interfaces in contact with carbonate-based electrolytes and how electrolyte formulation can help to mitigate these.
Collapse
Affiliation(s)
- Conor
M. E. Phelan
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K.
| | - Erik Björklund
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K.
- The
Faraday Institution, Quad One, Harwell Science
and Innovation Campus, Didcot OX11 0RA, U.K.
| | - Jasper Singh
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K.
| | - Michael Fraser
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K.
- The
Faraday Institution, Quad One, Harwell Science
and Innovation Campus, Didcot OX11 0RA, U.K.
| | - Pravin N. Didwal
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K.
- The
Faraday Institution, Quad One, Harwell Science
and Innovation Campus, Didcot OX11 0RA, U.K.
| | - Gregory J. Rees
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K.
- The
Faraday Institution, Quad One, Harwell Science
and Innovation Campus, Didcot OX11 0RA, U.K.
| | - Zachary Ruff
- The
Faraday Institution, Quad One, Harwell Science
and Innovation Campus, Didcot OX11 0RA, U.K.
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Pilar Ferrer
- Diamond
Light Source, Didcot, Oxfordshire OX11 0DE, U.K.
| | | | - Clare P. Grey
- The
Faraday Institution, Quad One, Harwell Science
and Innovation Campus, Didcot OX11 0RA, U.K.
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Robert S. Weatherup
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K.
- The
Faraday Institution, Quad One, Harwell Science
and Innovation Campus, Didcot OX11 0RA, U.K.
- Diamond
Light Source, Didcot, Oxfordshire OX11 0DE, U.K.
- Research
Complex at Harwell, Didcot, Oxfordshire OX11 0DE, U.K.
| |
Collapse
|
3
|
Rynearson L, Antolini C, Jayawardana C, Yeddala M, Hayes D, Lucht BL. Speciation of Transition Metal Dissolution in Electrolyte from Common Cathode Materials. Angew Chem Int Ed Engl 2023:e202317109. [PMID: 38078892 DOI: 10.1002/anie.202317109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Indexed: 12/22/2023]
Abstract
Significant capacity loss has been observed across extended cycling of lithium-ion batteries cycled to high potential. One of the sources of capacity fade is transition metal dissolution from the cathode active material, ion migration through the electrolyte, and deposition on the solid-electrolyte interphase on the anode. While much research has been conducted on the oxidation state of the transition metal in the cathode active material or deposited on the anode, there have been limited investigations of the oxidation state of the transition metal ions dissolved in the electrolyte. In this work, X-ray absorption spectroscopy has been performed on electrolytes extracted from cells built with four different cathode active materials (LiMn2 O4 (LMO), LiNi0.5 Mn1.5 O4 (LNMO), LiNi0.8 Mn0.1 Co0.1 O2 (NMC811), and (x Li2 MnO3 *(1-x) LiNia Mnb Coc O2 , with a+b+c=1) (LMRNMC)) that were cycled at either high or standard potentials to determine the oxidation state of Mn and Ni in solution. Inductively coupled plasma-mass spectrometry has been performed on the anodes from these cells to determine the concentration of deposited transition metal ions. While transition metal ions were found dissolved in all electrolytes, the oxidation state(s) of Mn and Ni were determined to be dependent on the cathode material and independent of cycling potential.
Collapse
Affiliation(s)
- Leah Rynearson
- Department of Chemistry, University of Rhode Island, Kingston, RI-02881, USA
| | - Cali Antolini
- Department of Chemistry, University of Rhode Island, Kingston, RI-02881, USA
| | | | - Munaiah Yeddala
- Department of Chemistry, University of Rhode Island, Kingston, RI-02881, USA
| | - Dugan Hayes
- Department of Chemistry, University of Rhode Island, Kingston, RI-02881, USA
| | - Brett L Lucht
- Department of Chemistry, University of Rhode Island, Kingston, RI-02881, USA
| |
Collapse
|
4
|
Bal B, Ozdogru B, Nguyen DT, Li Z, Murugesan V, Çapraz ÖÖ. Probing the Formation of Cathode-Electrolyte Interphase on Lithium Iron Phosphate Cathodes via Operando Mechanical Measurements. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42449-42459. [PMID: 37659069 DOI: 10.1021/acsami.3c05749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Interfacial instabilities in electrodes control the performance and lifetime of Li-ion batteries. While the formation of the solid-electrolyte interphase (SEI) on anodes has received much attention, there is still a lack of understanding the formation of the cathode-electrolyte interphase (CEI) on the cathodes. To fill this gap, we report on dynamic deformations on LiFePO4 cathodes during charge/discharge by utilizing operando digital image correlation, impedance spectroscopy, and cryo X-ray photoelectron spectroscopy. LiFePO4 cathodes were cycled in either LiPF6, LiClO4, or LiTFSI-containing organic liquid electrolytes. Beyond the first cycle, Li-ion intercalation results in a nearly linear correlation between electrochemical strains and the state of (dis)-charge, regardless of the electrolyte chemistry. However, during the first charge in the LiPF6-containing electrolyte, there is a distinct irreversible positive strain evolution at the onset of anodic current rise as well as current decay at around 4.0 V. Impedance studies show an increase in surface resistance in the same potential window, suggesting the formation of CEI layers on the cathode. The chemistry of the CEI layer was characterized by X-ray photoelectron spectroscopy. LiF is detected in the CEI layer starting as early as 3.4 V and LixPOyFz appeared at voltages higher than 4.0 V during the first charge. Our approach offers insights into the formation mechanism of CEI layers on the cathode electrodes, which is crucial for the development of robust cathodes and electrolyte chemistries for higher-performance batteries.
Collapse
Affiliation(s)
- Batuhan Bal
- The School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Bertan Ozdogru
- The School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
- Center for Energy Conversion & Storage Systems, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Dan Thien Nguyen
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Joint Center for Energy Storage Research (JCESR), Lemont, Illinois 60439, United States
| | - Zheng Li
- Joint Center for Energy Storage Research (JCESR), Lemont, Illinois 60439, United States
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Vijayakumar Murugesan
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Joint Center for Energy Storage Research (JCESR), Lemont, Illinois 60439, United States
| | - Ömer Özgür Çapraz
- The School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
- Chemical, Biochemical and Environmental Engineering, The University of Maryland - Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|