1
|
Lu Z, Patranika T, Naylor AJ, Mindemark J, Tardif S, Hernández G, Lyonnard S. Formation and Evolution of the Solid Electrolyte Interphase on Silicon Electrodes from Fluorine-Free Electrolytes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2410654. [PMID: 39757716 DOI: 10.1002/smll.202410654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/18/2024] [Indexed: 01/07/2025]
Abstract
With the increasing attention to energy storage solutions, a growing emphasis has been placed on environmentally compatible electrolytes tailored for lithium-ion batteries. This study investigates the surface behavior of Si wafers as model systems cycled with a fluorine-free electrolyte based on lithium bis(oxalato)borate (LiBOB), with and without the additive vinylene carbonate (VC). By utilizing operando X-ray reflectivity (XRR) and ex situ X-ray photoelectron spectroscopy (XPS), the intricate processes involved in solid electrolyte interphase (SEI) formation is elucidated, SiO2/Si (de)lithiation, and the impact of the VC additive. Three distinct stages in SEI evolution during lithiation and delithiation are identified: SEI formation, subsequent densification and growth, and decrease in SEI thickness during delithiation, which collectively demonstrate the breathing behavior of the SEI during cycling. The addition of VC is found to mitigate LiBOB decomposition during cycling and promote a smoother SEI layer. Moreover, lithium trapping within the Si wafer post-delithiation is observed for both electrolytes but to a lesser extent with the addition of VC. This study offers structural and chemical insights into the fundamental processes governing SEI formation and Si wafer (de)lithiation in LiBOB-based electrolytes, with implications for designing environmentally friendly lithium-ion batteries.
Collapse
Affiliation(s)
- Zijie Lu
- Univ. Grenoble Alpes, CEA, IRIG, MEM, Grenoble, 38054, France
| | - Tamara Patranika
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, SE-751 21, Sweden
| | - Andrew J Naylor
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, SE-751 21, Sweden
| | - Jonas Mindemark
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, SE-751 21, Sweden
| | - Samuel Tardif
- Univ. Grenoble Alpes, CEA, IRIG, MEM, Grenoble, 38054, France
| | - Guiomar Hernández
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, SE-751 21, Sweden
| | - Sandrine Lyonnard
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, Grenoble, 38054, France
| |
Collapse
|
2
|
Simonyan H, Zhong L, Green MM, Movsesyan K, Fraire A, Ward PA, Lau KC, Teprovich JA. Solvation Environment and Interface Dynamics of Li 2B 12H 12 and Li 2B 12F 12 Electrolytes Uncovered by Theory and Operando Optical and FTIR Spectroelectrochemistry. ACS APPLIED MATERIALS & INTERFACES 2024; 16:70028-70037. [PMID: 39637410 DOI: 10.1021/acsami.4c14485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
In this work, we evaluated two closo-borate salts (Li2B12H12 and Li2B12F12) in propylene carbonate from theoretical and experimental perspectives to understand how the coordination environment influences their spectroscopic and electrochemical properties. The coordination environments of the closo-borate salts were modeled via density functional theory (DFT) and molecular dynamics (MD). Vibrational spectra calculated from the predicted coordination environments are in agreement with experimentally measured steady-state FTIR data. This theoretical investigation also suggested that Li2B12F12 would possess a higher ionic conductivity than Li2B12H12, which was corroborated experimentally. Additionally, an electrochemical cell was designed and fabricated that enabled operando optical and FTIR spectroelectrochemical (OP-IR-SEC) measurements. This allowed for the simultaneous measurement of the relative changes of species at a lithium electrode-liquid electrolyte interface and the visualization of lithium plating at the electrode surface. This technique could provide new chemical insights and potentially link optical changes at the electrode-electrolyte interface to specific chemical species in similar electrochemical systems. The Li2B12F12 electrolyte was found to have a higher thermal stability, which may find utility in applications for batteries that are subject to high-temperature conditions.
Collapse
Affiliation(s)
- Hovnan Simonyan
- Department of Chemistry and Biochemistry, California State University Northridge, 18111 Nordhoff St., Northridge, California 91330, United States
| | - Linda Zhong
- Department of Physics and Astronomy, California State University Northridge, 18111 Nordhoff St., Northridge, California 91330, United States
| | - Matthew M Green
- Department of Chemistry and Biochemistry, California State University Northridge, 18111 Nordhoff St., Northridge, California 91330, United States
| | - Khoren Movsesyan
- Department of Chemistry and Biochemistry, California State University Northridge, 18111 Nordhoff St., Northridge, California 91330, United States
| | - Andrew Fraire
- Department of Chemistry and Biochemistry, California State University Northridge, 18111 Nordhoff St., Northridge, California 91330, United States
| | - Patrick A Ward
- Materials Technology and Energy Division, Savannah River National Laboratory, Aiken, South Carolina 29803, United States
| | - Kah Chun Lau
- Department of Physics and Astronomy, California State University Northridge, 18111 Nordhoff St., Northridge, California 91330, United States
| | - Joseph A Teprovich
- Department of Chemistry and Biochemistry, California State University Northridge, 18111 Nordhoff St., Northridge, California 91330, United States
| |
Collapse
|
3
|
Zhang L, Zhang C, Berg EJ. Mastering Proton Activities in Aqueous Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2407852. [PMID: 39225353 DOI: 10.1002/adma.202407852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Advanced aqueous batteries are promising solutions for grid energy storage. Compared with their organic counterparts, water-based electrolytes enable fast transport kinetics, high safety, low cost, and enhanced environmental sustainability. However, the presence of protons in the electrolyte, generated by the spontaneous ionization of water, may compete with the main charge-storage mechanism, trigger unwanted side reactions, and accelerate the deterioration of the cell performance. Therefore, it is of pivotal importance to understand and master the proton activities in aqueous batteries. This Perspective comments on the following scientific questions: Why are proton activities relevant? What are proton activities? What do we know about proton activities in aqueous batteries? How do we better understand, control, and utilize proton activities?
Collapse
Affiliation(s)
- Leiting Zhang
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 538, Uppsala, 751 21, Sweden
| | - Chao Zhang
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 538, Uppsala, 751 21, Sweden
| | - Erik J Berg
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 538, Uppsala, 751 21, Sweden
| |
Collapse
|
4
|
Lacarbonara G, Sadd M, Rizell J, Bargnesi L, Matic A, Arbizzani C. Operando insights into ammonium-mediated lithium metal stabilization: surface morphology modulation and enhanced SEI development. J Colloid Interface Sci 2024; 669:699-711. [PMID: 38735252 DOI: 10.1016/j.jcis.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/24/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024]
Abstract
Lithium-ion batteries (LiBs) with graphite as an anode and lithiated transition metal oxide as a cathode are approaching their specific energy and power theoretical values. To overcome the limitations of LiBs, lithium metal anode with high specific capacity and low negative redox potential is necessary. However, practical application in rechargeable cells is hindered by uncontrolled lithium deposition manifesting, for instance, as Li dendrite growth which can cause formation of dead Li, short circuits and cell failure. The electrochemical behaviour of a protic additive (NH4PF6) in a carbonate-based electrolyte has been investigated by operando confocal Raman spectroscopy, in situ optical microscopy, and X-ray photoelectron spectroscopy, elucidating its functional mechanism. The ammonium cation promotes a chemical modification of the lithium metal anode-electrolyte interphase by producing an N-rich solid electrolyte interphase and chemically modifying the lithium surface morphology by electrochemical pitting. This novel method results in stable lithium deposition and stripping by a decreasing the local current density on the electrode, thus limiting dendritic deposition.
Collapse
Affiliation(s)
- Giampaolo Lacarbonara
- Alma Mater Studiorum - University of Bologna, Dept. of Chemistry "Giacomo Ciamician", via Selmi 2, Bologna, Italy.
| | - Matthew Sadd
- Department of Physics, Chalmers University of Technology, SE, 412 96 Göteborg, Sweden
| | - Josef Rizell
- Department of Physics, Chalmers University of Technology, SE, 412 96 Göteborg, Sweden
| | - Luca Bargnesi
- Alma Mater Studiorum - University of Bologna, Dept. of Chemistry "Giacomo Ciamician", via Selmi 2, Bologna, Italy
| | - Aleksandar Matic
- Department of Physics, Chalmers University of Technology, SE, 412 96 Göteborg, Sweden
| | - Catia Arbizzani
- Alma Mater Studiorum - University of Bologna, Dept. of Chemistry "Giacomo Ciamician", via Selmi 2, Bologna, Italy
| |
Collapse
|
5
|
Candeago R, Wang H, Nguyen MT, Doucet M, Glezakou VA, Browning JF, Su X. Unraveling the Role of Solvation and Ion Valency on Redox-Mediated Electrosorption through In Situ Neutron Reflectometry and Ab Initio Molecular Dynamics. JACS AU 2024; 4:919-929. [PMID: 38559709 PMCID: PMC10976571 DOI: 10.1021/jacsau.3c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 04/04/2024]
Abstract
Solvation and ion valency effects on selectivity of metal oxyanions at redox-polymer interfaces are explored through in situ spatial-temporally resolved neutron reflectometry combined with large scale ab initio molecular dynamics. The selectivity of ReO4- vs MoO42- for two redox-metallopolymers, poly(vinyl ferrocene) (PVFc) and poly(3-ferrocenylpropyl methacrylamide) (PFPMAm) is evaluated. PVFc has a higher Re/Mo separation factor compared to PFPMAm at 0.6 V vs Ag/AgCl. In situ techniques show that both PVFc and PFPMAm swell in the presence of ReO4- (having higher solvation with PFPMAm), but do not swell in contact with MoO42-. Ab initio molecular simulations suggest that MoO42- maintains a well-defined double solvation shell compared to ReO4-. The more loosely solvated anion (ReO4-) is preferably adsorbed by the more hydrophobic redox polymer (PVFc), and electrostatic cross-linking driven by divalent anionic interactions could impair film swelling. Thus, the in-depth understanding of selectivity mechanisms can accelerate the design of ion-selective redox-mediated separation systems for transition metal recovery and recycling.
Collapse
Affiliation(s)
- Riccardo Candeago
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Hanyu Wang
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Manh-Thuong Nguyen
- Physical
and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Mathieu Doucet
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37831, United States
| | | | - James F. Browning
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Xiao Su
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
Pastor E, Lian Z, Xia L, Ecija D, Galán-Mascarós JR, Barja S, Giménez S, Arbiol J, López N, García de Arquer FP. Complementary probes for the electrochemical interface. Nat Rev Chem 2024; 8:159-178. [PMID: 38388837 DOI: 10.1038/s41570-024-00575-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2024] [Indexed: 02/24/2024]
Abstract
The functions of electrochemical energy conversion and storage devices rely on the dynamic junction between a solid and a fluid: the electrochemical interface (EI). Many experimental techniques have been developed to probe the EI, but they provide only a partial picture. Building a full mechanistic understanding requires combining multiple probes, either successively or simultaneously. However, such combinations lead to important technical and theoretical challenges. In this Review, we focus on complementary optoelectronic probes and modelling to address the EI across different timescales and spatial scales - including mapping surface reconstruction, reactants and reaction modulators during operation. We discuss how combining these probes can facilitate a predictive design of the EI when closely integrated with theory.
Collapse
Affiliation(s)
- Ernest Pastor
- CNRS, IPR (Institut de Physique de Rennes), University of Rennes, Rennes, France.
- CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL2015, The University of Tokyo, Tokyo, Japan.
| | - Zan Lian
- ICIQ-Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Tarragona, Spain
| | - Lu Xia
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - David Ecija
- IMDEA Nanoscience, Campus Universitario de Cantoblanco, Madrid, Spain
| | - José Ramón Galán-Mascarós
- ICIQ-Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Tarragona, Spain
- ICREA, Barcelona, Spain
| | - Sara Barja
- Department of Polymers and Advanced Materials, Centro de Física de Materiales (CFM), University of the Basque Country UPV/EHU, San Sebastián, Spain
- Donostia International Physics Center (DIPC), San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Sixto Giménez
- Institute of Advanced Materials (INAM) Universitat Jaume I, Castelló, Spain
| | - Jordi Arbiol
- ICREA, Barcelona, Spain
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, Catalonia, Spain
| | - Núria López
- ICIQ-Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Tarragona, Spain
| | - F Pelayo García de Arquer
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain.
| |
Collapse
|