1
|
Tricou LP, Guirguis N, Cherifi K, Matoori S. Zeolite-Loaded Hydrogels as Wound pH-Modulating Dressings for Diabetic Wound Healing. ACS APPLIED BIO MATERIALS 2024; 7:8102-8106. [PMID: 38780130 DOI: 10.1021/acsabm.4c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Wound pH has emerged as a promising therapeutic target in diabetic foot ulcers (DFU). Here, we aimed to develop a microparticle-loaded hydrogel for pH modulation in wound fluid. In a screen of polymeric and inorganic microparticles, zeolites were identified as pH-modulating microparticles. Zeolites were encapsulated in a calcium cross-linked alginate hydrogel, a biocompatible matrix clinically used as a wound dressing. This hydrogel potently neutralized hydroxide ions in serum-containing simulated wound fluid. These findings encourage a further development of this pH-modulating device as a molecular therapeutic system for DFUs.
Collapse
Affiliation(s)
- Léo-Paul Tricou
- Faculté de Pharmacie, Université de Montréal, Montreal, Québec H3T 1J4, Canada
- ISPB Faculté de Pharmacie, Université Claude Bernard Lyon 1, Lyon 69008, France
- Chemical Engineering Department, Polytechnique Montreal, Montréal, Québec H3T 1J4, Canada
| | - Natalie Guirguis
- Faculté de Pharmacie, Université de Montréal, Montreal, Québec H3T 1J4, Canada
| | - Katia Cherifi
- Faculté de Pharmacie, Université de Montréal, Montreal, Québec H3T 1J4, Canada
| | - Simon Matoori
- Faculté de Pharmacie, Université de Montréal, Montreal, Québec H3T 1J4, Canada
| |
Collapse
|
2
|
Al-Hawat ML, Caron J, Djebbar S, Matoori S. Development of a Polymersome Blood Ammonia Assay Coupled with a Portable Near-Infrared Fluorometer. ACS BIO & MED CHEM AU 2024; 4:226-232. [PMID: 39431266 PMCID: PMC11487535 DOI: 10.1021/acsbiomedchemau.4c00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/23/2024] [Accepted: 07/16/2024] [Indexed: 10/22/2024]
Abstract
Ammonia is a key biomarker in inborn and acquired liver disease. As clinical point-of-care blood ammonia assays are lacking, we developed a polymersome formulation for point-of-care blood ammonia sensing combined with a portable fluorometer. A pH-sensitive near-infrared (NIR) fluorescent dye was identified, which showed a strong fluorescence increase at acidic pH values. Building on reports on ammonia-selective PS-b-PEG polymersomes, these polymersomes were loaded with the NIR dye. These NIR fluorescent polymersomes sensed ammonia in a clinically relevant range in ammonia-spiked fresh whole blood with high linearity (R 2 = 0.9948) after 5 min using a conventional tabletop plate reader. Subsequently, the assay was tested with a portable fluorometer. An ammonia-dependent fluorescence increase was detected in ammonia-spiked fresh mouse blood after 5 min using the portable fluorometer. The NIR dye-loaded PS-b-PEG polymersomes rapidly sensed ammonia with high linearity in whole blood. This assay was successfully combined with a portable fluorometer and only required 3 μL of blood. These findings motivate a further development and clinical translation of this point-of-care blood ammonia assay.
Collapse
Affiliation(s)
- Marie-Lynn Al-Hawat
- Faculté de Pharmacie, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Justine Caron
- Faculté de Pharmacie, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Sarah Djebbar
- Faculté de Pharmacie, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Simon Matoori
- Faculté de Pharmacie, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| |
Collapse
|
3
|
Fan Y, Wang H, Wang C, Xing Y, Liu S, Feng L, Zhang X, Chen J. Advances in Smart-Response Hydrogels for Skin Wound Repair. Polymers (Basel) 2024; 16:2818. [PMID: 39408528 PMCID: PMC11479249 DOI: 10.3390/polym16192818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/21/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Hydrogels have emerged as promising candidates for biomedical applications, especially in the treatment of skin wounds, as a result of their unique structural properties, highly tunable physicochemical properties, and excellent biocompatibility. The integration of smart-response features into hydrogels allows for dynamic responses to different external or internal stimuli. Therefore, this paper reviews the design of different smart-responsive hydrogels for different microenvironments in the field of skin wound therapy. First, the unique microenvironments of three typical chronic difficult-to-heal wounds and the key mechanisms affecting wound healing therapeutic measures are outlined. Strategies for the construction of internal stimulus-responsive hydrogels (e.g., pH, ROS, enzymes, and glucose) and external stimulus-responsive hydrogels (e.g., temperature, light, electricity, and magnetic fields) are highlighted from the perspective of the wound microenvironment and the in vitro environment, and the constitutive relationships between material design, intelligent response, and wound healing are revealed. Finally, this paper discusses the severe challenges faced by smart-responsive hydrogels during skin wound repair and provides an outlook on the combination of smart-responsive hydrogels and artificial intelligence to give scientific direction for creating and using hydrogel dressings that respond to stimuli in the clinic.
Collapse
Affiliation(s)
- Yinuo Fan
- Marine College, Shandong University, Weihai 264209, China; (Y.F.); (H.W.); (C.W.); (Y.X.); (S.L.); (L.F.); (X.Z.)
| | - Han Wang
- Marine College, Shandong University, Weihai 264209, China; (Y.F.); (H.W.); (C.W.); (Y.X.); (S.L.); (L.F.); (X.Z.)
| | - Chunxiao Wang
- Marine College, Shandong University, Weihai 264209, China; (Y.F.); (H.W.); (C.W.); (Y.X.); (S.L.); (L.F.); (X.Z.)
| | - Yuanhao Xing
- Marine College, Shandong University, Weihai 264209, China; (Y.F.); (H.W.); (C.W.); (Y.X.); (S.L.); (L.F.); (X.Z.)
| | - Shuying Liu
- Marine College, Shandong University, Weihai 264209, China; (Y.F.); (H.W.); (C.W.); (Y.X.); (S.L.); (L.F.); (X.Z.)
| | - Linhan Feng
- Marine College, Shandong University, Weihai 264209, China; (Y.F.); (H.W.); (C.W.); (Y.X.); (S.L.); (L.F.); (X.Z.)
| | - Xinyu Zhang
- Marine College, Shandong University, Weihai 264209, China; (Y.F.); (H.W.); (C.W.); (Y.X.); (S.L.); (L.F.); (X.Z.)
| | - Jingdi Chen
- Marine College, Shandong University, Weihai 264209, China; (Y.F.); (H.W.); (C.W.); (Y.X.); (S.L.); (L.F.); (X.Z.)
- State Key Laboratory of Mineral Processing, Beijing 100160, China
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai 265599, China
| |
Collapse
|
4
|
Gunjan, Himanshu, Pandey RP, Mukherjee R, Chang CM. Advanced meta-analysis on therapeutic strategies of mesenchymal derived exosome for diabetic chronic wound healing and tissue remodeling. Mol Cell Probes 2024; 77:101974. [PMID: 39038766 DOI: 10.1016/j.mcp.2024.101974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Exosome (EXOs) are rapidly being identified as key mediators of cell-to-cell communication. They convey biologically active molecules to target cells, serve important roles in a range of physiological and pathological processes, and have enormous potential as novel therapeutic strategies. METHODS Preclinical research published between 2019 and 2023 provided the study's data searched on different medline search engine, and clinicaltrials.gov was searched for clinical data. These papers were chosen because they are relevant to the research of mesenchymal stem cell-derived exosomes (MSC-EXOs). Thematic synthesis and meta-analysis were used to perform the meta-analysis of diabetic wound healing. RESULTS For data extraction, a total of 18 preclinical and 4 clinical trials were selected. Preclinical investigations involving EXOs across various animal wound healing models showed promising potential for treatment. Specifically, following EXO treatment, there was a notable correlation with wound closure rates, with a pooled proportion of 46 % (95 % CI: 0.34; 0.59) and τ2 of 0.0593 after 3 ± 2 days, 54 % (95 % CI: 0.43; 0.65) and τ2 of 0.0465 after 7 ± 2 days, and 69 % (95 % CI: 0.62; 0.76) and τ2 of 0.0221 after 14 ± 2 days, with an egger's test p-value of <0.01. Further investigation into heterogeneity was conducted through subgroup analysis based on the source of EXO and the animal model utilized in the study. CONCLUSIONS EXOs are proving to be viable platforms for the treatment of a wide range of disorders in clinical trials. MSC-EXOs exhibited significant diabetic wound healing capabilities across diverse outcomes including wound closure, increase angiogenesis, immunomodulatory ability and skin regeneration with its typical structure and functions.
Collapse
Affiliation(s)
- Gunjan
- Graduate Institute of Biomedical Sciences, Chang Gung University, No. 259, Wenhua 1(st) Road, Guishan District, Taoyuan City, 33302, Taiwan (R.O.C)
| | - Himanshu
- Graduate Institute of Biomedical Sciences, Chang Gung University, No. 259, Wenhua 1(st) Road, Guishan District, Taoyuan City, 33302, Taiwan (R.O.C)
| | - Ramendra Pati Pandey
- School of Health Sciences and Technology (SoHST), UPES, Bidholi, Dehradun, 248007, Uttarakhand, India
| | - Riya Mukherjee
- Graduate Institute of Biomedical Sciences, Chang Gung University, No. 259, Wenhua 1(st) Road, Guishan District, Taoyuan City, 33302, Taiwan (R.O.C)
| | - Chung-Ming Chang
- Graduate Institute of Biomedical Sciences, Chang Gung University, No. 259, Wenhua 1(st) Road, Guishan District, Taoyuan City, 33302, Taiwan (R.O.C); Master & Ph.D. Program in Biotechnology Industry, Chang Gung University, No. 259, Wenhua 1(st) Road, Guishan District, Taoyuan City, 33302, Taiwan (R.O.C); Department of Medical Biotechnology and Laboratory Science, Chang Gung University, No. 259, Wenhua 1(st) Road, Guishan District, Taoyuan City, 33302, Taiwan (R.O.C).
| |
Collapse
|
5
|
Lu X, Zhou L, Song W. Recent Progress of Electrospun Nanofiber Dressing in the Promotion of Wound Healing. Polymers (Basel) 2024; 16:2596. [PMID: 39339060 PMCID: PMC11435701 DOI: 10.3390/polym16182596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The nanofiber materials of three-dimensional spatial structure synthesized by electrospun have the characteristics of high porosity, high specific surface area, and high similarity to the natural extracellular matrix (ECM) of the human body. These are beneficial for absorbing wound exudate, effectively blocking the invasion of external bacteria, and promoting cell respiration and proliferation, which provides an ideal microenvironment for wound healing. Moreover, electrospun nanofiber dressings can flexibly load drugs according to the condition of the wound, further promoting wound healing. Recently, electrospun nanofiber materials have shown promising application prospects as medical dressings in clinical. Based on current research, this article reviewed the development history of wound dressings and the principles of electrospun technology. Subsequently, based on the types of base material, polymer-based electrospun nanofiber dressing and electrospun nanofiber dressing containing drug-releasing factors were discussed. Furthermore, the application of electrospun nanofiber dressing on skin tissue is highlighted. This review aims to provide a detailed overview of the current research on electrospun nanomaterials for wound healing, addressing challenges and suggesting future research directions to advance the field of electrospun dressings in wound healing.
Collapse
Affiliation(s)
- Xiaoqi Lu
- School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Libo Zhou
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Weiye Song
- School of Mechanical Engineering, Shandong University, Jinan 250061, China
| |
Collapse
|
6
|
Tricou LP, Al-Hawat ML, Cherifi K, Manrique G, Freedman BR, Matoori S. Wound pH-Modulating Strategies for Diabetic Wound Healing. Adv Wound Care (New Rochelle) 2024; 13:446-462. [PMID: 38149883 PMCID: PMC11535470 DOI: 10.1089/wound.2023.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/22/2023] [Indexed: 12/28/2023] Open
Abstract
Significance: Chronic diabetic wounds on the lower extremities (diabetic foot ulcers, DFU) are one of the most prevalent and life-threatening complications of diabetes, responsible for significant loss of quality of life and cost to the health care system. Available pharmacologic treatments fail to achieve complete healing in many patients. Recent studies and investigational treatments have highlighted the potential of modulating wound pH in DFU. Recent Advances: Data from in vitro, preclinical, and clinical studies highlight the role of pH in the pathophysiology of DFU, and topical administration of pH-lowering agents have shown promise as a therapeutic strategy for diabetic wounds. In this critical review, we describe the role of pH in DFU pathophysiology and present selected low-molecular-weight and hydrogel-based pH-modulating systems for wound healing and infection control in diabetic wounds. Critical Issues: The molecular mechanisms leading to pH alterations in diabetic wounds are complex and may differ between in vitro models, animal models of diabetes, and the human pathophysiology. Wound pH-lowering bandages for DFU therapy must be tested in established animal models of diabetic wound healing and patients with diabetes to establish a comprehensive benefit-risk profile. Future Directions: As our understanding of the role of pH in the pathophysiology of diabetic wounds is deepening, new treatments for this therapeutic target are being developed and will be tested in preclinical and clinical studies. These therapeutic systems will establish a target product profile for pH-lowering treatments such as an optimal pH profile for each wound healing stage. Thus, controlling wound bed pH could become a powerful tool to accelerate chronic diabetic wound healing.
Collapse
Affiliation(s)
- Léo-Paul Tricou
- Faculté de Pharmacie, Université de Montréal, Montréal, Canada
- ISPB Faculté de Pharmacie, Université Claude Bernard Lyon 1, Lyon, France
- Chemical Engineering Department, Polytechnique Montreal, Montréal, Canada
| | | | - Katia Cherifi
- Faculté de Pharmacie, Université de Montréal, Montréal, Canada
| | | | - Benjamin R. Freedman
- Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Simon Matoori
- Faculté de Pharmacie, Université de Montréal, Montréal, Canada
| |
Collapse
|
7
|
Irantash S, Gholipour-Kanani A, Najmoddin N, Varsei M. A hybrid structure based on silk fibroin/PVA nanofibers and alginate/gum tragacanth hydrogel embedded with cardamom extract. Sci Rep 2024; 14:14010. [PMID: 38890349 PMCID: PMC11189390 DOI: 10.1038/s41598-024-63061-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
Hybrid structures made of natural-synthetic polymers have been interested due to high biological features combining promising physical-mechanical properties. In this research, a hybrid dressing consisting of a silk fibroin (SF)/polyvinyl alcohol (PVA) nanofibers and sodium alginate (SA)/gum tragacanth (GT) hydrogel incorporating cardamom extract as an antibacterial agent was prepared. Accordingly, SF was extracted from cocoons followed by electrospinning in blend form with PVA (SF/PVA ratio: 1:1) under the voltage of 18 kV and the distances of 15 cm. The SEM images confirmed the formation of uniform, bead free fibers with the average diameter of 199 ± 28 nm. FTIR and XRD results revealed the successful extraction of SF and preparation of mixed fibrous mats. Next, cardamom oil extract-loaded SA/GT hydrogel was prepared and the nanofibrous structure was placed on the surface of hydrogel. SEM analysis depicted the uniform morphology of hybrid structure with desirable matching between two layers. TGA analysis showed desired thermal stability. The swelling ratio was found to be 1251% after 24 h for the hybrid structure and the drug was released without any initial burst. MTT assay and cell attachment results showed favorable biocompatibility and cell proliferation on samples containing extract, and antibacterial activity values of 85.35% against S. aureus and 75% against E. coli were obtained as well. The results showed that the engineered hybrid nanofibrous-hydrogel film structure incorporating cardamom oil extract could be a promising candidate for wound healing applications and skin tissue engineering.
Collapse
Affiliation(s)
- Shadan Irantash
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Adeleh Gholipour-Kanani
- Department of Textile Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Najmeh Najmoddin
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
- Department of Biomedical Engineering, Medical Engineering and Biology Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Mehdi Varsei
- Department of Textile Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
8
|
Jonidi Shariatzadeh F, Logsetty S, Liu S. Ultrasensitive Nanofiber Biosensor: Rapid In Situ Chromatic Detection of Bacteria for Healthcare Innovation. ACS APPLIED BIO MATERIALS 2024; 7:2378-2388. [PMID: 38502803 DOI: 10.1021/acsabm.4c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Rapid detection of bacterial presence in skin wounds is crucial to prevent the transition from acute to chronic wounds and the onset of systemic infections. Current methods for detecting infections, particularly at low concentrations (<1.0 × 105 CFU/cm2), often require complex technologies and direct sampling, which can be invasive and time-consuming. Addressing this gap, we introduce a colorimetric nanofibrous biosensor enabling real-time in situ monitoring of bacterial concentrations in wounds. This biosensor employs a colorimetric hemicyanine dye (HCy) probe, which changes color in response to bacterial lipase, a common secretion in infected wounds. To enhance the biosensor's sensitivity, we incorporated two key materials science strategies: aligning the nanofibers to promote efficient bacterial attachment and localization and integrating Tween 80, a surfactant, within the nanofiber matrix. This combination of physical and chemical cues results in a notable increase in lipase activity. The cross-aligned core-shell nanofibers, embedded with Tween 80 and HCy, demonstrate an immediate and distinct color change when exposed to as low as 3.0 × 104 CFU/cm2 of common pathogens such as Pseudomonas aeruginosa and MRSA. Significantly, the presence of Tween 80 amplifies the colorimetric response, making visual detection more straightforward and four times more pronounced. Our nanobiosensor design facilitates the detection of low-concentration bacterial infections in situ without the need to remove wound dressings. This advancement marks a significant step forward in real-time wound monitoring, offering a practical tool for the early detection of clinical bacterial infections.
Collapse
Affiliation(s)
| | - Sarvesh Logsetty
- Departments of Surgery and Psychiatry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 3P5, Canada
| | - Song Liu
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
- Department of Biosystems Engineering, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
9
|
Rezaei S, Imani R. Highly Absorbent Egg White/Carbomer-940 Hydrofilm as a Potential Diabetic Wound Dressing. Macromol Biosci 2024; 24:e2300353. [PMID: 37939368 DOI: 10.1002/mabi.202300353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/20/2023] [Indexed: 11/10/2023]
Abstract
Diabetic foot ulcer (DFU) is the most critical problem in diabetic patients. Managing exudate in this kind of wound presents significant challenges in clinics. Advanced wound dressings serve as the most effective approach to managing DFU. Herein, a highly absorbent hydrofilm is presented through a combination of egg white (EW) and Carbomer-940, benefiting from the bioactivity of the EW component and superabsorption capacity of Carbomer-940. The crystallinity of samples rises due to the presence of Carbomer-940. Regarding the high water absorption capacity of Carbomer-940, the swelling ratio and water-holding capacity of samples are also improved via its incorporation of up to 1005%. In contrast, the transmission of water vapor and in vitro degradation rate decreases as Carbomer-940 powers the crystallinity of hydrofilms. Carbomer-940 incorporation in the EW structure accelerates protein release during the time, while this acceleration is partially compensated by the crystallization effect. The cell viability assay demonstrates no toxicity as well as high human foreskin fibroblast cell proliferation for the hybrid hydrofilm sample, where the cell migration is positively affected in the presence of the bioactive components extracted from the dressing. Taken together, the optimized hybrid hydrofilm could be suggested as a promising wound dressing for managing DFUs.
Collapse
Affiliation(s)
- Soheila Rezaei
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, 1591634311, Iran
| | - Rana Imani
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, 1591634311, Iran
| |
Collapse
|
10
|
Capanema NSV, Mansur AAP, Carvalho SM, Martins T, Gonçalves MS, Andrade RS, Dorneles EMS, Lima LCD, de Alvarenga ÉLFC, da Fonseca EVB, de Sá MA, Lage AP, Lobato ZIP, Mansur HS. Nanosilver-Functionalized Hybrid Hydrogels of Carboxymethyl Cellulose/Poly(Vinyl Alcohol) with Antibacterial Activity for Prevention and Therapy of Infections of Diabetic Chronic Wounds. Polymers (Basel) 2023; 15:4542. [PMID: 38231902 PMCID: PMC10708083 DOI: 10.3390/polym15234542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024] Open
Abstract
Diabetic foot ulcers (DFUs) are considered one of the most severe chronic complications of diabetes and can lead to amputation in severe cases. In addition, bacterial infections in diabetic chronic wounds aggravate this scenario by threatening human health. Wound dressings made of polymer matrices with embedded metal nanoparticles can inhibit microorganism growth and promote wound healing, although the current clinical treatments for diabetic chronic wounds remain unsatisfactory. In this view, this research reports the synthesis and characterization of innovative hybrid hydrogels made of carboxymethyl cellulose (CMC) and poly(vinyl alcohol) (PVA) chemically crosslinked by citric acid (CA) functionalized with silver nanoparticles (AgNPs) generated in situ using an eco-friendly aqueous process. The results assessed through comprehensive in vitro and in vivo assays demonstrated that these hybrid polymer hydrogels functionalized with AgNPs possess physicochemical properties, cytocompatibility, hemocompatibility, bioadhesion, antibacterial activity, and biocompatibility suitable for wound dressings to support chronic wound healing process as well as preventing and treating bacterial infections. Hence, it can be envisioned that, with further research and development, these polymer-based hybrid nanoplatforms hold great potential as an important tool for creating a new generation of smart dressings for treating chronic diabetic wounds and opportunistic bacterial infections.
Collapse
Affiliation(s)
- Nádia S. V. Capanema
- Center of Nanoscience, Nanotechnology, and Innovation—CeNanoI, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil; (N.S.V.C.); (A.A.P.M.); (S.M.C.); (T.M.)
| | - Alexandra A. P. Mansur
- Center of Nanoscience, Nanotechnology, and Innovation—CeNanoI, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil; (N.S.V.C.); (A.A.P.M.); (S.M.C.); (T.M.)
| | - Sandhra M. Carvalho
- Center of Nanoscience, Nanotechnology, and Innovation—CeNanoI, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil; (N.S.V.C.); (A.A.P.M.); (S.M.C.); (T.M.)
| | - Talita Martins
- Center of Nanoscience, Nanotechnology, and Innovation—CeNanoI, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil; (N.S.V.C.); (A.A.P.M.); (S.M.C.); (T.M.)
| | - Maysa S. Gonçalves
- Departamento de Medicina Veterinária, Universidade Federal de Lavras, UFLA, Lavras 37200-000, Brazil; (M.S.G.); (R.S.A.); (E.M.S.D.)
| | - Rafaella S. Andrade
- Departamento de Medicina Veterinária, Universidade Federal de Lavras, UFLA, Lavras 37200-000, Brazil; (M.S.G.); (R.S.A.); (E.M.S.D.)
| | - Elaine M. S. Dorneles
- Departamento de Medicina Veterinária, Universidade Federal de Lavras, UFLA, Lavras 37200-000, Brazil; (M.S.G.); (R.S.A.); (E.M.S.D.)
| | - Letícia C. D. Lima
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil; (L.C.D.L.); (M.A.d.S.)
| | - Érika L. F. C. de Alvarenga
- Department of Natural Sciences, Universidade Federal de São João Del-Rei, UFSJ, São João Del-Rei 36301-160, Brazil; (É.L.F.C.d.A.); (E.V.B.d.F.)
| | - Emanuel V. B. da Fonseca
- Department of Natural Sciences, Universidade Federal de São João Del-Rei, UFSJ, São João Del-Rei 36301-160, Brazil; (É.L.F.C.d.A.); (E.V.B.d.F.)
| | - Marcos Augusto de Sá
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil; (L.C.D.L.); (M.A.d.S.)
| | - Andrey P. Lage
- Departamento de Medicina Veterinária Preventiva, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil; (A.P.L.); (Z.I.P.L.)
| | - Zelia I. P. Lobato
- Departamento de Medicina Veterinária Preventiva, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil; (A.P.L.); (Z.I.P.L.)
| | - Herman S. Mansur
- Center of Nanoscience, Nanotechnology, and Innovation—CeNanoI, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil; (N.S.V.C.); (A.A.P.M.); (S.M.C.); (T.M.)
| |
Collapse
|
11
|
Matoori S. Breakthrough Technologies in Diagnosis and Therapy of Chronic Wounds. ACS Pharmacol Transl Sci 2023; 6:854-856. [PMID: 37325445 PMCID: PMC10262315 DOI: 10.1021/acsptsci.3c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Indexed: 06/17/2023]
Affiliation(s)
- Simon Matoori
- Faculté de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
12
|
Freedman BR, Hwang C, Talbot S, Hibler B, Matoori S, Mooney DJ. Breakthrough treatments for accelerated wound healing. SCIENCE ADVANCES 2023; 9:eade7007. [PMID: 37196080 PMCID: PMC10191440 DOI: 10.1126/sciadv.ade7007] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/14/2023] [Indexed: 05/19/2023]
Abstract
Skin injuries across the body continue to disrupt everyday life for millions of patients and result in prolonged hospital stays, infection, and death. Advances in wound healing devices have improved clinical practice but have mainly focused on treating macroscale healing versus underlying microscale pathophysiology. Consensus is lacking on optimal treatment strategies using a spectrum of wound healing products, which has motivated the design of new therapies. We summarize advances in the development of novel drug, biologic products, and biomaterial therapies for wound healing for marketed therapies and those in clinical trials. We also share perspectives for successful and accelerated translation of novel integrated therapies for wound healing.
Collapse
Affiliation(s)
- Benjamin R. Freedman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Beth Israel Deaconess Medical Center, Department of Orthopaedic Surgery, Boston, MA, USA
| | - Charles Hwang
- Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard University, Boston, MA, USA
| | - Simon Talbot
- Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard University, Boston, MA, USA
| | | | - Simon Matoori
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Faculty of Pharmacy, University of Montreal, Montreal, QC, Canda
| | - David J. Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| |
Collapse
|
13
|
Matoori S. Breakthrough Technologies in Diagnosis and Therapy of Chronic Wounds. ACS APPLIED BIO MATERIALS 2023. [PMID: 37162061 DOI: 10.1021/acsabm.3c00225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Affiliation(s)
- Simon Matoori
- Faculté de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
14
|
Matoori S. Vesicular Diagnostics: A Spotlight on Lactate- and Ammonia-Sensing Systems. ACS APPLIED BIO MATERIALS 2023; 6:1315-1322. [PMID: 36917016 DOI: 10.1021/acsabm.3c00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Liposomes are a highly successful drug delivery system with over 15 FDA-approved formulations. Beyond delivering drugs, lipid and polymer vesicles have successfully been used for diagnostic applications. These applications range from more traditional uses, such as releasing diagnostic agents in a controlled manner, to leveraging the unique membrane properties to separate analytes and provide isolated reaction compartments in complex biological matrices. In this Spotlight on Applications, I highlight the complexities in the development and translation of diagnostic vesicles with two case studies, a liposomal reaction compartment for lactate sensing and a transmembrane pH-gradient polymersome for ammonia sensing.
Collapse
Affiliation(s)
- Simon Matoori
- Faculté de Pharmacie, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| |
Collapse
|
15
|
Madej-Kiełbik L, Gzyra-Jagieła K, Jóźwik-Pruska J, Dziuba R, Bednarowicz A. Biopolymer Composites with Sensors for Environmental and Medical Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7493. [PMID: 36363084 PMCID: PMC9659006 DOI: 10.3390/ma15217493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/13/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
One of the biggest economic and environmental sustainability problems is the over-reliance on petroleum chemicals in polymer production. This paper presents an overview of the current state of knowledge on biopolymers combined with biosensors in terms of properties, compounding methods and applications, with a focus on medical and environmental aspects. Therefore, this article is devoted to environmentally friendly polymer materials. The paper presents an overview of the current state of knowledge on biopolymers combined with biosensors in terms of properties, compounding methods and applications, with a special focus on medical and environmental aspects. The paper presents the current state of knowledge, as well as prospects. The article shows that biopolymers made from renewable raw materials are of great interest in various fields of science and industry. These materials not only replace existing polymers in many applications, but also provide new combinations of properties for new applications. Composite materials based on biopolymers are considered superior to traditional non-biodegradable materials due to their ability to degrade when exposed to environmental factors. The paper highlights the combination of polymers with nanomaterials which allows the preparation of chemical sensors, thus enabling their use in environmental or medical applications due to their biocompatibility and sensitivity. This review focuses on analyzing the state of research in the field of biopolymer-sensor composites.
Collapse
Affiliation(s)
- Longina Madej-Kiełbik
- Lukasiewicz Research Network—Lodz Institute of Technology, 19/27 M. Sklodowskiej-Curie Str., 90-570 Lodz, Poland
| | - Karolina Gzyra-Jagieła
- Lukasiewicz Research Network—Lodz Institute of Technology, 19/27 M. Sklodowskiej-Curie Str., 90-570 Lodz, Poland
- Faculty of Material Technologies and Textile Design, Lodz University of Technology, 116 Żeromskiego Street, 90-924 Lodz, Poland
| | - Jagoda Jóźwik-Pruska
- Lukasiewicz Research Network—Lodz Institute of Technology, 19/27 M. Sklodowskiej-Curie Str., 90-570 Lodz, Poland
| | - Radosław Dziuba
- Department of World Economy and European Integration, University of Lodz, 41/43 Rewolucji 1905 Str., 90-214 Lodz, Poland
| | - Anna Bednarowicz
- Lukasiewicz Research Network—Lodz Institute of Technology, 19/27 M. Sklodowskiej-Curie Str., 90-570 Lodz, Poland
- Faculty of Material Technologies and Textile Design, Lodz University of Technology, 116 Żeromskiego Street, 90-924 Lodz, Poland
| |
Collapse
|
16
|
Affiliation(s)
- Simon Matoori
- Faculté de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montreal, QC H3T
1J4, Canada
| |
Collapse
|