1
|
Hernandez JR, Lee HJ, Vigilant ME, Crawford S, Pietrantonio PV. The V410L kdr allele in the VGSC confers higher levels of field resistance to permethrin in urban mosquito populations of Aedes aegypti (L.). PEST MANAGEMENT SCIENCE 2024. [PMID: 39469906 DOI: 10.1002/ps.8495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Females of Aedes aegypti transmit emerging arboviruses including Zika, dengue, yellow fever, and chikungunya. Control of these adult mosquitoes heavily relies on synthetic insecticides, including pyrethroids. However, insecticide resistance development in populations poses a significant challenge to vector control, particularly from knockdown resistance (kdr) mutations in the voltage-gated sodium channel (VGSC), the target of pyrethroids. This study investigated the field efficacy of Permanone, a pyrethroid-based insecticide, against Ae. aegypti by assessing the impact of three common kdr mutations (V410L, V1016I, F1534C) on mosquito survival under a real operational mosquito control scenario, by quantifying the pesticide delivered in the field. RESULTS Field cage tests (FCTs) were conducted while conducting a realistic mosquito control application. Female mosquitoes from six operational areas from Harris County, TX, USA were exposed to Permanone delivered with a handheld sprayer. Permanone deposited near the cages was estimated from aluminum boats placed in the field during FCTs using gas chromatography-mass spectrometry (GC-MS). Mortality rates were recorded, and individual mosquitoes were genotyped for kdr mutations. A probit regression model was used to analyze the factors influencing mosquito survivorship. As the distance from the application source route increased, the amount of Permanone deposited decreased, resulting in higher survivorship frequency of Ae. aegypti females with the triple-resistant kdr genotype (LL/II/CC). The L allele at the 410-site significantly contributed to an increased resistance level when co-occurring with other kdr mutations. CONCLUSION This study linked the survival probabilities of mosquitoes with different kdr genotypes, and the amount of pesticide they received in the field. Pesticide quantification, control efficacy results and genotyping allowed us to empirically determine the impact of genotypic resistance on vector control in the field. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Han-Jung Lee
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Maximea E Vigilant
- Mosquito and Vector Control Division, Harris County Public Health, Houston, TX, USA
| | - Scott Crawford
- Department of Statistics, College of Arts and Sciences, Texas A&M University, College Station, TX, USA
| | | |
Collapse
|
2
|
Kim D, Jeong S, Park SM. Unraveling flavivirus pathogenesis: from bulk to single-cell RNA-sequencing strategies. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:403-411. [PMID: 39198221 PMCID: PMC11362000 DOI: 10.4196/kjpp.2024.28.5.403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 09/01/2024]
Abstract
The global spread of flaviviruses has triggered major outbreaks worldwide, significantly impacting public health, society, and economies. This has intensified research efforts to understand how flaviviruses interact with their hosts and manipulate the immune system, underscoring the need for advanced research tools. RNA-sequencing (RNA-seq) technologies have revolutionized our understanding of flavivirus infections by offering transcriptome analysis to dissect the intricate dynamics of virus-host interactions. Bulk RNA-seq provides a macroscopic overview of gene expression changes in virus-infected cells, offering insights into infection mechanisms and host responses at the molecular level. Single-cell RNA sequencing (scRNAseq) provides unprecedented resolution by analyzing individual infected cells, revealing remarkable cellular heterogeneity within the host response. A particularly innovative advancement, virus-inclusive single-cell RNA sequencing (viscRNA-seq), addresses the challenges posed by non-polyadenylated flavivirus genomes, unveiling intricate details of virus-host interactions. In this review, we discuss the contributions of bulk RNA-seq, scRNA-seq, and viscRNA-seq to the field, exploring their implications in cell line experiments and studies on patients infected with various flavivirus species. Comprehensive transcriptome analyses from RNA-seq technologies are pivotal in accelerating the development of effective diagnostics and therapeutics, paving the way for innovative treatments and enhancing our preparedness for future outbreaks.
Collapse
Affiliation(s)
- Doyeong Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Seonghun Jeong
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Sang-Min Park
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
3
|
Bramante CT, Beckman KB, Mehta T, Karger AB, Odde DJ, Tignanelli CJ, Buse JB, Johnson DM, Watson RHB, Daniel JJ, Liebovitz DM, Nicklas JM, Cohen K, Puskarich MA, Belani HK, Siegel LK, Klatt NR, Anderson B, Hartman KM, Rao V, Hagen AA, Patel B, Fenno SL, Avula N, Reddy NV, Erickson SM, Fricton RD, Lee S, Griffiths G, Pullen MF, Thompson JL, Sherwood NE, Murray TA, Rose MR, Boulware DR, Huling JD. Favorable Antiviral Effect of Metformin on SARS-CoV-2 Viral Load in a Randomized, Placebo-Controlled Clinical Trial of COVID-19. Clin Infect Dis 2024; 79:354-363. [PMID: 38690892 PMCID: PMC11327787 DOI: 10.1093/cid/ciae159] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Metformin has antiviral activity against RNA viruses including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The mechanism appears to be suppression of protein translation via targeting the host mechanistic target of rapamycin pathway. In the COVID-OUT randomized trial for outpatient coronavirus disease 2019 (COVID-19), metformin reduced the odds of hospitalizations/death through 28 days by 58%, of emergency department visits/hospitalizations/death through 14 days by 42%, and of long COVID through 10 months by 42%. METHODS COVID-OUT was a 2 × 3 randomized, placebo-controlled, double-blind trial that assessed metformin, fluvoxamine, and ivermectin; 999 participants self-collected anterior nasal swabs on day 1 (n = 945), day 5 (n = 871), and day 10 (n = 775). Viral load was quantified using reverse-transcription quantitative polymerase chain reaction. RESULTS The mean SARS-CoV-2 viral load was reduced 3.6-fold with metformin relative to placebo (-0.56 log10 copies/mL; 95% confidence interval [CI], -1.05 to -.06; P = .027). Those who received metformin were less likely to have a detectable viral load than placebo at day 5 or day 10 (odds ratio [OR], 0.72; 95% CI, .55 to .94). Viral rebound, defined as a higher viral load at day 10 than day 5, was less frequent with metformin (3.28%) than placebo (5.95%; OR, 0.68; 95% CI, .36 to 1.29). The metformin effect was consistent across subgroups and increased over time. Neither ivermectin nor fluvoxamine showed effect over placebo. CONCLUSIONS In this randomized, placebo-controlled trial of outpatient treatment of SARS-CoV-2, metformin significantly reduced SARS-CoV-2 viral load, which may explain the clinical benefits in this trial. Metformin is pleiotropic with other actions that are relevant to COVID-19 pathophysiology. CLINICAL TRIALS REGISTRATION NCT04510194.
Collapse
Affiliation(s)
- Carolyn T Bramante
- General Internal Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kenneth B Beckman
- Genomics Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Tanvi Mehta
- Division of Biostatistics and Health Data Science, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Amy B Karger
- Department of Laboratory Medicine and Pathology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - David J Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - John B Buse
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Darrell M Johnson
- Genomics Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ray H B Watson
- Genomics Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jerry J Daniel
- Genomics Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - David M Liebovitz
- General Internal Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jacinda M Nicklas
- General Internal Medicine, University of Colorado, School of Medicine, Aurora, Colorado, USA
| | - Ken Cohen
- UnitedHealth Group, Optum Labs, Minnetonka, Minnesota, USA
| | - Michael A Puskarich
- Emergency Medicine, Hennepin County Medical Center, Minneapolis, Minnesota, USA
| | - Hrishikesh K Belani
- Department of Medicine, Olive View—University of California, Los Angeles, California, USA
| | - Lianne K Siegel
- Division of Biostatistics and Health Data Science, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Nichole R Klatt
- Department of Surgery, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Blake Anderson
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, USA
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Katrina M Hartman
- General Internal Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Via Rao
- General Internal Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Aubrey A Hagen
- General Internal Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Barkha Patel
- General Internal Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sarah L Fenno
- General Internal Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Nandini Avula
- General Internal Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Neha V Reddy
- General Internal Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Spencer M Erickson
- General Internal Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Regina D Fricton
- General Internal Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Samuel Lee
- General Internal Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Gwendolyn Griffiths
- General Internal Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Matthew F Pullen
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jennifer L Thompson
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Nancy E Sherwood
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Thomas A Murray
- Division of Biostatistics and Health Data Science, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Michael R Rose
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David R Boulware
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jared D Huling
- Division of Biostatistics and Health Data Science, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
4
|
Nasrin F, Khoris IM, Chowdhury AD, Muttaqein SE, Park EY. Development of disposable electrode for the detection of mosquito-borne viruses. Biotechnol J 2023; 18:e2300125. [PMID: 37127933 DOI: 10.1002/biot.202300125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/03/2023]
Abstract
Development of disposable, rapid, and convenient biosensor with high sensitivity and reliability is the most desired method of viral disease prevention. To achieve this goal, in this work, a practical impedimetric biosensor has been implemented into a disposable electrode on a screen-printed carbon electrode (SPCE) for the detection of two mosquito-borne viruses. The biosensor fabrication has step-wisely carried out on the disposable electrode surface at room temperature: starting from conductive film formation, physical binding of the gold nanoparticles (AuNPs)-polyaniline (PAni) into the conductive film, and biofunctionalization. To get the maximum efficiency of the antibody, biotinylated antibody has been conjugated on the surface of AuNP-PAni/PAni-SPCE via the streptavidin-biotin conjugation method which is a critical factor for the high sensitivity. Using the antibody-antigen interaction, this disposable electrode has designed to detect mosquito-borne infectious viruses, Chikungunya virus (CHIKV), and Zika virus (ZIKV) separately in a wide linear range of 100 fg mL-1 to 1 ng mL-1 with a low detection limit of 1.33 and 12.31 fg mL-1 , respectively.
Collapse
Affiliation(s)
- Fahmida Nasrin
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, Suruga-ku, Shizuoka, Japan
| | - Indra Memdi Khoris
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, Suruga-ku, Shizuoka, Japan
| | - Ankan Dutta Chowdhury
- Amity Institute of Nanotechnology, Amity University Kolkata, Kolkata, West Bengal, India
| | - Sjakurrizal El Muttaqein
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, Suruga-ku, Shizuoka, Japan
| | - Enoch Y Park
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, Suruga-ku, Shizuoka, Japan
| |
Collapse
|
5
|
Bramante CT, Beckman KB, Mehta T, Karger AB, Odde DJ, Tignanelli CJ, Buse JB, Johnson DM, Watson RHB, Daniel JJ, Liebovitz DM, Nicklas JM, Cohen K, Puskarich MA, Belani HK, Siegel LK, Klatt NR, Anderson B, Hartman KM, Rao V, Hagen AA, Patel B, Fenno SL, Avula N, Reddy NV, Erickson SM, Fricton RD, Lee S, Griffiths G, Pullen MF, Thompson JL, Sherwood N, Murray TA, Rose MR, Boulware DR, Huling JD. Metformin reduces SARS-CoV-2 in a Phase 3 Randomized Placebo Controlled Clinical Trial. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.06.23290989. [PMID: 37333243 PMCID: PMC10275003 DOI: 10.1101/2023.06.06.23290989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Current antiviral treatment options for SARS-CoV-2 infections are not available globally, cannot be used with many medications, and are limited to virus-specific targets.1-3 Biophysical modeling of SARS-CoV-2 replication predicted that protein translation is an especially attractive target for antiviral therapy.4 Literature review identified metformin, widely known as a treatment for diabetes, as a potential suppressor of protein translation via targeting of the host mTor pathway.5 In vitro, metformin has antiviral activity against RNA viruses including SARS-CoV-2.6,7 In the COVID-OUT phase 3, randomized, placebo-controlled trial of outpatient treatment of COVID-19, metformin had a 42% reduction in ER visits/hospitalizations/death through 14 days; a 58% reduction in hospitalizations/death through 28 days, and a 42% reduction in Long COVID through 10 months.8,9 Here we show viral load analysis of specimens collected in the COVID-OUT trial that the mean SARS-CoV-2 viral load was reduced 3.6-fold with metformin relative to placebo (-0.56 log10 copies/mL; 95%CI, -1.05 to -0.06, p=0.027) while there was no virologic effect for ivermectin or fluvoxamine vs placebo. The metformin effect was consistent across subgroups and with emerging data.10,11 Our results demonstrate, consistent with model predictions, that a safe, widely available,12 well-tolerated, and inexpensive oral medication, metformin, can be repurposed to significantly reduce SARS-CoV-2 viral load.
Collapse
Affiliation(s)
| | | | - Tanvi Mehta
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN
| | - Amy B Karger
- Department of Laboratory Medicine and Pathology, Medical School, University of Minnesota, Minneapolis, MN
| | - David J Odde
- Department of Biomedical Engineering University of Minnesota, Minneapolis, MN
| | | | - John B Buse
- Endocrinology, University of North Carolina, Chapel Hill, NC
| | | | - Ray H B Watson
- Genomics Center, University of Minnesota, Minneapolis, MN
| | - Jerry J Daniel
- Genomics Center, University of Minnesota, Minneapolis, MN
| | | | | | | | | | - Hrishikesh K Belani
- Department of Medicine, Olive View - University of California, Los Angeles, CA
| | - Lianne K Siegel
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN
| | - Nichole R Klatt
- Department of Surgery, Medical School, University of Minnesota, Minneapolis, MN
| | - Blake Anderson
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia; Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | | | - Via Rao
- General Internal Medicine, University of Minnesota, Minneapolis, MN
| | - Aubrey A Hagen
- General Internal Medicine, University of Minnesota, Minneapolis, MN
| | - Barkha Patel
- General Internal Medicine, University of Minnesota, Minneapolis, MN
| | - Sarah L Fenno
- General Internal Medicine, University of Minnesota, Minneapolis, MN
| | - Nandini Avula
- General Internal Medicine, University of Minnesota, Minneapolis, MN
| | - Neha V Reddy
- General Internal Medicine, University of Minnesota, Minneapolis, MN
| | | | | | - Samuel Lee
- General Internal Medicine, Northwestern University, Chicago, IL
| | | | - Matthew F Pullen
- Division of Infectious Diseases and International Medicine, University of Minnesota, Minneapolis, MN
| | - Jennifer L Thompson
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN
| | - Nancy Sherwood
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN
| | - Thomas A Murray
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN
| | - Michael R Rose
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN
| | - David R Boulware
- Division of Infectious Diseases and International Medicine, University of Minnesota, Minneapolis, MN
| | - Jared D Huling
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN
| |
Collapse
|
6
|
Pharmacological Elevation of Cellular Dihydrosphingomyelin Provides a Novel Antiviral Strategy against West Nile Virus Infection. Antimicrob Agents Chemother 2023; 67:e0168722. [PMID: 36920206 PMCID: PMC10112131 DOI: 10.1128/aac.01687-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The flavivirus life cycle is strictly dependent on cellular lipid metabolism. Polyphenols like gallic acid and its derivatives are promising lead compounds for new therapeutic agents as they can exert multiple pharmacological activities, including the alteration of lipid metabolism. The evaluation of our collection of polyphenols against West Nile virus (WNV), a representative medically relevant flavivirus, led to the identification of N,N'-(dodecane-1,12-diyl)bis(3,4,5-trihydroxybenzamide) and its 2,3,4-trihydroxybenzamide regioisomer as selective antivirals with low cytotoxicity and high antiviral activity (half-maximal effective concentrations [EC50s] of 2.2 and 0.24 μM, respectively, in Vero cells; EC50s of 2.2 and 1.9 μM, respectively, in SH-SY5Y cells). These polyphenols also inhibited the multiplication of other flaviviruses, namely, Usutu, dengue, and Zika viruses, exhibiting lower antiviral or negligible antiviral activity against other RNA viruses. The mechanism underlying their antiviral activity against WNV involved the alteration of sphingolipid metabolism. These compounds inhibited ceramide desaturase (Des1), promoting the accumulation of dihydrosphingomyelin (dhSM), a minor component of cellular sphingolipids with important roles in membrane properties. The addition of exogenous dhSM or Des1 blockage by using the reference inhibitor GT-11 {N-[(1R,2S)-2-hydroxy-1-hydroxymethyl-2-(2-tridecyl-1-cyclopropenyl)ethyl]octanamide} confirmed the involvement of this pathway in WNV infection. These results unveil the potential of novel antiviral strategies based on the modulation of the cellular levels of dhSM and Des1 activity for the control of flavivirus infection.
Collapse
|
7
|
Firouzi R, Ashouri M. Identification of Potential Anti‐COVID‐19 Drug Leads from Medicinal Plants through Virtual High‐Throughput Screening. ChemistrySelect 2023. [DOI: 10.1002/slct.202203865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Rohoullah Firouzi
- Department of Physical Chemistry Chemistry and Chemical Engineering Research Center of Iran Tehran Iran
| | - Mitra Ashouri
- Department of Physical Chemistry School of Chemistry College of Science University of Tehran Tehran Iran
| |
Collapse
|
8
|
Allosteric Inhibition of Neutral Sphingomyelinase 2 (nSMase2) by DPTIP: From Antiflaviviral Activity to Deciphering Its Binding Site through In Silico Studies and Experimental Validation. Int J Mol Sci 2022; 23:ijms232213935. [PMID: 36430407 PMCID: PMC9697135 DOI: 10.3390/ijms232213935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Flavivirus comprises globally emerging and re-emerging pathogens such as Zika virus (ZIKV), Dengue virus (DENV), and West Nile virus (WNV), among others. Although some vaccines are available, there is an unmet medical need as no effective antiviral treatment has been approved for flaviviral infections. The development of host-directed antivirals (HDAs) targeting host factors that are essential for viral replication cycle offers the opportunity for the development of broad-spectrum antivirals. In the case of flaviviruses, recent studies have revealed that neutral sphingomyelinase 2, (nSMase2), involved in lipid metabolism, plays a key role in WNV and ZIKV infection. As a proof of concept, we have determined the antiviral activity of the non-competitive nSMase2 inhibitor DPTIP against WNV and ZIKV virus. DPTIP showed potent antiviral activity with EC50 values of 0.26 µM and 1.56 µM for WNV and ZIKV, respectively. In order to unravel the allosteric binding site of DPTIP in nSMase2 and the details of the interaction, computational studies have been carried out. These studies have revealed that DPTIP could block the DK switch in nSMase2. Moreover, the analysis of the residues contributing to the binding identified His463 as a crucial residue. Interestingly, the inhibitory activity of DPTIP on the H463A mutant protein supported our hypothesis. Thus, an allosteric cavity in nSMase2 has been identified that can be exploited for the development of new inhibitors with anti-flaviviral activity.
Collapse
|
9
|
Searching for Blockers of Dengue and West Nile Virus Viroporins. Viruses 2022; 14:v14081750. [PMID: 36016372 PMCID: PMC9413451 DOI: 10.3390/v14081750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 11/19/2022] Open
Abstract
Flavivirus infections, such as those caused by dengue and West Nile viruses, emerge as new challenges for the global healthcare sector. It has been found that these two viruses encode ion channels collectively termed viroporins. Therefore, drug molecules that block such ion-channel activity can serve as potential antiviral agents and may play a primary role in therapeutic purposes. We screened 2839 FDA-approved drugs and compounds in advanced experimental phases using three bacteria-based channel assays to identify such ion channel blockers. We primarily followed a negative genetic screen in which the channel is harmful to the bacteria due to excessive membrane permeabilization that can be relieved by a blocker. Subsequently, we cross-checked the outcome with a positive genetic screen and a pH-dependent assay. The following drugs exhibited potential blocker activities: plerixafor, streptomycin, tranexamic acid, CI-1040, glecaprevir, kasugamycin, and mesna were effective against dengue virus DP1. In contrast, idasanutlin, benzbromarone, 5-azacytidine, and plerixafor were effective against West Nile Virus MgM. These drugs can serve as future antiviral therapeutic agents following subsequent in vitro and in vivo efficacy studies.
Collapse
|
10
|
Matos M, Blanco MJ. Medicinal Chemistry in Portugal and Spain: A Strong Iberian Alliance. ACS Med Chem Lett 2022; 13:871-872. [PMID: 35707154 PMCID: PMC9190032 DOI: 10.1021/acsmedchemlett.2c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Maria
João Matos
- University
of Porto, 4099-002 Porto, Portugal
- University
of Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | | |
Collapse
|
11
|
Wu J, Power H, Miranda-Saksena M, Valtchev P, Schindeler A, Cunningham AL, Dehghani F. Identifying HSV-1 Inhibitors from Natural Compounds via Virtual Screening Targeting Surface Glycoprotein D. Pharmaceuticals (Basel) 2022; 15:361. [PMID: 35337158 PMCID: PMC8955139 DOI: 10.3390/ph15030361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 02/05/2023] Open
Abstract
Herpes simplex virus (HSV) infections are a worldwide health problem in need of new effective treatments. Of particular interest is the identification of antiviral agents that act via different mechanisms compared to current drugs, as these could interact synergistically with first-line antiherpetic agents to accelerate the resolution of HSV-1-associated lesions. For this study, we applied a structure-based molecular docking approach targeting the nectin-1 and herpesvirus entry mediator (HVEM) binding interfaces of the viral glycoprotein D (gD). More than 527,000 natural compounds were virtually screened using Autodock Vina and then filtered for favorable ADMET profiles. Eight top hits were evaluated experimentally in African green monkey kidney cell line (VERO) cells, which yielded two compounds with potential antiherpetic activity. One active compound (1-(1-benzofuran-2-yl)-2-[(5Z)-2H,6H,7H,8H-[1,3] dioxolo[4,5-g]isoquinoline-5-ylidene]ethenone) showed weak but significant antiviral activity. Although less potent than antiherpetic agents, such as acyclovir, it acted at the viral inactivation stage in a dose-dependent manner, suggesting a novel mode of action. These results highlight the feasibility of in silico approaches for identifying new antiviral compounds, which may be further optimized by medicinal chemistry approaches.
Collapse
Affiliation(s)
- Jiadai Wu
- School of Chemical and Biomolecular Engineering, Faculty of Engineering, The University of Sydney, Sydney 2006, Australia; (J.W.); (H.P.); (P.V.); (A.S.)
- Centre for Advanced Food Engineering, The University of Sydney, Sydney 2006, Australia
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead 2145, Australia;
| | - Helen Power
- School of Chemical and Biomolecular Engineering, Faculty of Engineering, The University of Sydney, Sydney 2006, Australia; (J.W.); (H.P.); (P.V.); (A.S.)
- Centre for Advanced Food Engineering, The University of Sydney, Sydney 2006, Australia
- Bioengineering and Molecular Medicine Laboratory, The Children’s Hospital at Westmead and The Westmead Institute for Medical Research, Westmead 2145, Australia
| | - Monica Miranda-Saksena
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead 2145, Australia;
| | - Peter Valtchev
- School of Chemical and Biomolecular Engineering, Faculty of Engineering, The University of Sydney, Sydney 2006, Australia; (J.W.); (H.P.); (P.V.); (A.S.)
- Centre for Advanced Food Engineering, The University of Sydney, Sydney 2006, Australia
| | - Aaron Schindeler
- School of Chemical and Biomolecular Engineering, Faculty of Engineering, The University of Sydney, Sydney 2006, Australia; (J.W.); (H.P.); (P.V.); (A.S.)
- Centre for Advanced Food Engineering, The University of Sydney, Sydney 2006, Australia
- Bioengineering and Molecular Medicine Laboratory, The Children’s Hospital at Westmead and The Westmead Institute for Medical Research, Westmead 2145, Australia
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead 2145, Australia;
| | - Fariba Dehghani
- School of Chemical and Biomolecular Engineering, Faculty of Engineering, The University of Sydney, Sydney 2006, Australia; (J.W.); (H.P.); (P.V.); (A.S.)
- Centre for Advanced Food Engineering, The University of Sydney, Sydney 2006, Australia
| |
Collapse
|
12
|
Perylene as a controversial antiviral scaffold. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2022. [DOI: 10.1016/bs.armc.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|