1
|
Flowers CR, Anantha RW, Leautaud V, Desai P, Donald CE, Hildebrandt MAT, Koff JL, Tamimi RM, Cozen W, Nze C, Melnick AM. Addressing Health Disparities in Hematologic Malignancies: from Genes to Outreach. Blood Cancer Discov 2025; 6:79-93. [PMID: 39898759 DOI: 10.1158/2643-3230.bcd-24-0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/15/2024] [Accepted: 01/07/2025] [Indexed: 02/04/2025] Open
Abstract
SIGNIFICANCE This review underscores our shared responsibility to champion multidimensional strategies rooted in basic and translational science, community involvement, and societal responsiveness for a meaningful impact. Unifying themes include the need to enhance collaborative infrastructure to engage laboratory researchers, epidemiologists, data scientists, clinicians, patients, community leaders, and policymakers; patient-level support services; outreach, education, and navigation for patients at the community level; recruitment and retention of underrepresented groups in the healthcare and research workforce; and funding for these efforts.
Collapse
Affiliation(s)
- Christopher R Flowers
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rachel W Anantha
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Veronica Leautaud
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pinkal Desai
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Chancellor E Donald
- Section of Hematology and Medical Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Michelle A T Hildebrandt
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jean L Koff
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Rulla M Tamimi
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Wendy Cozen
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, University of California Irvine, Irvine, California
| | - Chijioke Nze
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ari M Melnick
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
2
|
Huang G, Stevens R, Hucek DG, Purohit T, Li S, Miao H, Trost E, Hewett G, Clegg B, Park SR, Rajanayake K, Wen B, Sun D, Cierpicki T, Grembecka J. Structure-Based Development of Novel Spiro-Piperidine ASH1L Inhibitors. J Med Chem 2025; 68:174-195. [PMID: 39680643 DOI: 10.1021/acs.jmedchem.4c01673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The absent, small, or homeotic-like 1 (ASH1L) protein is a histone lysine methyltransferase that plays a crucial role in various cancers, including leukemia. Despite representing an attractive therapeutic target, only one class of ASH1L inhibitors was identified to date. Herein, we report development of advanced ASH1L inhibitors targeting the catalytic SET domain, which were designed to access previously unexplored binding pocket on ASH1L. Extensive medicinal chemistry combined with structure-based design led to identification of 66s (AS-254s), a highly potent and selective ASH1L inhibitor (IC50 = 94 nM), representing substantially improved inhibitory activity over previously reported compounds targeting ASH1L. Furthermore, 66s effectively blocked cell proliferation and induced apoptosis and differentiation in leukemia cells harboring MLL1 translocations. Overall, this work provides a high-quality chemical probe targeting the catalytic SET domain of ASH1L with increased inhibitory activity and cellular efficacy to study biological functions of ASH1L and potentially to develop novel anticancer therapeutics.
Collapse
Affiliation(s)
- Guang Huang
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rhiannon Stevens
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Devon G Hucek
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Trupta Purohit
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shuangjiang Li
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hongzhi Miao
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Elise Trost
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Geoff Hewett
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bradley Clegg
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Se Ra Park
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Krishani Rajanayake
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bo Wen
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Duxin Sun
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
3
|
Michail C, Rodrigues Lima F, Viguier M, Deshayes F. Structure and function of the lysine methyltransferase SETD2 in cancer: From histones to cytoskeleton. Neoplasia 2025; 59:101090. [PMID: 39591760 PMCID: PMC11626819 DOI: 10.1016/j.neo.2024.101090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024]
Abstract
SETD2 is known to be the unique histone methyltransferase responsible for the trimethylation of the lysine 36 of histone H3 thus generating H3K36me3. This epigenetic mark is critical for transcriptional activation and elongation, DNA repair, mRNA splicing, and DNA methylation. Recurrent SETD2-inactivating mutations and altered H3K36me3 levels are found in cancer at high frequency and numerous studies indicate that SETD2 acts as a tumor suppressor. Recently, SETD2 was further shown to methylate non-histone proteins particularly the cytoskeletal proteins tubulin and actin with subsequent impacts on cytoskeleton structure, mitosis and cell migration. Herein, we provide a review of the role of SETD2 in different cancers with special emphasis on the structural basis of the functions of this key lysine methyltransferase. Moreover, beyond the role of this enzyme in epigenetics and H3K36me3-dependent processes, we highlight the putative role of "non-epigenetic/H3K36me3" functions of SETD2 in cancer, particularly those involving the cytoskeleton.
Collapse
Affiliation(s)
- Christina Michail
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Fernando Rodrigues Lima
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Mireille Viguier
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France.
| | - Frédérique Deshayes
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France.
| |
Collapse
|
4
|
Giaimo BD, Ferrante F, Borggrefe T. Lysine and arginine methylation of transcription factors. Cell Mol Life Sci 2024; 82:5. [PMID: 39680066 DOI: 10.1007/s00018-024-05531-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/09/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024]
Abstract
Post-translational modifications (PTMs) are implicated in many biological processes including receptor activation, signal transduction, transcriptional regulation and protein turnover. Lysine's side chain is particularly notable, as it can undergo methylation, acetylation, SUMOylation and ubiquitination. Methylation affects not only lysine but also arginine residues, both of which are implicated in epigenetic regulation. Beyond histone-tails as substrates, dynamic methylation of transcription factors has been described. The focus of this review is on these non-histone substrates providing a detailed discussion of what is currently known about methylation of hypoxia-inducible factor (HIF), P53, nuclear receptors (NRs) and RELA. The role of methylation in regulating protein stability and function by acting as docking sites for methyl-reader proteins and via their crosstalk with other PTMs is explored.
Collapse
Affiliation(s)
- Benedetto Daniele Giaimo
- Institute of Biochemistry, Justus-Liebig-University Giessen, Friedrichstrasse 24, 35392, Giessen, Germany.
| | - Francesca Ferrante
- Institute of Biochemistry, Justus-Liebig-University Giessen, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Tilman Borggrefe
- Institute of Biochemistry, Justus-Liebig-University Giessen, Friedrichstrasse 24, 35392, Giessen, Germany.
| |
Collapse
|
5
|
Dai W, Qiao X, Fang Y, Guo R, Bai P, Liu S, Li T, Jiang Y, Wei S, Na Z, Xiao X, Li D. Epigenetics-targeted drugs: current paradigms and future challenges. Signal Transduct Target Ther 2024; 9:332. [PMID: 39592582 PMCID: PMC11627502 DOI: 10.1038/s41392-024-02039-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/14/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Epigenetics governs a chromatin state regulatory system through five key mechanisms: DNA modification, histone modification, RNA modification, chromatin remodeling, and non-coding RNA regulation. These mechanisms and their associated enzymes convey genetic information independently of DNA base sequences, playing essential roles in organismal development and homeostasis. Conversely, disruptions in epigenetic landscapes critically influence the pathogenesis of various human diseases. This understanding has laid a robust theoretical groundwork for developing drugs that target epigenetics-modifying enzymes in pathological conditions. Over the past two decades, a growing array of small molecule drugs targeting epigenetic enzymes such as DNA methyltransferase, histone deacetylase, isocitrate dehydrogenase, and enhancer of zeste homolog 2, have been thoroughly investigated and implemented as therapeutic options, particularly in oncology. Additionally, numerous epigenetics-targeted drugs are undergoing clinical trials, offering promising prospects for clinical benefits. This review delineates the roles of epigenetics in physiological and pathological contexts and underscores pioneering studies on the discovery and clinical implementation of epigenetics-targeted drugs. These include inhibitors, agonists, degraders, and multitarget agents, aiming to identify practical challenges and promising avenues for future research. Ultimately, this review aims to deepen the understanding of epigenetics-oriented therapeutic strategies and their further application in clinical settings.
Collapse
Affiliation(s)
- Wanlin Dai
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinbo Qiao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Fang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Renhao Guo
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Bai
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Shuang Liu
- Shenyang Maternity and Child Health Hospital, Shenyang, China
| | - Tingting Li
- Department of General Internal Medicine VIP Ward, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yutao Jiang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuang Wei
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhijing Na
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| | - Xue Xiao
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China.
| | - Da Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
- Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, China.
| |
Collapse
|
6
|
Chen G, Gu P, Wu W, Yin Y, Pan L, Huang S, Lin W, Deng M. SETD2 deficiency in peripheral sensory neurons induces allodynia by promoting NMDA receptor expression through NFAT5 in rodent models. Int J Biol Macromol 2024; 282:136767. [PMID: 39476923 DOI: 10.1016/j.ijbiomac.2024.136767] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/14/2024]
Abstract
Histone methylations play a crucial role in the development of neuropathic pain, and SET domain containing 2 (SETD2), a histone methyltransferase, serves as the sole tri-methylase known to catalyze H3K36me3 at the gene body. The N-methyl-d-aspartate receptor (NMDAR) is activated and mediates excitatory synaptic transmission in neuropathic pain. Nevertheless, the involvement of SETD2 in neuropathic pain and the specific regulatory mechanisms affecting NMDARs remain poorly understood. The expression levels of SETD2 were significantly decreased in the spinal cord and dorsal root ganglion (DRG) of rodents undergoing neuropathic pain induced by sciatic nerve chronic constrictive injury. Lentiviral shRNA-mediated SETD2 knockdown and conditional knockout in sensory neurons caused sustained NMDAR upregulation in DRG and spinal cord, which resulted in heightened neuronal excitability and increased pain hypersensitivity. SETD2 deficiency also led to reduced H3K36me3 deposition within the Grin1 (glutamate ionotropic receptor NMDA type subunit 1) gene body, thereby promoting aberrant transcription of the NMDARs subunit GluN1. The absence of SETD2 in the DRG potentiated neuronal excitability and increased presynaptic NMDAR activity in the spinal dorsal horn. Chromatin immunoprecipitation sequencing targeting H3K36me3 identified NFAT5 as a co-transcription factor in the transcriptional regulation of Grin1. These findings highlight SETD2 as a key regulator in pain signal transmission and offered new perspectives on the development of analgesics through the targeted modulation of epigenetic mechanisms.
Collapse
Affiliation(s)
- Gong Chen
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Panyang Gu
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Wenfang Wu
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Yuan Yin
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Liangyu Pan
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Shu Huang
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Wei Lin
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Meichun Deng
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
7
|
Ma S, Long G, Jiang Z, Zhang Y, Sun L, Pan Y, You Q, Guo X. Recent advances in targeting histone H3 lysine 36 methyltransferases for cancer therapy. Eur J Med Chem 2024; 274:116532. [PMID: 38805937 DOI: 10.1016/j.ejmech.2024.116532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
Histone H3 lysine 36 (H3K36) methylation is a typical epigenetic histone modification that is involved in various biological processes such as DNA transcription, repair and recombination in vivo. Mutations, translocations, and aberrant gene expression associated with H3K36 methyltransferases have been implicated in different malignancies such as acute myeloid leukemia, lung cancer, multiple myeloma, and others. Herein, we provided a comprehensive overview of the latest advances in small molecule inhibitors targeting H3K36 methyltransferases. We analyzed the structures and biological functions of the H3K36 methyltransferases family members. Additionally, we discussed the potential directions for future development of inhibitors targeting H3K36 methyltransferases.
Collapse
Affiliation(s)
- Sai Ma
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Guanlu Long
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Zheng Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Yan Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Liangkui Sun
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Yun Pan
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiaoke Guo
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
8
|
Zhu D, Chen F, Qiang H, Qi H. SPA inhibits hBMSC osteogenic differentiation and M1 macrophage polarization by suppressing SETD2 in acute suppurative osteomyelitis. Sci Rep 2024; 14:12728. [PMID: 38830934 PMCID: PMC11148074 DOI: 10.1038/s41598-024-63219-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024] Open
Abstract
To clarify the impact of SETD2 on macrophage function in pediatric patients with acute suppurative osteomyelitis and to elucidate the precise underlying mechanism. To gain insights into the potential functions of SETD2, a comprehensive study was conducted utilizing a co-culture model of human bone mesenchymal stem cells (hBMSCs) and bone marrow-derived macrophages (THP-1). A range of techniques were employed, including quantitative polymerase chain reaction, western blotting, ELISA, alkaline phosphatase activity assays, alizarin red S staining, luciferase reporter gene assays, and chromatin immunoprecipitation, to unravel the intricate interactions and molecular mechanisms involving SETD2 in this system. It was observed that SETD2 expression was reduced in THP-1 cells stimulated by staphylococcal protein A (SPA). Furthermore, the downregulation of SETD2 resulted in elevated M1 macrophage polarization and glycolysis, effects that were mitigated by SPA stimulation. Notably, SPA-stimulated THP-1 cells exhibited an increase in HIF-1α expression, which exhibited an inverse correlation with SETD2 levels. Moreover, it was discovered that SETD2 functioned as a catalyst for H3K36me3 and bound to the HIF-1α gene, which, in turn, regulated HIF-1α expression. Furthermore, the suppression of HIF-1α abrogated the consequences of SETD2 downregulation on glycolysis and M1 macrophage polarization. Lastly, the study demonstrated that M1 macrophage polarization serves as a mediator for BMP4's inhibitory effect on osteogenic differentiation of hBMSCs. This research has uncovered a previously unknown role of SETD2 in macrophages during osteomyelitis, revealing its significance in the pathogenesis of this condition. These findings suggest SETD2 as a novel target for the treatment of osteomyelitis.
Collapse
Affiliation(s)
- Dongsheng Zhu
- Department of Pediatric Surgery, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu Province, China.
| | - Feng Chen
- Department of Pediatric, Luodian Hospital, Shanghai, China
| | - Hongjia Qiang
- Department of Pediatric Surgery, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu Province, China.
| | - Han Qi
- Department of Emergency Surgery, The Second People's Hospital of , Lianyungang, Jiangsu Province, China.
| |
Collapse
|
9
|
Chen L, Liu J, Chen K, Su Y, Chen Y, Lei Y, Si J, Zhang J, Zhang Z, Zou W, Zhang X, Rondina MT, Wang QF, Li Y. SET domain containing 2 promotes megakaryocyte polyploidization and platelet generation through methylation of α-tubulin. J Thromb Haemost 2024; 22:1727-1741. [PMID: 38537781 DOI: 10.1016/j.jtha.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/23/2024] [Accepted: 03/12/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Megakaryocytes (MKs) are polyploid cells responsible for producing ∼1011 platelets daily in humans. Unraveling the mechanisms regulating megakaryopoiesis holds the promise for the production of clinical-grade platelets from stem cells, overcoming significant current limitations in platelet transfusion medicine. Previous work identified that loss of the epigenetic regulator SET domain containing 2 (SETD2) was associated with an increased platelet count in mice. However, the role of SETD2 in megakaryopoiesis remains unknown. OBJECTIVES Here, we examined how SETD2 regulated MK development and platelet production using complementary murine and human systems. METHODS We manipulated the expression of SETD2 in multiple in vitro and ex vivo models to assess the ploidy of MKs and the function of platelets. RESULTS The genetic ablation of Setd2 increased the number of high-ploidy bone marrow MKs. Peripheral platelet counts in Setd2 knockout mice were significantly increased ∼2-fold, and platelets exhibited normal size, morphology, and function. By knocking down and overexpressing SETD2 in ex vivo human cell systems, we demonstrated that SETD2 negatively regulated MK polyploidization by controlling methylation of α-tubulin, microtubule polymerization, and MK nuclear division. Small-molecule inactivation of SETD2 significantly increased the production of high-ploidy MKs and platelets from human-induced pluripotent stem cells and cord blood CD34+ cells. CONCLUSION These findings identify a previously unrecognized role for SETD2 in regulating megakaryopoiesis and highlight the potential of targeting SETD2 to increase platelet production from human cells for transfusion practices.
Collapse
Affiliation(s)
- Lei Chen
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jingkun Liu
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Kunying Chen
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yanxun Su
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yihe Chen
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ying Lei
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jia Si
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jie Zhang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhaojun Zhang
- University of Chinese Academy of Sciences, Beijing, China; Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center of Bioinformation, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Weiguo Zou
- Shanghai Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaohui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China; National Clinical Research Center for Hematologic Disease, Beijing, China; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Matthew T Rondina
- Departments of Internal Medicine and Pathology, Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA; Department of Internal Medicine and the Geriatric Research, Education, and Clinical Center, George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah, USA.
| | - Qian-Fei Wang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Yueying Li
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
10
|
Lu W, Zhang J, Huang W, Zhang Z, Jia X, Wang Z, Shi L, Li C, Wolynes PG, Zheng S. DynamicBind: predicting ligand-specific protein-ligand complex structure with a deep equivariant generative model. Nat Commun 2024; 15:1071. [PMID: 38316797 PMCID: PMC10844226 DOI: 10.1038/s41467-024-45461-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/24/2024] [Indexed: 02/07/2024] Open
Abstract
While significant advances have been made in predicting static protein structures, the inherent dynamics of proteins, modulated by ligands, are crucial for understanding protein function and facilitating drug discovery. Traditional docking methods, frequently used in studying protein-ligand interactions, typically treat proteins as rigid. While molecular dynamics simulations can propose appropriate protein conformations, they're computationally demanding due to rare transitions between biologically relevant equilibrium states. In this study, we present DynamicBind, a deep learning method that employs equivariant geometric diffusion networks to construct a smooth energy landscape, promoting efficient transitions between different equilibrium states. DynamicBind accurately recovers ligand-specific conformations from unbound protein structures without the need for holo-structures or extensive sampling. Remarkably, it demonstrates state-of-the-art performance in docking and virtual screening benchmarks. Our experiments reveal that DynamicBind can accommodate a wide range of large protein conformational changes and identify cryptic pockets in unseen protein targets. As a result, DynamicBind shows potential in accelerating the development of small molecules for previously undruggable targets and expanding the horizons of computational drug discovery.
Collapse
Affiliation(s)
- Wei Lu
- Galixir Technologies, 200100, Shanghai, China.
| | | | - Weifeng Huang
- School of Pharmaceutical Science, Sun Yat-sen University, 510006, Guangzhou, China
| | | | - Xiangyu Jia
- Galixir Technologies, 200100, Shanghai, China
| | - Zhenyu Wang
- Galixir Technologies, 200100, Shanghai, China
| | - Leilei Shi
- Galixir Technologies, 200100, Shanghai, China
| | - Chengtao Li
- Galixir Technologies, 200100, Shanghai, China
| | - Peter G Wolynes
- Center for Theoretical Biological Physics and Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Shuangjia Zheng
- Global Institute of Future Technology, Shanghai Jiao Tong University, 200240, Shanghai, China.
| |
Collapse
|
11
|
Aldrich CC, Calderón F, Conway SJ, He C, Hooker JM, Huryn DM, Lindsley CW, Liotta DC, Müller CE. Virtual Special Issue: Epigenetics 2022. ACS Chem Biol 2022; 17:2673-2678. [PMID: 36268572 DOI: 10.1021/acschembio.2c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
12
|
Aldrich CC, Calderón F, Conway SJ, He C, Hooker JM, Huryn DM, Lindsley CW, Liotta DC, Müller CE. Virtual Special Issue: Epigenetics 2022. ACS Pharmacol Transl Sci 2022; 5:829-834. [PMID: 36268124 PMCID: PMC9578134 DOI: 10.1021/acsptsci.2c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Indexed: 11/28/2022]
|
13
|
Aldrich CC, Calderón F, Conway SJ, He C, Hooker JM, Huryn DM, Lindsley CW, Liotta DC, Müller CE. Virtual Special Issue: Epigenetics 2022. ACS Infect Dis 2022; 8:1975-1980. [PMID: 36073808 DOI: 10.1021/acsinfecdis.2c00434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
14
|
Aldrich CC, Calderón F, Conway SJ, He C, Hooker JM, Huryn DM, Lindsley CW, Liotta DC, Müller CE. Virtual Special Issue: Epigenetics 2022. ACS Med Chem Lett 2022; 13:1524-1529. [PMID: 36262399 PMCID: PMC9575161 DOI: 10.1021/acsmedchemlett.2c00393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Indexed: 11/30/2022] Open
|
15
|
Aldrich CC, Calderón F, Conway SJ, He C, Hooker JM, Huryn DM, Lindsley CW, Liotta DC, Müller CE. Virtual Special Issue: Epigenetics 2022. J Med Chem 2022; 65:11894-11899. [PMID: 36073827 DOI: 10.1021/acs.jmedchem.2c01386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Aldrich CC, Calderón F, Conway SJ, He C, Hooker JM, Huryn DM, Lindsley CW, Liotta DC, Müller CE. Virtual Special Issue: Epigenetics 2022. ACS Chem Neurosci 2022. [PMID: 36067366 DOI: 10.1021/acschemneuro.2c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|