1
|
Stopper D, Buntrock S, Tan K, de Carvalho LP, Schäker-Hübner L, Held J, Kassack MU, Hansen FK. Multicomponent syntheses enable the discovery of novel quisinostat-derived chemotypes as histone deacetylase inhibitors. Eur J Med Chem 2025; 281:117045. [PMID: 39549507 DOI: 10.1016/j.ejmech.2024.117045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024]
Abstract
In this study, we synthesized and evaluated novel histone deacetylase (HDAC) inhibitors derived from the clinical candidate quisinostat. A library of 16 compounds categorized in three novel chemotypes was rapidly generated using multicomponent reactions (MCRs), enabling efficient structure-activity relationship studies. First, the compounds were evaluated for their activity against the Plasmodium falciparum strains 3D7 and Dd2, the main malaria-causing parasite, identifying compound 18b of the type C series as the most potent. It demonstrated low nanomolar IC50 values (IC50 (3D7) = 0.023 μM; IC50 (Dd2) = 0.047 μM) and high parasite selectivity (SIMRC-5/Pf3D7 > 2174). HDAC inhibition assays confirmed substantial inhibition of the P. falciparum enzyme PfHDAC1 (IC50 = 0.037 μM) as well as of human HDAC1 (IC50 = 0.021 μM) and HDAC6 (IC50 = 0.25 μM). Docking studies suggested distinct binding modes of 18b in P. falciparum and human HDAC1. Additionally, the in vitro anticancer activity was evaluated in Cal27 (head-neck carcinoma), HepG2 (hepatocellular carcinoma), A2780 (ovarian carcinoma), and U87 (glioblastoma) cell lines. Compounds 9b, 9d, and 13f showed potent antiproliferative activity and caspase 3/7 activation, in contrast to 18b. Furthermore, these compounds caused hyperacetylation of histone H3 and α-tubulin, indicating robust cellular target engagement. Overall, in this work we have identified the HDAC inhibitor 18b with selective antiplasmodial and 9b, 9d, and 13f with selective anticancer activities, providing valuable hits for further drug development efforts aimed at creating derivatives with reduced cytotoxicity against non-cancer cells compared to quisinostat.
Collapse
Affiliation(s)
- Daniel Stopper
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, 53121, Bonn, Germany
| | - Susanna Buntrock
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Kathrin Tan
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, 53121, Bonn, Germany
| | | | - Linda Schäker-Hübner
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, 53121, Bonn, Germany
| | - Jana Held
- Institute of Tropical Medicine, University of Tübingen, 72074, Tübingen, Germany; German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany; Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Matthias U Kassack
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany.
| | - Finn K Hansen
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, 53121, Bonn, Germany.
| |
Collapse
|
2
|
Zavarise C, Cintrat JC, Romero E, Sallustrau A. Isocyanate-based multicomponent reactions. RSC Adv 2024; 14:39253-39267. [PMID: 39670166 PMCID: PMC11635408 DOI: 10.1039/d4ra04152f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/29/2024] [Indexed: 12/14/2024] Open
Abstract
Since their discovery, multicomponent reactions have attracted significant attention due to their versatility and efficiency. This review aims to explore the latest advancements in isocyanate-based multicomponent reactions and the sophisticated chemical opportunities they present for generating molecules of interest. The added value of the methodologies described, supported by mechanism schemes, as well as scopes of application, will be discussed. These developments will be organised as the main accessible chemical functions and sorted according to their type of MCR (3, 4 or 5-MCR).
Collapse
Affiliation(s)
- Clara Zavarise
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM Gif-sur-Yvette 91191 France
| | - Jean-Christophe Cintrat
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM Gif-sur-Yvette 91191 France
| | - Eugénie Romero
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM Gif-sur-Yvette 91191 France
| | - Antoine Sallustrau
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM Gif-sur-Yvette 91191 France
| |
Collapse
|
3
|
Lamberti A, Serafini M, Aprile S, Bhela IP, Goutsiou G, Pessolano E, Fernandez-Ballester G, Ferrer-Montiel A, Di Martino RMC, Fernandez-Carvajal A, Pirali T. The multicomponent Passerini reaction as a means of accessing diversity in structure, activity and properties: Soft and hard vanilloid/cannabinoid modulators. Eur J Med Chem 2024; 279:116845. [PMID: 39265249 DOI: 10.1016/j.ejmech.2024.116845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/23/2024] [Accepted: 08/22/2024] [Indexed: 09/14/2024]
Abstract
A growing body of evidence points to the existence of a crosstalk between the endovanilloid (EV)- and the endocannabinoid (EC) systems, leading to the concept of a single system based on a shared set of endogenous ligands and regulation mechanisms. The EV/EC system encompasses the ion channel TRPV1, the G protein coupled receptors CB1 and CB2, their endogenous ligands and the enzymes for biosynthesis and inactivation. Disorders in which the EV/EC interaction is involved are inflammation, pain, neurodegenerative diseases and disorders of bones and skin. In the present paper, with the aim of targeting the EV/EC system, the Passerini reaction is used in a diversity-oriented approach to generate a series of α-acyloxycarboxamides bearing different substructures that resemble endogenous ligands. Compounds have been screened for activity on TRPV1, CB1 and CB2 and metabolic stability in skin cells, liver subcellular fractions and plasma. This protocol allowed to generate agents characterized by a diverse activity on TRPV1, CB1 and CB2, as well as heterogeneous metabolic stability that could allow different routes of administration, from soft drugs for topical treatment of skin diseases to hard drugs for systemic use in inflammation and pain. Compared to natural mediators, these compounds have a better drug-likeness. Among them, 41 stands out as an agonist endowed with a well-balanced activity on both TRPV1 and CB2, high selectivity over TRPM8, TRPA1 and CB1, metabolic stability and synthetic accessibility.
Collapse
Affiliation(s)
- Angela Lamberti
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain
| | - Marta Serafini
- Department of Pharmaceutical Sciences, Università Degli Studi Del Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| | - Silvio Aprile
- Department of Pharmaceutical Sciences, Università Degli Studi Del Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| | - Irene Preet Bhela
- Department of Pharmaceutical Sciences, Università Degli Studi Del Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| | - Georgia Goutsiou
- Department of Pharmaceutical Sciences, Università Degli Studi Del Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| | - Emanuela Pessolano
- Department of Pharmaceutical Sciences, Università Degli Studi Del Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| | - Gregorio Fernandez-Ballester
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain
| | - Antonio Ferrer-Montiel
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain
| | - Rita Maria Concetta Di Martino
- Department of Pharmaceutical Sciences, Università Degli Studi Del Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy.
| | - Asia Fernandez-Carvajal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain.
| | - Tracey Pirali
- Department of Pharmaceutical Sciences, Università Degli Studi Del Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| |
Collapse
|
4
|
Pelit E, Gediz Erturk A, Gul M. 1,3-Naphthoxazine derivatives: Synthesis, in silico pharmacokinetic studies, antioxidant and photoprotective properties. Bioorg Chem 2024; 153:107756. [PMID: 39243737 DOI: 10.1016/j.bioorg.2024.107756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024]
Abstract
Investigation into the interactions between photoprotective agents and skin can offer a precise understanding of their biological behaviors in vitro and in vivo, providing crucial insights for generating new substances. For this purpose, we designed and synthesized a series of naphthoxazine derivatives and examined their photoprotective properties. 1,3-naphthoxazine derivatives were synthesized through the multi-component reaction of 2-naphthol, arylamines and aromatic aldehydes in the presence of copper(II) trifluoromethanesulfonate (Cu(OTf)2) and (±)-Camphor-10-sulfonic acid ((±)-CSA) catalyst system under sonication. The potential of these synthesized 1,3-naphthoxazine derivatives as antioxidants and viable organic structural-based sunscreen ingredients has been investigated. Sun protection factor (SPF) assay results showed that especially compounds 4i, 4c, 4k, 4d, 4r, and 4h had remarkably high activity (23.65, 23.57, 23.04, 21.94, 20.80, and 20.26, respectively at 900 µg/mL concentration). Additionally, antioxidant activity of the synthesized compounds was evaluated and compounds 4h, 4e, 4b, and 4j exhibited the highest activities in DPPH scavenging activity assay (86.46 %, 82.83 %, 80.78 %, and 80.65 % respectively at 400 µg/mL concentration). The synthesized compounds exhibit promising characteristics for effective UV radiation absorption, suggesting their suitability for inclusion in sunscreen formulations. Cytotoxic activity of compound 4k against normal human fibroblast cell line (MRC-5) was determined by CVDK-8 method. The results revealed that the compound provided remarkable viability (87.55 %) of MRC-5 cells at concentration of 100 µM. The study explores their efficacy in providing broad-spectrum protection against UVA and UVB rays, degradation and photostability, ADMET profile, and other pharmacokinetic properties.
Collapse
Affiliation(s)
- Emel Pelit
- Department of Chemistry, Faculty of Art and Sciences, Kirklareli University, 39100 Kirklareli, Turkey.
| | - Aliye Gediz Erturk
- Department of Chemistry, Faculty of Art and Sciences, Ordu University, 52100 Ordu, Turkey
| | - Melek Gul
- Department of Chemistry, Faculty of Art and Sciences, Amasya University, 05100 Amasya, Turkey
| |
Collapse
|
5
|
Janeiro AM, González-Bakker A, Padrón JM, Marques CS. Accessing Promising Passerini Adducts in Anticancer Drug Design. Molecules 2024; 29:5538. [PMID: 39683703 DOI: 10.3390/molecules29235538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
The 3-component Passerini reaction (3CPR), discovered little more than 100 years ago, has been demonstrated in the last few decades to be a valuable tool for accessing structural diversity and complexity, essential topics to consider in drug discovery programs. Focusing on accessing a fine-tuned family of α-acyloxyamide-oxindole hybrids, we underline herein our latest insights regarding the use of this mild reaction approach to obtain promising anticancer agents. Cheap and commercially available isatin was used as starting material. The library of α-acyloxyamide-oxindole hybrids was tested against six human solid-tumor cell lines; among them, non-small cell lung carcinoma, cervical and colon adenocarcinoma, and breast and pancreas cancer. The most potent compound displayed GI50 values in the range of 1.3-21 µM.
Collapse
Affiliation(s)
- Ana Margarida Janeiro
- Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Aday González-Bakker
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, P.O. Box 456, 38200 La Laguna, Spain
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, P.O. Box 456, 38200 La Laguna, Spain
| | - Carolina S Marques
- LAQV-REQUIMTE, Institute for Research and Advanced Studies, University of Évora, Rua Romão Ramalho, 59, 7000-641 Évora, Portugal
| |
Collapse
|
6
|
Razumkov H, Jiang Z, Baek K, You I, Geng Q, Donovan KA, Tang MT, Metivier RJ, Mageed N, Seo P, Li Z, Byun WS, Hinshaw SM, Sarott RC, Fischer ES, Gray NS. Discovery of CRBN-Dependent WEE1 Molecular Glue Degraders from a Multicomponent Combinatorial Library. J Am Chem Soc 2024; 146:31433-31443. [PMID: 39499896 DOI: 10.1021/jacs.4c06127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
Small molecules promoting protein-protein interactions produce a range of therapeutic outcomes. Molecular glue degraders exemplify this concept due to their compact drug-like structures and ability to engage targets without reliance on existing cognate ligands. While cereblon molecular glue degraders containing glutarimide scaffolds have been approved for treatment of multiple myeloma and acute myeloid leukemia, the design of new therapeutically relevant monovalent degraders remains challenging. We report here an approach to glutarimide-containing molecular glue synthesis using multicomponent reactions as a central modular core-forming step. Screening the resulting library identified HRZ-1 derivatives that target casein kinase 1 α (CK1α) and Wee-like protein kinase (WEE1). Further medicinal chemistry efforts led to identification of selective monovalent WEE1 degraders that provide a potential starting point for the eventual development of a selective chemical degrader probe. The structure of the hit WEE1 degrader complex with CRBN-DDB1 and WEE1 provides a model of the protein-protein interface and ideas to rationalize the observed kinase selectivity. Our findings suggest that modular synthetic routes combined with in-depth structural characterization give access to selective molecular glue degraders and expansion of the CRBN-degradable proteome.
Collapse
Affiliation(s)
- Hlib Razumkov
- Department of Chemistry, Stanford School of Humanities and Sciences, Stanford University, Stanford, California 94305, United States
- Department of Chemical and Systems Biology, ChEM-H, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Zixuan Jiang
- Department of Chemistry, Stanford School of Humanities and Sciences, Stanford University, Stanford, California 94305, United States
- Department of Chemical and Systems Biology, ChEM-H, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Kheewoong Baek
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Inchul You
- Department of Chemical and Systems Biology, ChEM-H, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Qixiang Geng
- Department of Chemical and Systems Biology, ChEM-H, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
- Stanford Cancer Institute, Stanford School of Humanities and Sciences, Stanford University, Stanford, California 94305, United States
| | - Katherine A Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Michelle T Tang
- Department of Chemical and Systems Biology, ChEM-H, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Rebecca J Metivier
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Nada Mageed
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Pooreum Seo
- Department of Chemical and Systems Biology, ChEM-H, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
- Stanford Cancer Institute, Stanford School of Humanities and Sciences, Stanford University, Stanford, California 94305, United States
| | - Zhengnian Li
- Department of Chemical and Systems Biology, ChEM-H, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
- Stanford Cancer Institute, Stanford School of Humanities and Sciences, Stanford University, Stanford, California 94305, United States
| | - Woong Sub Byun
- Department of Chemical and Systems Biology, ChEM-H, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
- Stanford Cancer Institute, Stanford School of Humanities and Sciences, Stanford University, Stanford, California 94305, United States
| | - Stephen M Hinshaw
- Department of Chemical and Systems Biology, ChEM-H, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
- Stanford Cancer Institute, Stanford School of Humanities and Sciences, Stanford University, Stanford, California 94305, United States
| | - Roman C Sarott
- Department of Chemical and Systems Biology, ChEM-H, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
- Stanford Cancer Institute, Stanford School of Humanities and Sciences, Stanford University, Stanford, California 94305, United States
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, ChEM-H, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
- Stanford Cancer Institute, Stanford School of Humanities and Sciences, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
7
|
Zhou T, Zhang ZW, Nie J, Kwong FY, Ma JA, Cheung CW. Metallaphotocatalytic triple couplings for modular synthesis of elaborate N-trifluoroalkyl anilines. Nat Commun 2024; 15:9926. [PMID: 39548078 PMCID: PMC11568185 DOI: 10.1038/s41467-024-53828-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024] Open
Abstract
The integration of trifluoromethyl groups and three-dimensional quaternary carbon moieties into organic molecules has emerged as a prominent strategy in medicinal chemistry to augment drug efficacy. Although trifluoromethyl (hetero)aromatic amines and derivatives are prevalent frameworks in pharmaceuticals, the development of trifluoromethyl-embedded, intricately structured alkyl amine scaffolds for medicinal research remains a significant challenge. Herein, we present a metallaphotoredox multicomponent amination strategy employing 3,3,3-trifluoropropene, nitroarenes, tertiary alkylamines, and carboxylic acids. This synthetic pathway offers notable advantages, including the accessibility and cost-effectiveness of starting materials, high levels of chemo- and regioselectivity, and modularity. Furthermore, this approach enables the synthesis of a broad spectrum of aniline compounds featuring both trifluoromethyl group and distal quaternary carbon motifs along the aliphatic chains. The accelerated access to such elaborate N-trifluoroalkyl anilines likely involves three sequential radical-mediated coupling events, providing insightful implications for the retrosynthesis of potential compounds in organic synthesis and drug discovery.
Collapse
Affiliation(s)
- Ting Zhou
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, P. R. of China
| | - Zhong-Wei Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, P. R. of China
| | - Jing Nie
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, P. R. of China
| | - Fuk Yee Kwong
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, P. R. of China
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, P. R. of China.
| | - Chi Wai Cheung
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, P. R. of China.
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, P. R. of China.
| |
Collapse
|
8
|
Sreelekha MK, Jijin RK, Nayak KH, Babu BP. Base-promoted multicomponent synthesis of 1,2,4-triazole-based hybrids from 1,3-diones, β-nitrostyrenes, and hydrazones. Chem Commun (Camb) 2024; 60:11718-11721. [PMID: 39318185 DOI: 10.1039/d4cc03709j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Herein, we report a metal-free, base-promoted route for the synthesis of hybrid molecular scaffolds in which various 1,3-diones and 1,2,4-triazoles are linked by a benzyl bridge. This three-component, one-pot reaction was accomplished by first treating 4-hydroxycoumarin, trans-β-nitrostyrene, and aldehyde hydrazone in the presence of sodium carbonate. Further, this protocol was successfully expanded to other 1,3-diones, such as dimedone and 4-hydroxy-2-quinolone. A broad substrate scope, mild reaction conditions, and the metal and ligand/additive-free approach are the prominent features of this strategy.
Collapse
Affiliation(s)
- Mariswamy K Sreelekha
- Department of Chemistry, National Institute of Technology Karnataka (NITK) Surathkal, Mangalore-575025, Karnataka, India.
| | - Robert K Jijin
- Department of Chemistry, National Institute of Technology Karnataka (NITK) Surathkal, Mangalore-575025, Karnataka, India.
| | - Kalinga H Nayak
- Department of Chemistry, National Institute of Technology Karnataka (NITK) Surathkal, Mangalore-575025, Karnataka, India.
| | - Beneesh P Babu
- Department of Chemistry, National Institute of Technology Karnataka (NITK) Surathkal, Mangalore-575025, Karnataka, India.
| |
Collapse
|
9
|
Vidal HDA, Nunes PSG, Martinez AKA, Januário MAP, Santiago PHO, Ellena J, Corrêa AG. Diastereoselective Synthesis of Highly Functionalized γ-Lactams via Ugi Reaction/Michael Addition. Chem Asian J 2024:e202400917. [PMID: 39387841 DOI: 10.1002/asia.202400917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
The γ-lactam ring is a prominent feature in medicinal chemistry, and its synthesis has garnered significant interest due to its valuable properties. Among the γ-lactams, 2-oxopyrrolidine-3-carbonitrile derivatives stand out as versatile synthons that can be readily transformed into a variety of other functional groups. In this work, we successfully synthesized highly functionalized 3-cyano-2-pyrrolidinones with moderate to good overall yields using the Ugi reaction followed by intramolecular Michael addition. The process demonstrated excellent diastereoselectivity and showed good tolerance to a range of isonitriles and carbonyl compounds.
Collapse
Affiliation(s)
- Herika D A Vidal
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, São Carlos - SP, 13565-905, Brazil
| | - Paulo S G Nunes
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, São Carlos - SP, 13565-905, Brazil
| | - Alice K A Martinez
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, São Carlos - SP, 13565-905, Brazil
| | - Marcelo A P Januário
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, São Carlos - SP, 13565-905, Brazil
| | - Pedro H O Santiago
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, 13563-120, Brazil
| | - Javier Ellena
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, 13563-120, Brazil
| | - Arlene G Corrêa
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, São Carlos - SP, 13565-905, Brazil
| |
Collapse
|
10
|
Chaudhary HR, Patel DM. Recent trends for chemoselectivity modulation in one-pot organic transformations. RSC Adv 2024; 14:31072-31116. [PMID: 39351407 PMCID: PMC11440482 DOI: 10.1039/d4ra05495d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024] Open
Abstract
In organic reactions, chemoselectivity refers to the selective reactivity of one functional group in the presence of another. This can be more successful if the reagent and reaction parameters are appropriately chosen. One-pot reactions have been shown to be an effective structural variety technique for the development of novel heterocyclic or carbocyclic compounds. This review article focuses on recent efforts by researchers from around the world to synthesise novel organic molecules utilising these methodologies (2013-2024), as well as their mechanism insights. The substrate, catalyst, solvent, and temperature conditions all have a significant impact on chemoselectivity in the organic reactions described here. The manipulation of chemoselectivity in organic processes creates new potential for the production of novel heterocycles and carbocycles.
Collapse
Affiliation(s)
- Hiren R Chaudhary
- Department of Chemistry, Sankalchand Patel University Visnagar 384315 Gujarat India
| | - Divyang M Patel
- Department of Chemistry, Sankalchand Patel University Visnagar 384315 Gujarat India
| |
Collapse
|
11
|
Mohlala RL, Rashamuse TJ, Coyanis EM. Highlighting multicomponent reactions as an efficient and facile alternative route in the chemical synthesis of organic-based molecules: a tremendous growth in the past 5 years. Front Chem 2024; 12:1469677. [PMID: 39359421 PMCID: PMC11445040 DOI: 10.3389/fchem.2024.1469677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024] Open
Abstract
Since Strecker's discovery of multicomponent reactions (MCRs) in 1850, the strategy of applying an MCR approach has been in use for over a century. Due to their ability to quickly develop molecular diversity and structural complexity of interest, MCRs are considered an efficient approach in organic synthesis. Although MCRs such as the Ugi, Passerini, Biginelli, and Hantzsch reactions are widely studied, this review emphasizes the significance of selective MCRs to elegantly produce organic compounds of potential use in medicinal chemistry and industrial and material science applications, as well as the use of the MCR approach to sustainable methods. During synthesis, MCRs provide advantages such as atom economy, recyclable catalysts, moderate conditions, preventing waste, and avoiding solvent use. MCRs also reduce the number of sequential multiple reactions to one step.
Collapse
|
12
|
Blanco MJ, Buskes MJ, Govindaraj RG, Ipsaro JJ, Prescott-Roy JE, Padyana AK. Allostery Illuminated: Harnessing AI and Machine Learning for Drug Discovery. ACS Med Chem Lett 2024; 15:1449-1455. [PMID: 39291033 PMCID: PMC11403745 DOI: 10.1021/acsmedchemlett.4c00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
In the past several years there has been rapid adoption of artificial intelligence (AI) and machine learning (ML) tools for drug discovery. In this Microperspective, we comment on recent AI/ML applications to the discovery of allosteric modulators, focusing on breakthroughs with AlphaFold, structure-based drug discovery (SBDD), and medicinal chemistry applications. We discuss how these technologies are facilitating drug discovery and the remaining challenges to identify allosteric binding sites and ligands.
Collapse
Affiliation(s)
- Maria-Jesus Blanco
- Atavistik Bio, 101 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Melissa J Buskes
- Atavistik Bio, 101 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Rajiv G Govindaraj
- Atavistik Bio, 101 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Jonathan J Ipsaro
- Atavistik Bio, 101 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Joann E Prescott-Roy
- Atavistik Bio, 101 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Anil K Padyana
- Atavistik Bio, 101 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| |
Collapse
|
13
|
Faizan S, Wali AF, Talath S, Rehman MU, Sivamani Y, Nilugal KC, Shivangere NB, Attia SM, Nadeem A, Elayaperumal S, Kumar BRP. Novel dihydropyrimidines as promising EGFR & HER2 inhibitors: Insights from experimental and computational studies. Eur J Med Chem 2024; 275:116607. [PMID: 38908102 DOI: 10.1016/j.ejmech.2024.116607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024]
Abstract
Dihydropyrimidines are widely recognized for their diverse biological properties and are often synthesized by the Biginelli reactions. In this backdrop, a novel series of Biginelli dihydropyrimidines were designed, synthesized, purified, and analyzed by FT-IR, 1H NMR, 13C NMR, and mass spectrometry. Anticancer activity against MCF-7 breast cancer cells was evaluated as part of their cytotoxicity in comparison with the normal Vero cells. The cytotoxicity of dihydropyrimidines ranges from moderate to significant. Among the 38 dihydropyrimidines screened, compounds 16, 21, and 39 exhibited significant cytotoxicity. These 3 compounds were subjected to flow cytometry studies and EGFRwt Kinase inhibition assay using lapatinib as a standard. The study included evaluation for the inhibition of EGFR and HER2 expression at five different concentrations. At a concentration of 1000 nM compound 21 showed 98.51 % and 96.79 % inhibition of EGFR and HER2 expression. Moreover, compounds 16, 21 and 39 significantly inhibited EGFRwt activity with IC50 = 69.83, 37.21 and 76.79 nM, respectively. In addition, 3D-QSAR experiments were conducted to elucidate Structure activity relationships in a 3D grid space by comparing the experimental and predicted cytotoxic activities. Molecular docking studies were performed to validate the results by in silico method. All together, we developed a new series of Biginelli dihydropyrimidines as dual EGFR/HER2 inhibitors.
Collapse
Affiliation(s)
- Syed Faizan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru 570015, Constituent College of the JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Adil Farooq Wali
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical & Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical & Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Yuvaraj Sivamani
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru 570015, Constituent College of the JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Kiran C Nilugal
- School of Pharmacy, Management and Science University, Selangor, 40100, Malaysia
| | | | - Sabry M Attia
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sumitha Elayaperumal
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - B R Prashantha Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru 570015, Constituent College of the JSS Academy of Higher Education & Research, Mysuru, 570015, India.
| |
Collapse
|
14
|
Hu C, Tsien J, Chen SJ, Kong M, Merchant RR, Kanda Y, Qin T. A General Three-Component Alkyl Petasis Boron-Mannich Reaction. J Am Chem Soc 2024; 146:21769-21777. [PMID: 39072677 DOI: 10.1021/jacs.4c05940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Aryl amines are one of the most common moieties in biologically active molecules, and approximately 37% of drug candidates contain aromatic amines. Recent advancements in medicinal chemistry, coined "escaping from flatland", have led to a greater focus on accessing highly functionalized C (sp3)-rich amines to improve the physicochemical and pharmacokinetic properties of compounds. This article presents a modular and operationally straightforward three-component alkyl Petasis boron-Mannich (APBM) reaction that utilizes ubiquitous starting materials, including amines, aldehydes, and alkyl boronates. By adaptation of this transformation to high-throughput experimentation (HTE), it offers rapid access to an array of diverse C(sp3)-rich complex amines, amenable for rapid identification of drug candidates.
Collapse
Affiliation(s)
- Chao Hu
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Jet Tsien
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Si-Jie Chen
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - May Kong
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Rohan R Merchant
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Yuzuru Kanda
- Novartis Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Tian Qin
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| |
Collapse
|
15
|
Kan X, Wang JC, Dong YB. Metalated covalent organic frameworks as efficient catalysts for multicomponent tandem reactions. Chem Commun (Camb) 2024; 60:6362-6374. [PMID: 38836312 DOI: 10.1039/d4cc01743a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Multicomponent tandem reactions have become indispensable synthetic methods due to their economic advantages and efficient usage in natural products and drug synthesis. The emergence of metalated covalent organic frameworks (MCOFs) has opened up new opportunities for the advancement of multicomponent tandem reactions. In contrast to commonly used homogeneous transition metal catalysts, MCOFs possess regular porosity, high crystallinity, and rich metal chelation sites that facilitate the uniform distribution and anchoring of metals within their cavities. Thus, they show extremely high activity and have recently been widely employed as catalysts for multicomponent tandem reactions. It is timely to conduct a review of MCOFs in multicomponent tandem reactions, in order to offer guidance and assistance for the synthesis of MCOF catalysts and their application in multicomponent tandem reactions. This review provides a comprehensive overview of the design and synthesis of MCOFs, their application and progress in multicomponent tandem reactions, and the primary challenges encountered during their current development with the aim of contributing to the promotion of the field.
Collapse
Affiliation(s)
- Xuan Kan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| | - Jian-Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| |
Collapse
|
16
|
Marques CS, González-Bakker A, Padrón JM. The Ugi4CR as effective tool to access promising anticancer isatin-based α-acetamide carboxamide oxindole hybrids. Beilstein J Org Chem 2024; 20:1213-1220. [PMID: 38887573 PMCID: PMC11181168 DOI: 10.3762/bjoc.20.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Considering early-stage drug discovery programs, the Ugi four-component reaction is a valuable, flexible, and pivotal tool, facilitating the creation of two new amide bonds in a one-pot fashion to effectively yield the desired α-aminoacylamides. Here, we highlight the reputation of this reaction approach to access number and scaffold diversity of a library of isatin-based α-acetamide carboxamide oxindole hybrids, promising anticancer agents, in a mild and fast sustainable reaction process. The library was tested against six human solid tumor cell lines, among them, non-small cell lung carcinoma, cervical adenocarcinoma, breast cancer and colon adenocarcinoma. The most potent compounds 8d, 8h and 8k showed GI50 values in the range of 1-10 μM.
Collapse
Affiliation(s)
- Carolina S Marques
- LAQV-REQUIMTE, University of Évora, Institute for Research and Advanced Studies, Rua Romão Ramalho, 59, 7000-641, Évora, Portugal
| | - Aday González-Bakker
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, PO Box 456, 38200, La Laguna, Spain
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, PO Box 456, 38200, La Laguna, Spain
| |
Collapse
|
17
|
Algar S, Vázquez-Villa H, Aguilar-Garrido P, Navarro-Aguadero MÁ, Velasco-Estévez M, Sánchez-Merino A, Arribas-Álvarez I, Paradela A, Giner-Arroyo RL, Tamargo-Azpilicueta J, Díaz-Moreno I, Martínez-López J, Gallardo M, López-Rodríguez ML, Benhamú B. Cancer-Stem-Cell Phenotype-Guided Discovery of a Microbiota-Inspired Synthetic Compound Targeting NPM1 for Leukemia. JACS AU 2024; 4:1786-1800. [PMID: 38818079 PMCID: PMC11134387 DOI: 10.1021/jacsau.3c00682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 06/01/2024]
Abstract
The human microbiota plays an important role in human health and disease, through the secretion of metabolites that regulate key biological functions. We propose that microbiota metabolites represent an unexplored chemical space of small drug-like molecules in the search of new hits for drug discovery. Here, we describe the generation of a set of complex chemotypes inspired on selected microbiota metabolites, which have been synthesized using asymmetric organocatalytic reactions. Following a primary screening in CSC models, we identified the novel compound UCM-13369 (4b) whose cytotoxicity was mediated by NPM1. This protein is one of the most frequent mutations of AML, and NPM1-mutated AML is recognized by the WHO as a distinct hematopoietic malignancy. UCM-13369 inhibits NPM1 expression, downregulates the pathway associated with mutant NPM1 C+, and specifically recognizes the C-end DNA-binding domain of NPM1 C+, avoiding the nucleus-cytoplasm translocation involved in the AML tumorological process. The new NPM1 inhibitor triggers apoptosis in AML cell lines and primary cells from AML patients and reduces tumor infiltration in a mouse model of AML with NPM1 C+ mutation. The disclosed phenotype-guided discovery of UCM-13369, a novel small molecule inspired on microbiota metabolites, confirms that CSC death induced by NPM1 inhibition represents a promising therapeutic opportunity for NPM1-mutated AML, a high-mortality disease.
Collapse
Affiliation(s)
- Sergio Algar
- Department
of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Henar Vázquez-Villa
- Department
of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Pedro Aguilar-Garrido
- Department
of Haematology, Hospital Universitario 12
de Octubre, Instituto de Investigación Sanitaria Hospital 12
de Octubre (imas12), E-28041 Madrid, Spain
- H12O-CNIO
Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, E-28029 Madrid, Spain
| | - Miguel Ángel Navarro-Aguadero
- Department
of Haematology, Hospital Universitario 12
de Octubre, Instituto de Investigación Sanitaria Hospital 12
de Octubre (imas12), E-28041 Madrid, Spain
- H12O-CNIO
Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, E-28029 Madrid, Spain
| | - María Velasco-Estévez
- Department
of Haematology, Hospital Universitario 12
de Octubre, Instituto de Investigación Sanitaria Hospital 12
de Octubre (imas12), E-28041 Madrid, Spain
- H12O-CNIO
Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, E-28029 Madrid, Spain
| | - Anabel Sánchez-Merino
- Department
of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Iván Arribas-Álvarez
- Department
of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | | | - Rafael L. Giner-Arroyo
- Institute
for Chemical Research, cicCartuja, University
of Seville, CSIC, E-41092 Sevilla, Spain
| | | | - Irene Díaz-Moreno
- Institute
for Chemical Research, cicCartuja, University
of Seville, CSIC, E-41092 Sevilla, Spain
| | - Joaquín Martínez-López
- Department
of Haematology, Hospital Universitario 12
de Octubre, Instituto de Investigación Sanitaria Hospital 12
de Octubre (imas12), E-28041 Madrid, Spain
- H12O-CNIO
Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, E-28029 Madrid, Spain
| | - Miguel Gallardo
- Department
of Haematology, Hospital Universitario 12
de Octubre, Instituto de Investigación Sanitaria Hospital 12
de Octubre (imas12), E-28041 Madrid, Spain
- H12O-CNIO
Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, E-28029 Madrid, Spain
| | - María L. López-Rodríguez
- Department
of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Bellinda Benhamú
- Department
of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| |
Collapse
|
18
|
Razumkov H, Jiang Z, Baek K, You I, Geng Q, Donovan KA, Tang MT, Metivier RJ, Mageed N, Seo P, Li Z, Byun WS, Hinshaw SM, Sarott RC, Fischer ES, Gray NS. Discovery of CRBN-dependent WEE1 Molecular Glue Degraders from a Multicomponent Combinatorial Library. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.04.592550. [PMID: 38746375 PMCID: PMC11092764 DOI: 10.1101/2024.05.04.592550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Small molecules promoting protein-protein interactions produce a range of therapeutic outcomes. Molecular glue degraders exemplify this concept due to their compact drug-like structures and ability to engage targets without reliance on existing cognate ligands. While Cereblon molecular glue degraders containing glutarimide scaffolds have been approved for treatment of multiple myeloma and acute myeloid leukemia, the design of new therapeutically relevant monovalent degraders remains challenging. We report here an approach to glutarimide-containing molecular glue synthesis using multicomponent reactions as a central modular core-forming step. Screening the resulting library identified HRZ-01 derivatives that target casein kinase 1 alpha (CK1α) and Wee-like protein kinase (WEE1). Further medicinal chemistry efforts led to identification of selective monovalent WEE1 degraders that provide a potential starting point for the eventual development of a selective chemical degrader probe. The structure of the hit WEE1 degrader complex with CRBN-DDB1 and WEE1 provides a model of the protein-protein interface and a rationale for the observed kinase selectivity. Our findings suggest that modular synthetic routes combined with in-depth structural characterization give access to selective molecular glue degraders and expansion of the CRBN-degradable proteome.
Collapse
|
19
|
Faris A, Cacciatore I, Alnajjar R, Hanine H, Aouidate A, Mothana RA, Alanzi AR, Elhallaoui M. Revealing innovative JAK1 and JAK3 inhibitors: a comprehensive study utilizing QSAR, 3D-Pharmacophore screening, molecular docking, molecular dynamics, and MM/GBSA analyses. Front Mol Biosci 2024; 11:1348277. [PMID: 38516192 PMCID: PMC10956358 DOI: 10.3389/fmolb.2024.1348277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/17/2024] [Indexed: 03/23/2024] Open
Abstract
The heterocycle compounds, with their diverse functionalities, are particularly effective in inhibiting Janus kinases (JAKs). Therefore, it is crucial to identify the correlation between their complex structures and biological activities for the development of new drugs for the treatment of rheumatoid arthritis (RA) and cancer. In this study, a diverse set of 28 heterocyclic compounds selective for JAK1 and JAK3 was employed to construct quantitative structure-activity relationship (QSAR) models using multiple linear regression (MLR). Artificial neural network (ANN) models were employed in the development of QSAR models. The robustness and stability of the models were assessed through internal and external methodologies, including the domain of applicability (DoA). The molecular descriptors incorporated into the model exhibited a satisfactory correlation with the receptor-ligand complex structures of JAKs observed in X-ray crystallography, making the model interpretable and predictive. Furthermore, pharmacophore models ADRRR and ADHRR were designed for each JAK1 and JAK3, proving effective in discriminating between active compounds and decoys. Both models demonstrated good performance in identifying new compounds, with an ROC of 0.83 for the ADRRR model and an ROC of 0.75 for the ADHRR model. Using a pharmacophore model, the most promising compounds were selected based on their strong affinity compared to the most active compounds in the studied series each JAK1 and JAK3. Notably, the pharmacokinetic, physicochemical properties, and biological activities of the selected compounds (As compounds ZINC79189223 and ZINC66252348) were found to be consistent with their therapeutic effects in RA, owing to their non-toxic, cholinergic nature, absence of P-glycoprotein, high gastrointestinal absorption, and ability to penetrate the blood-brain barrier. Furthermore, ADMET properties were assessed, and molecular dynamics and MM/GBSA analysis revealed stability in these molecules.
Collapse
Affiliation(s)
- Abdelmoujoud Faris
- LIMAS, Department of Chemical Sciences, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Ivana Cacciatore
- Department of Pharmacy, University ‘G. d’Annunzio’ of Chieti-Pescara, Chieti, Italy
| | - Radwan Alnajjar
- CADD Unit, PharmD, Faculty of Pharmacy, Libyan International Medical University, Benghazi, Libya
| | - Hadni Hanine
- LIMAS, Department of Chemical Sciences, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Adnane Aouidate
- School of Applied Sciences of Ait Melloul, Ibn Zohr University, Fez, Morocco
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah R. Alanzi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Menana Elhallaoui
- LIMAS, Department of Chemical Sciences, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
20
|
Hernández-Vázquez E, Martínez-Caballero S, Aldana-Torres D, Estrada-Soto S, Nieto-Camacho A. Discovery of dual-action phenolic 4-arylidene-isoquinolinones with antioxidant and α-glucosidase inhibition activities. RSC Med Chem 2024; 15:519-538. [PMID: 38389895 PMCID: PMC10880897 DOI: 10.1039/d3md00585b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/25/2023] [Indexed: 02/24/2024] Open
Abstract
A multicomponent-derived synthesis of arylidene isoquinolinones decorated with phenolic moieties is described. The series demonstrated good DPPH trapping and, in the case of sinapic acid-containing analogs, excellent activity against lipoperoxidation; EPR also demonstrated that one derivative scavenged hydroxyl radicals. In addition, some compounds showed excellent inhibition of α-glucosidase activity and, according to both Lineweaver-Burk plots and molecular docking, they act as non-competitive or mixed inhibitors. In vitro assay also demonstrated that two compounds significantly reduced the plasma glucose levels after sucrose administration. In summary, the studied isoquinolinones become novel compounds with dual action (antioxidant and α-glucosidase inhibition) against diabetes and related metabolic diseases, whose optimization would lead to more potent candidates.
Collapse
Affiliation(s)
- Eduardo Hernández-Vázquez
- Instituto de Química, UNAM, Circuito Exterior S.N Ciudad Universitaria, Coyoacán México CDMX 04510 Mexico
| | - Siseth Martínez-Caballero
- Instituto de Química, UNAM, Circuito Exterior S.N Ciudad Universitaria, Coyoacán México CDMX 04510 Mexico
| | - Diana Aldana-Torres
- Facultad de Farmacia, UAEM Av. Universidad 1001, Col. Chamilpa Cuernavaca Morelos 62209 Mexico
| | - Samuel Estrada-Soto
- Facultad de Farmacia, UAEM Av. Universidad 1001, Col. Chamilpa Cuernavaca Morelos 62209 Mexico
| | - Antonio Nieto-Camacho
- Instituto de Química, UNAM, Circuito Exterior S.N Ciudad Universitaria, Coyoacán México CDMX 04510 Mexico
| |
Collapse
|
21
|
Willems S, Detta E, Baldini L, Tietz D, Trabocchi A, Brunschweiger A. Diversifying DNA-Tagged Amines by Isocyanide Multicomponent Reactions for DNA-Encoded Library Synthesis. ACS OMEGA 2024; 9:7719-7724. [PMID: 38405463 PMCID: PMC10882610 DOI: 10.1021/acsomega.3c07136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/29/2023] [Accepted: 12/13/2023] [Indexed: 02/27/2024]
Abstract
In DNA-encoded library synthesis, amine-substituted building blocks are prevalent. We explored isocyanide multicomponent reactions to diversify DNA-tagged amines and reported the Ugi-azide reaction with high yields and a good substrate scope. In addition, the Ugi-aza-Wittig reaction and the Ugi-4-center-3-component reaction, which used bifunctional carboxylic acids to provide lactams, were explored. Five-, six-, and seven-membered lactams were synthesized from solid support-coupled DNA-tagged amines and bifunctional building blocks, providing access to structurally diverse scaffolds.
Collapse
Affiliation(s)
- Suzanne Willems
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Elena Detta
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Lorenzo Baldini
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
| | - Deniz Tietz
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Andrea Trabocchi
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
| | - Andreas Brunschweiger
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
- Institute
of Pharmacy and Food Chemistry, Julius Maximilian
University Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
22
|
Zhang Y, Shaabani S, Vowinkel K, Trombetta-Lima M, Sabogal-Guáqueta AM, Chen T, Hoekstra J, Lembeck J, Schmidt M, Decher N, Dömling A, Dolga AM. Novel SK channel positive modulators prevent ferroptosis and excitotoxicity in neuronal cells. Biomed Pharmacother 2024; 171:116163. [PMID: 38242037 DOI: 10.1016/j.biopha.2024.116163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024] Open
Abstract
Small conductance calcium-activated potassium (SK) channel activity has been proposed to play a role in the pathology of several neurological diseases. Besides regulating plasma membrane excitability, SK channel activation provides neuroprotection against ferroptotic cell death by reducing mitochondrial Ca2+ uptake and reactive oxygen species (ROS). In this study, we employed a multifaceted approach, integrating structure-based and computational techniques, to strategically design and synthesize an innovative class of potent small-molecule SK2 channel modifiers through highly efficient multicomponent reactions (MCRs). The compounds' neuroprotective activity was compared with the well-studied SK positive modulator, CyPPA. Pharmacological SK channel activation by selected compounds confers neuroprotection against ferroptosis at low nanomolar ranges compared to CyPPA, that mediates protection at micromolar concentrations, as shown by an MTT assay, real-time cell impedance measurements and propidium iodide staining (PI). These novel compounds suppress increased mitochondrial ROS and Ca2+ level induced by ferroptosis inducer RSL3. Moreover, axonal degeneration was rescued by these novel SK channel activators in primary mouse neurons and they attenuated glutamate-induced neuronal excitability, as shown via microelectrode array. Meanwhile, functional afterhyperpolarization of the novel SK2 channel modulators was validated by electrophysiological measurements showing more current change induced by the novel modulators than the reference compound, CyPPA. These data support the notion that SK2 channel activation can represent a therapeutic target for brain diseases in which ferroptosis and excitotoxicity contribute to the pathology.
Collapse
Affiliation(s)
- Yuequ Zhang
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, the Netherlands
| | - Shabnam Shaabani
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, the Netherlands
| | - Kirsty Vowinkel
- Institute of Physiology and Pathophysiology, Vegetative Physiology, University of Marburg, 35037 Marburg, Germany
| | - Marina Trombetta-Lima
- Department of Pharmaceutical Technologies and Biopharmacy, Research Institute of Pharmacy, University of Groningen, the Netherlands
| | | | - Tingting Chen
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, the Netherlands
| | - Jan Hoekstra
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, the Netherlands
| | - Jan Lembeck
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, the Netherlands
| | - Martina Schmidt
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, the Netherlands
| | - Niels Decher
- Institute of Physiology and Pathophysiology, Vegetative Physiology, University of Marburg, 35037 Marburg, Germany
| | - Alexander Dömling
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, the Netherlands.
| | - Amalia M Dolga
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, the Netherlands.
| |
Collapse
|
23
|
Durham AC, Liu CR, Wang YM. Iron-Mediated C-H Functionalization of Unactivated Alkynes for the Synthesis of Derivatized Dihydropyrrolones: Regioselectivity Under Thermodynamic Control. Chemistry 2023; 29:e202301195. [PMID: 37203356 PMCID: PMC10525034 DOI: 10.1002/chem.202301195] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/20/2023]
Abstract
Cyclopentadienyliron dicarbonyl-based complexes present opportunities for underexplored disconnections in synthesis. Access to challenging dihydropyrrolone products is achieved by propargylic C-H functionalization of alkynes for the formation of cyclic organoiron species. Excellent regioselectivity for unsymmetrical alkynes is observed in many cases. Notably, regioselectivity under these stoichiometric conditions diverges from those observed previously under catalysis, occurring at the more-substituted terminus of the alkyne, allowing for methine functionalization and the formation of quaternary centers. Divergent demetallation of the intermediate organoiron complexes gives access to chemically diverse products which are amenable to further functionalization.
Collapse
Affiliation(s)
- Austin C Durham
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, 15213, Pittsburgh, PA, USA
| | - Cindy R Liu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, 15213, Pittsburgh, PA, USA
| | - Yi-Ming Wang
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, 15213, Pittsburgh, PA, USA
| |
Collapse
|