1
|
Pham TM, Ahmed M, Lai TH, Bahar ME, Hwang JS, Maulidi RF, Ngo QN, Kim DR. Regulation of Cell Cycle Progression through RB Phosphorylation by Nilotinib and AT-9283 in Human Melanoma A375P Cells. Int J Mol Sci 2024; 25:2956. [PMID: 38474202 DOI: 10.3390/ijms25052956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
BCR-ABL tyrosine kinase inhibitors are commonly employed for the treatment of chronic myeloid leukemia, yet their impact on human malignant melanoma remains uncertain. In this study, we delved into the underlying mechanisms of specific BCR-ABL tyrosine kinase inhibitors (imatinib, nilotinib, ZM-306416, and AT-9283) in human melanoma A375P cells. We first evaluated the influence of these inhibitors on cell growth using cell proliferation and wound-healing assays. Subsequently, we scrutinized cell cycle regulation in drug-treated A375P cells using flow cytometry and Western blot assays. Notably, imatinib, nilotinib, ZM-306416, and AT-9283 significantly reduced cell proliferation and migration in A375P cells. In particular, nilotinib and AT-9283 impeded the G1/S transition of the cell cycle by down-regulating cell cycle-associated proteins, including cyclin E, cyclin A, and CDK2. Moreover, these inhibitors reduced RB phosphorylation, subsequently inhibiting E2F transcriptional activity. Consequently, the expression of the E2F target genes (CCNA2, CCNE1, POLA1, and TK-1) was markedly suppressed in nilotinib and AT9283-treated A375P cells. In summary, our findings suggest that BCR-ABL tyrosine kinase inhibitors may regulate the G1-to-S transition in human melanoma A375P cells by modulating the RB-E2F complex.
Collapse
Affiliation(s)
- Trang Minh Pham
- Department of Biochemistry and Convergence Medical Science, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Mahmoud Ahmed
- Department of Biochemistry and Convergence Medical Science, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Trang Huyen Lai
- Department of Biochemistry and Convergence Medical Science, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Md Entaz Bahar
- Department of Biochemistry and Convergence Medical Science, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Jin Seok Hwang
- Department of Biochemistry and Convergence Medical Science, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Rizi Firman Maulidi
- Department of Biochemistry and Convergence Medical Science, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Quang Nhat Ngo
- Department of Biochemistry and Convergence Medical Science, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Science, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| |
Collapse
|
2
|
Herrmann L, Leidenberger M, Sacramento de Morais A, Mai C, Çapci A, da Cruz Borges Silva M, Plass F, Kahnt A, Moreira DRM, Kappes B, Tsogoeva SB. Autofluorescent antimalarials by hybridization of artemisinin and coumarin: in vitro/ in vivo studies and live-cell imaging. Chem Sci 2023; 14:12941-12952. [PMID: 38023498 PMCID: PMC10664590 DOI: 10.1039/d3sc03661h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023] Open
Abstract
Malaria is one of our planet's most widespread and deadliest diseases, and there is an ever-consistent need for new and improved pharmaceuticals. Natural products have been an essential source of hit and lead compounds for drug discovery. Antimalarial drug artemisinin (ART), a highly effective natural product, is an enantiopure sesquiterpene lactone and occurs in Artemisia annua L. The development of improved antimalarial drugs, which are highly potent and at the same time inherently fluorescent is particularly favorable and highly desirable since they can be used for live-cell imaging, avoiding the requirement of the drug's linkage to an external fluorescent label. Herein, we present the first antimalarial autofluorescent artemisinin-coumarin hybrids with high fluorescence quantum yields of up to 0.94 and exhibiting excellent activity in vitro against CQ-resistant and multidrug-resistant P. falciparum strains (IC50 (Dd2) down to 0.5 nM; IC50 (K1) down to 0.3 nM) compared to reference drugs CQ (IC50 (Dd2) 165.3 nM; IC50 (K1) 302.8 nM) and artemisinin (IC50 (Dd2) 11.3 nM; IC50 (K1) 5.4 nM). Furthermore, a clear correlation between in vitro potency and in vivo efficacy of antimalarial autofluorescent hybrids was demonstrated. Moreover, deliberately designed autofluorescent artemisinin-coumarin hybrids, were not only able to overcome drug resistance, they were also of high value in investigating their mode of action via time-dependent imaging resolution in living P. falciparum-infected red blood cells.
Collapse
Affiliation(s)
- Lars Herrmann
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Straße 10 91054 Erlangen Germany
| | - Maria Leidenberger
- Institute of Medical Biotechnology, Friedrich-Alexander-Universität Erlangen-Nürnberg Paul-Gordon-Straße 3 91052 Erlangen Germany
| | | | - Christina Mai
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Straße 10 91054 Erlangen Germany
| | - Aysun Çapci
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Straße 10 91054 Erlangen Germany
| | | | - Fabian Plass
- Leibniz Institute of Surface Engineering (IOM) Permoserstrasse 15 04318 Leipzig Germany
- Physical Chemistry Chair I, Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstrasse 3 91058 Erlangen Germany
| | - Axel Kahnt
- Leibniz Institute of Surface Engineering (IOM) Permoserstrasse 15 04318 Leipzig Germany
- Physical Chemistry Chair I, Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstrasse 3 91058 Erlangen Germany
| | - Diogo R M Moreira
- Instituto Gonçalo Moniz Fundação Oswaldo Cruz Salvador 40296-710 Brazil
| | - Barbara Kappes
- Institute of Medical Biotechnology, Friedrich-Alexander-Universität Erlangen-Nürnberg Paul-Gordon-Straße 3 91052 Erlangen Germany
| | - Svetlana B Tsogoeva
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Straße 10 91054 Erlangen Germany
| |
Collapse
|