1
|
Zukić S, Osmanović A, Harej Hrkać A, Kraljević Pavelić S, Špirtović-Halilović S, Veljović E, Roca S, Trifunović S, Završnik D, Maran U. Data-Driven Modelling of Substituted Pyrimidine and Uracil-Based Derivatives Validated with Newly Synthesized and Antiproliferative Evaluated Compounds. Int J Mol Sci 2024; 25:9390. [PMID: 39273338 PMCID: PMC11395534 DOI: 10.3390/ijms25179390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
The pyrimidine heterocycle plays an important role in anticancer research. In particular, the pyrimidine derivative families of uracil show promise as structural scaffolds relevant to cervical cancer. This group of chemicals lacks data-driven machine learning quantitative structure-activity relationships (QSARs) that allow for generalization and predictive capabilities in the search for new active compounds. To achieve this, a dataset of pyrimidine and uracil compounds from ChEMBL were collected and curated. A workflow was developed for data-driven machine learning QSAR using an intuitive dataset design and forwards selection of molecular descriptors. The model was thoroughly externally validated against available data. Blind validation was also performed by synthesis and antiproliferative evaluation of new synthesized uracil-based and pyrimidine derivatives. The most active compound among new synthesized derivatives, 2,4,5-trisubstituted pyrimidine was predicted with the QSAR model with differences of 0.02 compared to experimentally tested activity.
Collapse
Affiliation(s)
- Selma Zukić
- Institute of Chemistry, University of Tartu, Ravila Street 14a, 50411 Tartu, Estonia
| | - Amar Osmanović
- University of Sarajevo-Faculty of Pharmacy, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina
| | - Anja Harej Hrkać
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | | | - Selma Špirtović-Halilović
- University of Sarajevo-Faculty of Pharmacy, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina
| | - Elma Veljović
- University of Sarajevo-Faculty of Pharmacy, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina
| | - Sunčica Roca
- Centre for Nuclear Magnetic Resonance (NMR), Ruđer Bošković Institute, Bijenička Street 54, 10000 Zagreb, Croatia
| | - Snežana Trifunović
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Davorka Završnik
- University of Sarajevo-Faculty of Pharmacy, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina
| | - Uko Maran
- Institute of Chemistry, University of Tartu, Ravila Street 14a, 50411 Tartu, Estonia
| |
Collapse
|
2
|
Liu AD, Wang ZL, Liu L, Cheng L. A Visible-Light-Promoted C-H Arylation and Heteroarylation of Uracil Derivatives with Diazoniums in Aqueous Conditions. Curr Protoc 2022; 2:e432. [PMID: 35671138 DOI: 10.1002/cpz1.432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The photoredox synthesis of C-5 (hetero)arylated uracil and uridine substrates with the corresponding diazonium salts is described. The coupling proceeds efficiently without protection of the hydroxyls at the ribose or pre-functionalization of the C5 position at the nucleobase. No transition-metal catalyst is used in this transformation, thereby avoiding metal contamination in the final products. The use of water as the medium also eliminates the impurities caused by the use of organic solvents. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Synthesis of 5-aryl and 5-heteroaryl uracil derivatives Basic Protocol 2: Synthesis of 5-aryl uridine and deoxyuridine uridine derivatives.
Collapse
Affiliation(s)
- An-Di Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhao-Li Wang
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Li Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Liang Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Abstract
In this contribution, we provide a comprehensive overview of acyclic twisted amides, covering the literature since 1993 (the year of the first recognized report on acyclic twisted amides) through June 2020. The review focuses on classes of acyclic twisted amides and their key structural properties, such as amide bond twist and nitrogen pyramidalization, which are primarily responsible for disrupting nN to π*C═O conjugation. Through discussing acyclic twisted amides in comparison with the classic bridged lactams and conformationally restricted cyclic fused amides, the reader is provided with an overview of amidic distortion that results in novel conformational features of acyclic amides that can be exploited in various fields of chemistry ranging from organic synthesis and polymers to biochemistry and structural chemistry and the current position of acyclic twisted amides in modern chemistry.
Collapse
Affiliation(s)
- Guangrong Meng
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Jin Zhang
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
4
|
Transition metal-catalyzed synthesis of new 3-substituted coumarin derivatives as antibacterial and cytostatic agents. Future Med Chem 2021; 13:1865-1884. [PMID: 34533068 DOI: 10.4155/fmc-2021-0161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: The aim of this study was to synthesize new coumarin-based compounds and evaluate their antibacterial and antitumor potential. Results: Using transition metal-catalyzed reactions, a series of 7-hydroxycoumarin derivatives were synthesized with aliphatic and aryl moiety attached directly at C-3 of the coumarin ring and through the ethynyl or 1,2,3-triazole linker. The 3-substituted coumarin derivative bearing bistrifluoromethylphenyl at the C-4 position of 1,2,3-triazole (33) showed strong and selective antiproliferative activity against cervical carcinoma cells. The 7-hydroxy-4-methylcoumarin with a phenyl ring directly attached to coumarin at C-3 (10) showed good potency against the methicillin-resistant Staphylococcus aureus and vancomycin-resistant strains. Conclusion: The most active coumarin derivatives owe their antiproliferative potential to the 3,5-ditrifluoromethylphenyl substituent (in 33) and antibacterial activity to the aromatic moiety (in 10); their structure can be optimized further for improved effect.
Collapse
|
5
|
Yang Q, Ma N, He Y, Yu X, Yao B. Immobilized Palladium Nanoparticles on Phosphanamine-grafted Cellulose for Arylation of Uracil. CURRENT ORGANOCATALYSIS 2021. [DOI: 10.2174/2213337208666210816110719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The synthesis of 5-arylation uracil nucleosides is an imperative challenge,
especially for the method of Suzuki reaction using N-unprotected uracil as materials, which holds
the potential to enhance the yield.
Objective:
The objective of the study was to find a more efficient catalyst to increase the yield of
aryluracils and aryluridines.
Methods:
We first constructed the phosphanamine-grafted cellulose (PAGC) from cellulose material.
Then, we prepared the nanocatalyst PAGC/Pd(0) through heating and reducing the mixture of
PAGC and Pa(OAc)2.
Results:
When using this nanocatalyst to catalyze the Suzuki reaction of 5-iodouracil or 5-iodouridine
and aryl heterocyclic boronic acids, the arylation yields have been significantly improved.
Conclusion:
This means that the resultant nanocatalyst exhibits a remarkable catalytic efficacy for
Suzuki arylation of 5-iodouracil and 5-iodouridine.
Collapse
Affiliation(s)
- Qian Yang
- School of Sciences, Xi`an University of Technology,Xi’an, 710054, China
| | - Na Ma
- School of Sciences, Xi`an University of Technology,Xi’an, 710054, China
| | - Yangqing He
- School of Sciences, Xi`an University of Technology,Xi’an, 710054, China
| | - Xiaojiao Yu
- School of Sciences, Xi`an University of Technology,Xi’an, 710054, China
| | - Binghua Yao
- School of Sciences, Xi`an University of Technology,Xi’an, 710054, China
| |
Collapse
|
6
|
Hao EJ, Li GX, Liang YR, Xie MS, Wang DC, Jiang XH, Cheng JY, Shi ZX, Wang Y, Guo HM. Design, Synthesis, and Activity Evaluation of Novel Acyclic Nucleosides as Potential Anticancer Agents In Vitro and In Vivo. J Med Chem 2021; 64:2077-2109. [PMID: 33538581 DOI: 10.1021/acs.jmedchem.0c01717] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In the present work, 103 novel acyclic nucleosides were designed, synthesized, and evaluated for their anticancer activities in vitro and in vivo. The structure-activity relationship (SAR) studies revealed that most target compounds inhibited the growth of colon cancer cells in vitro, of which 3-(6-chloro-9H-purin-9-yl)dodecan-1-ol (9b) exhibited the most potent effect against the HCT-116 and SW480 cells with IC50 values of 0.89 and 1.15 μM, respectively. Furthermore, all of the (R)-configured acyclic nucleoside derivatives displayed more potent anticancer activity compared to their (S)-counterparts. Mechanistic studies revealed that compound 9b triggered apoptosis in the cancer cell lines via depolarization of the mitochondrial membrane and effectively inhibited colony formation. Importantly, compound 9b inhibited the growth of the SW480 xenograft in a mouse model with low systemic toxicity. These results indicated that acyclic nucleoside compounds are viable as potent and effective anticancer agents, and compound 9b may serve as a promising lead compound that merits further attention in future anticancer drug discovery.
Collapse
Affiliation(s)
- Er-Jun Hao
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Gong-Xin Li
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yu-Ru Liang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Ming-Sheng Xie
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Dong-Chao Wang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiao-Han Jiang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jia-Yi Cheng
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zhi-Xian Shi
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yang Wang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Hai-Ming Guo
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
7
|
Zhou DY, Miura-Akagi PM, McCarty SM, Guiles CH, O'Donnell TJ, Yoshida WY, Krause CE, Rheingold AL, Hughes RP, Cain MF. P-Alkynyl functionalized benzazaphospholes as transmetalating agents. Dalton Trans 2021; 50:599-611. [PMID: 33403375 DOI: 10.1039/d0dt01367f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exposure of 10π-electron benzazaphosphole 1 to HCl, followed by nucleophilic substitution with the Grignard reagent BrMgCCPh afforded alkynyl functionalized 3 featuring an exocyclic -C[triple bond, length as m-dash]C-Ph group with an elongated P-C bond (1.7932(19) Å). Stoichiometric experiments revealed that treatment of trans-Pd(PEt3)2(Ar)(i) (Ar = p-Me (C) or p-F (D)) with 3 generated trans-Pd(PEt3)2(Ar)(CCPh) (Ar = p-Me (E) or p-F (F)), 5, which is the result of ligand exchange between P-I byproduct 4 and C/D, and the reductively eliminated product (Ar-C[triple bond, length as m-dash]C-Ph). Cyclic voltammetry studies showed and independent investigations confirmed 4 is also susceptible to redox processes including bimetallic oxidative addition to Pd(0) to give Pd(i) dimer 6-Pd2-(P(t-Bu)3)2 and reduction to diphosphine 7. During catalysis, we hypothesized that this unwanted reactivity could be circumvented by employing a source of fluoride as an additive. This was demonstrated by conducting a Sonogashira-type reaction between 1-iodotoluene and 3 in the presence of 10 mol% Na2PdCl4, 20 mol% P(t-Bu)Cy2, and 5 equiv. of tetramethylammonium fluoride (TMAF), resulting in turnover and the isolation of Ph-C[triple bond, length as m-dash]C-(o-Tol) as the major product.
Collapse
Affiliation(s)
- Daniel Y Zhou
- Department of Chemistry, University of Hawai'i at Mānoa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, USA.
| | - Preston M Miura-Akagi
- Department of Chemistry, University of Hawai'i at Mānoa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, USA.
| | - Sierra M McCarty
- Department of Chemistry, University of Hawai'i at Mānoa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, USA.
| | - Celeste H Guiles
- Department of Chemistry, University of Hawai'i at Mānoa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, USA.
| | - Timothy J O'Donnell
- Department of Chemistry, University of Hawai'i at Mānoa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, USA.
| | - Wesley Y Yoshida
- Department of Chemistry, University of Hawai'i at Mānoa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, USA.
| | - Colleen E Krause
- Department of Chemistry, University of Hartford, 200 Bloomfield Avenue, West Hartford, Connecticut 06117, USA
| | - Arnold L Rheingold
- Department of Chemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Russell P Hughes
- 6128 Burke Laboratory, Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Matthew F Cain
- Department of Chemistry, University of Hawai'i at Mānoa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, USA.
| |
Collapse
|
8
|
Vethakanraj HS, Chandrasekaran N, Sekar AK. Acid ceramidase, a double-edged sword in cancer aggression: A minireview. Curr Cancer Drug Targets 2020; 21:CCDT-EPUB-112652. [PMID: 33357194 DOI: 10.2174/1568009620666201223154621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/18/2020] [Accepted: 10/30/2020] [Indexed: 11/22/2022]
Abstract
Acid ceramidase (AC), the key enzyme of the ceramide metabolic pathway hydrolyzes pro-apoptotic ceramide to sphingosine, which by the action of sphingosine-1-kinase is metabolized to mitogenic sphingosine-1-phosphate. The intracellular level of AC determines ceramide/sphingosine-1-phosphate rheostat which in turn decides the cell fate. The upregulated AC expression during cancerous condition acts as a "double-edged sword" by converting pro-apoptotic ceramide to anti-apoptotic sphingosine-1-phosphate, wherein on one end, the level of ceramide is decreased and on the other end, the level of sphingosine-1-phosphate is increased, thus altogether aggravating the cancer progression. In addition, cancer cells with upregulated AC expression exhibited increased cell proliferation, metastasis, chemoresistance, radioresistance and numerous strategies were developed in the past to effectively target the enzyme. Gene silencing and pharmacological inhibition of AC sensitized the resistant cells to chemo/radiotherapy thereby promoting cell death. The core objective of this review is to explore AC mediated tumour progression and the potential role of AC inhibitors in various cancer cell lines/models.
Collapse
|
9
|
Bag SS, Gogoi H. Design of "Click" Fluorescent Labeled 2'-deoxyuridines via C5-[4-(2-Propynyl(methyl)amino)]phenyl Acetylene as a Universal Linker: Synthesis, Photophysical Properties, and Interaction with BSA. J Org Chem 2018; 83:7606-7621. [PMID: 29877080 DOI: 10.1021/acs.joc.7b03097] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Microenvironment-sensitive fluorescent nucleosides present attractive advantages over single-emitting dyes for sensing inter-biomolecular interactions involving DNA. Herein, we report the rational design and synthesis of triazolyl push-pull fluorophore-labeled uridines via the intermediacy of C5-[4-(2-propynyl(methyl)amino)]phenyl acetylene as a universal linker. The synthesized nucleosides showed interesting solvatochromic characteristic and/or intramolecular charge transfer (ICT) features. A few of them also exhibited dual-emitting characteristics evidencing our designing concept. The HOMO-LUMO distribution showed that the emissive states of these nucleosides were characterized with more significant electron redistribution between the C5-[4-(2-propynyl(methyl)amino)]phenyl triazolyl donor moiety and the aromatic chromophores linked to it, leading to modulated emission property. The solvent polarity sensitivity of these nucleosides was also tested. The synthesized triazolyl benzonitrile (10C), naphthyl (10E), and pyrenyl (10G) nucleosides were found to exhibit interesting ICT and dual (LE/ICT) emission properties. The dual-emitting pyrenyl nucleoside maintained a good ratiometric response in the BSA protein microenvironment, enabling the switch-on ratiometric sensing of BSA as the only protein biomolecule. Thus, it is expected that the new fluorescent nucleoside analogues would be useful in designing DNA probes for nucleic acid analysis or studying DNA-protein interactions via a drastic change in fluorescence response due to a change in micropolarity.
Collapse
Affiliation(s)
- Subhendu Sekhar Bag
- Bioorganic Chemistry Laboratory, Department of Chemistry , Indian Institute of Technology Guwahati 781039 , India
| | - Hiranya Gogoi
- Bioorganic Chemistry Laboratory, Department of Chemistry , Indian Institute of Technology Guwahati 781039 , India
| |
Collapse
|
10
|
Matić J, Nekola I, Višnjevac A, Kobetić R, Martin-Kleiner I, Kralj M, Žinić B. C5-Morpholinomethylation of N1-sulfonylcytosines by a one-pot microwave assisted Mannich reaction. Org Biomol Chem 2018; 16:2678-2687. [DOI: 10.1039/c8ob00253c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A fast and efficient route for the introduction of a morpholinomethyl moiety in the C5 position of the sulfonylated cytosine nucleobase has been developed.
Collapse
Affiliation(s)
- Josipa Matić
- Laboratory for Biomolecular Interactions and Spectroscopy
- Division of Organic Chemistry and Biochemistry
- Ruđer Bošković Institute
- 10000 Zagreb
- Croatia
| | | | - Aleksandar Višnjevac
- Laboratory for Chemical and Biological Crystallography
- Division of Physical Chemistry
- Ruđer Bošković Institute
- Bijenička cesta 54
- 10000 Zagreb
| | - Renata Kobetić
- Laboratory for Biomolecular Interactions and Spectroscopy
- Division of Organic Chemistry and Biochemistry
- Ruđer Bošković Institute
- 10000 Zagreb
- Croatia
| | - Irena Martin-Kleiner
- Laboratory of Experimental Therapy
- Division of Molecular Medicine
- Ruđer Bošković Institute
- 10000 Zagreb
- Croatia
| | - Marijeta Kralj
- Laboratory of Experimental Therapy
- Division of Molecular Medicine
- Ruđer Bošković Institute
- 10000 Zagreb
- Croatia
| | - Biserka Žinić
- Laboratory for Biomolecular Interactions and Spectroscopy
- Division of Organic Chemistry and Biochemistry
- Ruđer Bošković Institute
- 10000 Zagreb
- Croatia
| |
Collapse
|
11
|
Ortega JA, Arencibia JM, La Sala G, Borgogno M, Bauer I, Bono L, Braccia C, Armirotti A, Girotto S, Ganesan A, De Vivo M. Pharmacophore Identification and Scaffold Exploration to Discover Novel, Potent, and Chemically Stable Inhibitors of Acid Ceramidase in Melanoma Cells. J Med Chem 2017; 60:5800-5815. [PMID: 28603987 DOI: 10.1021/acs.jmedchem.7b00472] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Acid ceramidase (AC) hydrolyzes ceramides, which are central lipid messengers for metabolism and signaling of sphingolipids. A growing body of evidence links deregulation of sphingolipids to several diseases, including cancer. Indeed, AC expression is abnormally high in melanoma cells. AC inhibition may thus be key to treating malignant melanoma. Here, we have used a systematic scaffold exploration to design a general pharmacophore for AC inhibition. This pharmacophore comprises a 6 + 5 fused ring heterocycle linked to an aliphatic substituent via a urea moiety. We have thus identified the novel benzimidazole derivatives 10, 21, 27, and 30, which are highly potent AC inhibitors. Their chemical and metabolic stabilities are comparable or superior to those of previously reported AC inhibitors. Moreover, they are potent against endogenous AC in intact melanoma cells. These novel inhibitors merit further characterization and can serve as a promising starting point for the discovery of new antimelanoma therapeutics.
Collapse
Affiliation(s)
- Jose Antonio Ortega
- Laboratory of Molecular Modeling & Drug Discovery, Istituto Italiano di Tecnologia , Via Morego 30, 16163 Genoa, Italy
| | - Jose M Arencibia
- Laboratory of Molecular Modeling & Drug Discovery, Istituto Italiano di Tecnologia , Via Morego 30, 16163 Genoa, Italy
| | - Giuseppina La Sala
- Laboratory of Molecular Modeling & Drug Discovery, Istituto Italiano di Tecnologia , Via Morego 30, 16163 Genoa, Italy
| | - Marco Borgogno
- Laboratory of Molecular Modeling & Drug Discovery, Istituto Italiano di Tecnologia , Via Morego 30, 16163 Genoa, Italy
| | - Inga Bauer
- CompuNet, Istituto Italiano di Tecnologia , Via Morego 30, 16163 Genoa, Italy
| | - Luca Bono
- D3-PharmaChemistry, Istituto Italiano di Tecnologia , Via Morego 30, 16163 Genoa, Italy
| | - Clarissa Braccia
- D3-PharmaChemistry, Istituto Italiano di Tecnologia , Via Morego 30, 16163 Genoa, Italy
| | - Andrea Armirotti
- D3-PharmaChemistry, Istituto Italiano di Tecnologia , Via Morego 30, 16163 Genoa, Italy
| | - Stefania Girotto
- CompuNet, Istituto Italiano di Tecnologia , Via Morego 30, 16163 Genoa, Italy
| | - Anand Ganesan
- Department of Dermatology and Biological Chemistry, University of California , 202 Sprague Hall, 92697-2400 Irvine, United States
| | - Marco De Vivo
- Laboratory of Molecular Modeling & Drug Discovery, Istituto Italiano di Tecnologia , Via Morego 30, 16163 Genoa, Italy.,IAS-5/INM-9 Computational Biomedicine Forschungszentrum Jülich , Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| |
Collapse
|
12
|
Wen Z, Suzol SH, Peng J, Liang Y, Snoeck R, Andrei G, Liekens S, Wnuk SF. Antiviral and Cytostatic Evaluation of 5-(1-Halo-2-sulfonylvinyl)- and 5-(2-Furyl)uracil Nucleosides. Arch Pharm (Weinheim) 2017; 350. [DOI: 10.1002/ardp.201700023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/23/2017] [Accepted: 02/27/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Zhiwei Wen
- Department of Chemistry and Biochemistry; Florida International University; Miami FL USA
| | - Sazzad H. Suzol
- Department of Chemistry and Biochemistry; Florida International University; Miami FL USA
| | - Jufang Peng
- Department of Chemistry and Biochemistry; Florida International University; Miami FL USA
| | - Yong Liang
- Department of Chemistry and Biochemistry; Florida International University; Miami FL USA
| | - Robert Snoeck
- Rega Institute for Medical Research; KU Leuven; Leuven Belgium
| | - Graciela Andrei
- Rega Institute for Medical Research; KU Leuven; Leuven Belgium
| | - Sandra Liekens
- Rega Institute for Medical Research; KU Leuven; Leuven Belgium
| | - Stanislaw F. Wnuk
- Department of Chemistry and Biochemistry; Florida International University; Miami FL USA
| |
Collapse
|
13
|
Gregorić T, Sedić M, Grbčić P, Tomljenović Paravić A, Kraljević Pavelić S, Cetina M, Vianello R, Raić-Malić S. Novel pyrimidine-2,4-dione-1,2,3-triazole and furo[2,3-d]pyrimidine-2-one-1,2,3-triazole hybrids as potential anti-cancer agents: Synthesis, computational and X-ray analysis and biological evaluation. Eur J Med Chem 2016; 125:1247-1267. [PMID: 27875779 DOI: 10.1016/j.ejmech.2016.11.028] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/10/2016] [Accepted: 11/12/2016] [Indexed: 12/22/2022]
Abstract
Regioselective 1,4-disubstituted 1,2,3-triazole tethered pyrimidine-2,4-dione derivatives (5-23) were successfully prepared by the copper(I)-catalyzed click chemistry. While known palladium/copper-cocatalyzed method based on Sonogashira cross-coupling followed by the intramolecular 5-endo-dig ring closure generated novel 6-alkylfuro[2,3-d]pyrimidine-2-one-1,2,3-triazole hybrids (24b-37b), a small library of their 5-alkylethynyl analogs (24a-37a) was synthesized and described for the first time by tandem terminal alkyne dimerization and subsequent 5-endo-trig cyclization, which was additionally corroborated with computational and X-ray crystal structure analyses. The nature of substituents on alkynes and thereof homocoupled 1,3-diynes predominantly influenced the ratio of the formed products in both pathways. In vitro antiproliferative activity of prepared compounds evaluated on five human cancer cell lines revealed that N,N-1,3-bis-(1,2,3-triazole)-5-bromouracil (5-7) and 5,6-disubstituted furo[2,3-d]pyrimidine-2-one-1,2,3-triazole 34a hybrids exhibited the most pronounced cytostatic acitivities against hepatocellular carcinoma (HepG2) and cervical carcinoma (HeLa) cells with higher potencies than the reference drug 5-fluorouracil. Cytostatic effect of pyrimidine-2,4-dione-1,2,3-triazole hybrid 7 in HepG2 cells could be attributed to the Wee-1 kinase inhibition and abolishment of sphingolipid signaling mediated by acid ceramidase and sphingosine kinase 1. Importantly, this compound proved to be a non-mitochondrial toxicant, which makes it a promising candidate for further lead optimization and development of a new and more efficient agent for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Tomislav Gregorić
- University of Zagreb, Faculty of Chemical Engineering and Technology, Department of Organic Chemistry, Marulićev Trg 20, HR-10000 Zagreb, Croatia
| | - Mirela Sedić
- University of Rijeka, Department of Biotechnology, Radmile Matejčić 2, HR-51000 Rijeka, Croatia; University of Rijeka, Centre for High-throughput Technologies, Radmile Matejčić 2, HR-51000 Rijeka, Croatia.
| | - Petra Grbčić
- University of Rijeka, Department of Biotechnology, Radmile Matejčić 2, HR-51000 Rijeka, Croatia
| | | | - Sandra Kraljević Pavelić
- University of Rijeka, Department of Biotechnology, Radmile Matejčić 2, HR-51000 Rijeka, Croatia; University of Rijeka, Centre for High-throughput Technologies, Radmile Matejčić 2, HR-51000 Rijeka, Croatia
| | - Mario Cetina
- University of Zagreb, Faculty of Textile Technology, Department of Applied Chemistry, Prilaz Baruna Filipovića 28a, HR-10000 Zagreb, Croatia
| | - Robert Vianello
- Computational Organic Chemistry and Biochemistry Group, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia.
| | - Silvana Raić-Malić
- University of Zagreb, Faculty of Chemical Engineering and Technology, Department of Organic Chemistry, Marulićev Trg 20, HR-10000 Zagreb, Croatia.
| |
Collapse
|
14
|
Ceramidases, roles in sphingolipid metabolism and in health and disease. Adv Biol Regul 2016; 63:122-131. [PMID: 27771292 DOI: 10.1016/j.jbior.2016.10.002] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 10/07/2016] [Accepted: 10/09/2016] [Indexed: 01/14/2023]
Abstract
Over the past three decades, extensive research has been able to determine the biologic functions for the main bioactive sphingolipids, namely ceramide, sphingosine, and sphingosine 1-phosphate (S1P) (Hannun, 1996; Hannun et al., 1986; Okazaki et al., 1989). These studies have managed to define the metabolism, regulation, and function of these bioactive sphingolipids. This emerging body of literature has also implicated bioactive sphingolipids, particularly S1P and ceramide, as key regulators of cellular homeostasis. Ceramidases have the important role of cleaving fatty acid from ceramide and producing sphingosine, thereby controlling the interconversion of these two lipids. Thus far, five human ceramidases encoded by five different genes have been identified: acid ceramidase (AC), neutral ceramidase (NC), alkaline ceramidase 1 (ACER1), alkaline ceramidase 2 (ACER2), and alkaline ceramidase 3 (ACER3). These ceramidases are classified according to their optimal pH for catalytic activity. AC, which is localized to the lysosomal compartment, has been associated with Farber's disease and is involved in the regulation of cell viability. Neutral ceramidase, which is localized to the plasma membrane and primarily expressed in the small intestine and colon, is involved in digestion, and has been implicated in colon carcinogenesis. ACER1 which can be found in the endoplasmic reticulum and is highly expressed in the skin, plays an important role in keratinocyte differentiation. ACER2, localized to the Golgi complex and highly expressed in the placenta, is involved in programed cell death in response to DNA damage. ACER3, also localized to the endoplasmic reticulum and the Golgi complex, is ubiquitously expressed, and is involved in motor coordination-associated Purkinje cell degeneration. This review seeks to consolidate the current knowledge regarding these key cellular players.
Collapse
|
15
|
Synthesis, in vitro anticancer and antibacterial activities and in silico studies of new 4-substituted 1,2,3-triazole-coumarin hybrids. Eur J Med Chem 2016; 124:794-808. [PMID: 27639370 DOI: 10.1016/j.ejmech.2016.08.062] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 01/19/2023]
Abstract
The 4-substituted 1,2,3-triazole core in designed coumarin hybrids (4-35) with diverse physicochemical properties was introduced by eco-friendly copper(I)-catalyzed Huisgen 1,3-dipolar cycloaddition under microwave irradiation. Coumarin-1,2,3-triazole-benzofused heterocycle hybrids emerged as the class of compounds exhibiting the highest antiproliferative activity. The strong relationship between lipophilicity and antiproliferative activities was observed indicating that lipophilic 1,2,3-triazole-coumarin hybrids containing phenylethyl (13), 3,5-difluorophenyl (14), 5-iodoindole (30) and benzimidazole (33 and 35) subunits showed the most potent cytostatic effects. The 7-methylcoumarin-1,2,3-triazole-2-methylbenzimidazole hybrid 33 can be highlighted as a lead that exerted the highest cytotoxicity against hepatocellular carcinoma HepG2 cells with IC50 value of 0.9 μM and high selectivity (SI = 50). This compound induced cell death, mainly due to early apoptosis. Strong antiproliferative effect of 33 could be associated with its inhibition of 5-lipoxygenase (5-LO) activity and perturbation of sphingolipid signaling by interfering with intracellular acid ceramidase (ASAH) activity. Outlined considerable effect of lipophilicity on antiproliferative activity was not observed for antibacterial activity. The compounds with p-pentylphenyl (17), 2-chloro-4-fluorobenzenesulfonamide (23) and dithiocarbamate (27) moiety were endowed with high selectivity against Enterococcus species. Moreover, these compounds were found to be superior in inhibiting the growth of clinically isolated vancomycin-resistant Enterococcus faecium, while the reference antibiotics exhibited the lack of activity. Our findings indicate that coumarin-1,2,3-triazole could be used as the scaffold for structural optimization to develop more potent and selective anticancer agents and encourage further development of novel structurally related analogs of 33 as more effective 5-LO inhibitors.
Collapse
|