1
|
Gałęzowski M, Fabritius CH, Pesonen U, Salo H, Olszak-Płachta M, Czerwińska K, Adamczyk J, Król M, Prusis P, Sieprawska-Lupa M, Mikulski M, Kuokkanen K, Obuchowicz R, Korjamo T, Jalava N, Nikiforuk A, Nowak M. 5-HT 6 receptor antagonists. Design, synthesis, and structure-activity relationship of substituted 2-(1-methyl-4-piperazinyl)pyridines. Bioorg Med Chem Lett 2023; 96:129497. [PMID: 37806499 DOI: 10.1016/j.bmcl.2023.129497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
In this study, we present the discovery and pharmacological characterization of a new series of 6-piperazinyl-7-azaindoles. These compounds demonstrate potent antagonism and selectivity against the 5-HT6 receptor. Our research primarily focuses on optimizing the lead structure and investigating the structure-activity relationship (SAR) of these compounds. Our main objective is to improve their activity and selectivity against off-target receptors. Overall, our findings contribute to the advancement of novel compounds targeting the 5-HT6 receptor. Compound 29 exhibits significant promise in terms of pharmacological, physicochemical, and ADME (Absorption, Distribution, Metabolism, and Excretion) properties. Consequently, it merits thorough exploration as a potential drug candidate due to its favorable activity profile and successful outcomes in a range of in vivo experiments.
Collapse
Affiliation(s)
| | | | - Ullamari Pesonen
- Orion Corporation, Orion Pharma, Orionintie 1A, 02200 Espoo, Finland
| | - Harri Salo
- Orion Corporation, Orion Pharma, Orionintie 1A, 02200 Espoo, Finland
| | | | | | - Justyna Adamczyk
- Ryvu Therapeutics S.A., Sternbacha Street 2, 30-394 Kraków, Poland
| | - Marcin Król
- Ryvu Therapeutics S.A., Sternbacha Street 2, 30-394 Kraków, Poland
| | - Peteris Prusis
- Orion Corporation, Orion Pharma, Orionintie 1A, 02200 Espoo, Finland
| | | | - Maciej Mikulski
- Ryvu Therapeutics S.A., Sternbacha Street 2, 30-394 Kraków, Poland
| | - Katja Kuokkanen
- Orion Corporation, Orion Pharma, Orionintie 1A, 02200 Espoo, Finland
| | | | - Timo Korjamo
- Orion Corporation, Orion Pharma, Orionintie 1A, 02200 Espoo, Finland
| | - Niina Jalava
- Orion Corporation, Orion Pharma, Orionintie 1A, 02200 Espoo, Finland
| | - Agnieszka Nikiforuk
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
| | - Mateusz Nowak
- Ryvu Therapeutics S.A., Sternbacha Street 2, 30-394 Kraków, Poland
| |
Collapse
|
2
|
Potential Anti-Amnesic Activity of a Novel Multimodal Derivative of Salicylamide, JJGW08, in Mice. Pharmaceuticals (Basel) 2023; 16:ph16030399. [PMID: 36986498 PMCID: PMC10056859 DOI: 10.3390/ph16030399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/01/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
Memory impairments constitute a significant problem worldwide, and the COVID-19 pandemic dramatically increased the prevalence of cognitive deficits. Patients with cognitive deficits, specifically memory disturbances, have underlying comorbid conditions such as schizophrenia, anxiety, or depression. Moreover, the available treatment options have unsatisfactory effectiveness. Therefore, there is a need to search for novel procognitive and anti-amnesic drugs with additional pharmacological activity. One of the important therapeutic targets involved in the modulation of learning and memory processes are serotonin receptors, including 5-HT1A, 5-HT6, and 5-HT7, which also play a role in the pathophysiology of depression. Therefore, this study aimed to assess the anti-amnesic and antidepressant-like potential of JJGW08, a novel arylpiperazine alkyl derivative of salicylamide with strong antagonistic properties at 5-HT1A and D2 receptors and weak at 5-HT2A and 5-HT7 receptors in rodents. First, we investigated the compound’s affinity for 5-HT6 receptors using the radioligand assays. Next, we assessed the influence of the compound on long-term emotional and recognition memory. Further, we evaluated whether the compound could protect against MK-801-induced cognitive impairments. Finally, we determined the potential antidepressant-like activity of the tested compound. We found that JJGW08 possessed no affinity for 5-HT6 receptors. Furthermore, JJGW08 protected mice against MK-801-induced recognition and emotional memory deficits but showed no antidepressant-like effects in rodents. Therefore, our preliminary study may suggest that blocking serotonin receptors, especially 5-HT1A and 5-HT7, might be beneficial in treating cognitive impairments, but it requires further investigation.
Collapse
|
3
|
Mokhtar N, Drop M, Jacquot F, Lamoine S, Chapuy E, Prival L, Aissouni Y, Canale V, Lamaty F, Zajdel P, Marin P, Doly S, Courteix C. The Constitutive Activity of Spinal 5-HT 6 Receptors Contributes to Diabetic Neuropathic Pain in Rats. Biomolecules 2023; 13:biom13020364. [PMID: 36830733 PMCID: PMC9953062 DOI: 10.3390/biom13020364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Diabetic neuropathy is often associated with chronic pain. Serotonin type 6 (5-HT6) receptor ligands, particularly inverse agonists, have strong analgesic potential and may be new candidates for treating diabetic neuropathic pain and associated co-morbid cognitive deficits. The current study addressed the involvement of 5-HT6 receptor constitutive activity and mTOR signaling in an experimental model of diabetic neuropathic pain induced by streptozocin (STZ) injection in the rat. Here, we show that mechanical hyperalgesia and associated cognitive deficits are suppressed by the administration of 5-HT6 receptor inverse agonists or rapamycin. The 5-HT6 receptor ligands also reduced tactile allodynia in traumatic and toxic neuropathic pain induced by spinal nerve ligation and oxaliplatin injection. Furthermore, both painful and co-morbid cognitive symptoms in diabetic rats are reduced by intrathecal delivery of a cell-penetrating peptide that disrupts 5-HT6 receptor-mTOR physical interaction. These findings demonstrate the deleterious influence of the constitutive activity of spinal 5-HT6 receptors upon painful and cognitive symptoms in diabetic neuropathic pains of different etiologies. They suggest that targeting the constitutive activity of 5-HT6 receptors with inverse agonists or disrupting the 5-HT6 receptor-mTOR interaction might be valuable strategies for the alleviation of diabetic neuropathic pain and cognitive co-morbidities.
Collapse
Affiliation(s)
- Nazarine Mokhtar
- Université Clermont Auvergne, INSERM, NEURO-DOL, 63000 Clermont-Ferrand, France
| | - Marcin Drop
- IBMM, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Florian Jacquot
- Université Clermont Auvergne, INSERM, NEURO-DOL, 63000 Clermont-Ferrand, France
| | - Sylvain Lamoine
- Université Clermont Auvergne, INSERM, NEURO-DOL, 63000 Clermont-Ferrand, France
| | - Eric Chapuy
- Université Clermont Auvergne, INSERM, NEURO-DOL, 63000 Clermont-Ferrand, France
| | - Laetitia Prival
- Université Clermont Auvergne, INSERM, NEURO-DOL, 63000 Clermont-Ferrand, France
| | - Youssef Aissouni
- Université Clermont Auvergne, INSERM, NEURO-DOL, 63000 Clermont-Ferrand, France
| | - Vittorio Canale
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Frédéric Lamaty
- IBMM, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Paweł Zajdel
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Philippe Marin
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Stéphane Doly
- Université Clermont Auvergne, INSERM, NEURO-DOL, 63000 Clermont-Ferrand, France
| | - Christine Courteix
- Université Clermont Auvergne, INSERM, NEURO-DOL, 63000 Clermont-Ferrand, France
- Correspondence: ; Tel.: +33-473178016
| |
Collapse
|
4
|
Canale V, Trybała W, Chaumont-Dubel S, Koczurkiewicz-Adamczyk P, Satała G, Bento O, Blicharz-Futera K, Bantreil X, Pękala E, Bojarski AJ, Lamaty F, Marin P, Zajdel P. 1-(Arylsulfonyl-isoindol-2-yl)piperazines as 5-HT 6R Antagonists: Mechanochemical Synthesis, In Vitro Pharmacological Properties and Glioprotective Activity. Biomolecules 2022; 13:biom13010012. [PMID: 36671397 PMCID: PMC9855333 DOI: 10.3390/biom13010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
In addition to the canonical Gs adenylyl cyclase pathway, the serotonin type 6 receptor (5-HT6R) recruits additional signaling pathways that control cognitive function, brain development, and synaptic plasticity in an agonist-dependent and independent manner. Considering that aberrant constitutive and agonist-induced active states are involved in various pathological mechanisms, the development of biased ligands with different functional profiles at specific 5-HT6R-elicited signaling pathways may provide a novel therapeutic perspective in the field of neurodegenerative and psychiatric diseases. Based on the structure of SB-258585, an inverse agonist at 5-HT6R-operated Gs and Cdk5 signaling, we designed a series of 1-(arylsulfonyl-isoindol-2-yl)piperazine derivatives and synthesized them using a sustainable mechanochemical method. We identified the safe and metabolically stable biased ligand 3g, which behaves as a neutral antagonist at the 5-HT6R-operated Gs signaling and displays inverse agonist activity at the Cdk5 pathway. Inversion of the sulfonamide bond combined with its incorporation into the isoindoline scaffold switched the functional profile of 3g at Gs signaling with no impact at the Cdk5 pathway. Compound 3g reduced the cytotoxicity of 6-OHDA and produced a glioprotective effect against rotenone-induced toxicity in C8-D1A astrocyte cell cultures. In view of these findings, compound 3g can be considered a promising biased ligand to investigate the role of the 5-HT6R-elicited Gs and Cdk5 signaling pathways in neurodegenerative diseases.
Collapse
Affiliation(s)
- Vittorio Canale
- Department of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
- Correspondence:
| | - Wojciech Trybała
- Department of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Séverine Chaumont-Dubel
- Institut de Génomique Fonctionelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Paulina Koczurkiewicz-Adamczyk
- Department of Pharmaceutical Biochemisty, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Grzegorz Satała
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Krakow, Poland
| | - Ophélie Bento
- Institut de Génomique Fonctionelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Klaudia Blicharz-Futera
- Department of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Xavier Bantreil
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemisty, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Andrzej J. Bojarski
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Krakow, Poland
| | - Frédéric Lamaty
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Philippe Marin
- Institut de Génomique Fonctionelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Paweł Zajdel
- Department of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| |
Collapse
|
5
|
Zixin Y, Lulu C, Xiangchang Z, Qing F, Binjie Z, Chunyang L, Tai R, Dongsheng O. TMAO as a potential biomarker and therapeutic target for chronic kidney disease: A review. Front Pharmacol 2022; 13:929262. [PMID: 36034781 PMCID: PMC9411716 DOI: 10.3389/fphar.2022.929262] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
The gut microbiota and its metabolites have become a hotspot of recent research. Trimethylamine N-oxide (TMAO) metabolized by the gut microbiota is closely related to many diseases such as cardiovascular disease, chronic kidney disease, type 2 diabetes, etc. Chronic kidney disease (CKD) is an important contributor to morbidity and mortality from non-communicable diseases. Recently, increasing focus has been put on the role of TMAO in the development and progress of chronic kidney disease. The level of TMAO in patients with chronic kidney disease is significantly increased, and a high level of TMAO deteriorates chronic kidney disease. This article describes the relationship between TMAO and chronic kidney disease and the research progress of drugs targeted TMAO, providing a reference for the development of anti-chronic kidney disease drugs targeted TMAO.
Collapse
Affiliation(s)
- Ye Zixin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Chen Lulu
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, China
- Department of Clinical Pharmacy, Affiliated Hospital of Xiangnan University, Chenzhou, China
| | - Zeng Xiangchang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Fang Qing
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, China
| | - Zheng Binjie
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Luo Chunyang
- Department of Clinical Pharmacy, Affiliated Hospital of Xiangnan University, Chenzhou, China
| | - Rao Tai
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Ouyang Dongsheng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, China
| |
Collapse
|
6
|
An efficient synthesis of 4-Thiocyanato anilines using benzyltrimethylammonium dichloroiodate and ammonium thiocyanate in DMSO:H2O. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Yao C, Jiang X, Ye X, Xie T, Bai R. Antidepressant Drug Discovery and Development: Mechanism and Drug Design Based on Small Molecules. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chuansheng Yao
- School of Pharmacy Hangzhou Normal University Hangzhou 311121 PR China
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicine of Zhejiang Province Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province Collaborative Innovation Center of Chinese Medicines from Zhejiang Province Hangzhou Normal University Hangzhou 311121 PR China
| | - Xiaoying Jiang
- College of Material, Chemistry and Chemical Engineering Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education, Hangzhou Normal University Hangzhou 311121 P.R. China
| | - Xiang‐Yang Ye
- School of Pharmacy Hangzhou Normal University Hangzhou 311121 PR China
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicine of Zhejiang Province Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province Collaborative Innovation Center of Chinese Medicines from Zhejiang Province Hangzhou Normal University Hangzhou 311121 PR China
| | - Tian Xie
- School of Pharmacy Hangzhou Normal University Hangzhou 311121 PR China
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicine of Zhejiang Province Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province Collaborative Innovation Center of Chinese Medicines from Zhejiang Province Hangzhou Normal University Hangzhou 311121 PR China
| | - Renren Bai
- School of Pharmacy Hangzhou Normal University Hangzhou 311121 PR China
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicine of Zhejiang Province Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province Collaborative Innovation Center of Chinese Medicines from Zhejiang Province Hangzhou Normal University Hangzhou 311121 PR China
| |
Collapse
|
8
|
Tan C, Jiang H, Zeng M, Li K, Chen Z, Yin G. Pd(II)/Lewis acid catalyzed regioselective olefination of indole with dioxygen. Org Biomol Chem 2022; 20:1425-1435. [PMID: 35080233 DOI: 10.1039/d2ob00006g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Transition metal ion catalyzed indole olefination through C-H activation is a convenient protocol to synthesize versatile bioactive vinylindole compounds; however, in most cases, stoichiometric amounts of oxidants were necessary to accomplish the catalytic cycle. The present study describes a Pd(II)/LA (LA: Lewis acid) catalyzed indole olefination with dioxygen as the sole oxidant. The olefination reaction with electron-rich olefins proceeded smoothly through the pyrrolyl N-carboxamide group directed remote C-H activation at the C3 position of the indole with the Pd(II)/LA catalyst, whereas Pd(II) alone was a very sluggish catalyst under identical conditions. For the electron-deficient olefins, the directing N-carboxamide group was not essential for olefination with this Pd(II)/LA catalyst, demonstrating a different olefination pathway from that of electron-rich olefins. Remarkably, 1H NMR kinetics disclosed that olefination proceeded much faster with electron-rich olefins than with electron-deficient ones.
Collapse
Affiliation(s)
- Chen Tan
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Hongwu Jiang
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Miao Zeng
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Kaiwen Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Zhuqi Chen
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Guochuan Yin
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
9
|
The Phenoxyalkyltriazine Antagonists for 5-HT 6 Receptor with Promising Procognitive and Pharmacokinetic Properties In Vivo in Search for a Novel Therapeutic Approach to Dementia Diseases. Int J Mol Sci 2021; 22:ijms221910773. [PMID: 34639113 PMCID: PMC8509428 DOI: 10.3390/ijms221910773] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/16/2021] [Accepted: 09/28/2021] [Indexed: 11/28/2022] Open
Abstract
Among the serotonin receptors, one of the most recently discovered 5-HT6 subtype is an important protein target and its ligands may play a key role in the innovative treatment of cognitive disorders. However, none of its selective ligands have reached the pharmaceutical market yet. Recently, a new chemical class of potent 5-HT6 receptor agents, the 1,3,5-triazine-piperazine derivatives, has been synthesized. Three members, the ortho and meta dichloro- (1,2) and the unsubstituted phenyl (3) derivatives, proved to be of special interest due to their high affinities (1,2) and selectivity (3) toward 5-HT6 receptor. Thus, a broader pharmacological profile for 1–3, including comprehensive screening of the receptor selectivity and drug-like parameters in vitro as well as both, pharmacokinetic and pharmacodynamic properties in vivo, have been investigated within this study. A comprehensive analysis of the obtained results indicated significant procognitive-like activity together with beneficial drug-likeness in vitro and pharmacokinetics in vivo profiles for both, (RS)-4-[1-(2,3-dichlorophenoxy)propyl]-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (2) and (RS)-4-(4-methylpiperazin-1-yl)-6-(1-phenoxypropyl)-1,3,5-triazin-2-amine (3), but insensibly predominant for compound 2. Nevertheless, both compounds (2 and 3) seem to be good Central Nervous System drug candidates in search for novel therapeutic approach to dementia diseases, based on the 5-HT6 receptor target.
Collapse
|
10
|
Zajdel P, Grychowska K, Mogilski S, Kurczab R, Satała G, Bugno R, Kos T, Gołębiowska J, Malikowska-Racia N, Nikiforuk A, Chaumont-Dubel S, Bantreil X, Pawłowski M, Martinez J, Subra G, Lamaty F, Marin P, Bojarski AJ, Popik P. Structure-Based Design and Optimization of FPPQ, a Dual-Acting 5-HT 3 and 5-HT 6 Receptor Antagonist with Antipsychotic and Procognitive Properties. J Med Chem 2021; 64:13279-13298. [PMID: 34467765 PMCID: PMC8474115 DOI: 10.1021/acs.jmedchem.1c00224] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In line with recent clinical trials demonstrating that ondansetron, a 5-HT3 receptor (5-HT3R) antagonist, ameliorates cognitive deficits of schizophrenia and the known procognitive effects of 5-HT6 receptor (5-HT6R) antagonists, we applied the hybridization strategy to design dual-acting 5-HT3/5-HT6R antagonists. We identified the first-in-class compound FPPQ, which behaves as a 5-HT3R antagonist and a neutral antagonist 5-HT6R of the Gs pathway. FPPQ shows selectivity over 87 targets and decent brain penetration. Likewise, FPPQ inhibits phencyclidine (PCP)-induced hyperactivity and displays procognitive properties in the novel object recognition task. In contrast to FPPQ, neither 5-HT6R inverse agonist SB399885 nor neutral 5-HT6R antagonist CPPQ reversed (PCP)-induced hyperactivity. Thus, combination of 5-HT3R antagonism and 5-HT6R antagonism, exemplified by FPPQ, contributes to alleviating the positive-like symptoms. Present findings reveal critical structural features useful in a rational polypharmacological approach to target 5-HT3/5-HT6 receptors and encourage further studies on dual-acting 5-HT3/5-HT6R antagonists for the treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Paweł Zajdel
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Katarzyna Grychowska
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Szczepan Mogilski
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Rafał Kurczab
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Grzegorz Satała
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Ryszard Bugno
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Tomasz Kos
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Joanna Gołębiowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Natalia Malikowska-Racia
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Agnieszka Nikiforuk
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Séverine Chaumont-Dubel
- Institut de Génomique Fonctionelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Xavier Bantreil
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Maciej Pawłowski
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Jean Martinez
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Gilles Subra
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Frédéric Lamaty
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Philippe Marin
- Institut de Génomique Fonctionelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Andrzej J Bojarski
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Piotr Popik
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| |
Collapse
|
11
|
Drop M, Jacquot F, Canale V, Chaumont-Dubel S, Walczak M, Satała G, Nosalska K, Mahoro GU, Słoczyńska K, Piska K, Lamoine S, Pękala E, Masurier N, Bojarski AJ, Pawłowski M, Martinez J, Subra G, Bantreil X, Lamaty F, Eschalier A, Marin P, Courteix C, Zajdel P. Neuropathic pain-alleviating activity of novel 5-HT 6 receptor inverse agonists derived from 2-aryl-1H-pyrrole-3-carboxamide. Bioorg Chem 2021; 115:105218. [PMID: 34365058 DOI: 10.1016/j.bioorg.2021.105218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/16/2021] [Accepted: 07/24/2021] [Indexed: 11/30/2022]
Abstract
The diverse signaling pathways engaged by serotonin type 6 receptor (5-HT6R) together with its high constitutive activity suggests different types of pharmacological interventions for the treatment of CNS disorders. Non-physiological activation of mTOR kinase by constitutively active 5-HT6R under neuropathic pain conditions focused our attention on the possible repurposing of 5-HT6R inverse agonists as a strategy to treat painful symptoms associated with neuropathies of different etiologies. Herein, we report the identification of compound 33 derived from the library of 2-aryl-1H-pyrrole-3-carboxamides as a potential analgesic agent. Compound 33 behaves as a potent 5-HT6R inverse agonist at Gs, Cdk5, and mTOR signaling. Preliminary ADME/Tox studies revealed preferential distribution of 33 to the CNS and placed it in the low-risk safety space. Finally, compound 33 dose-dependently reduced tactile allodynia in spinal nerve ligation (SNL)-induced neuropathic rats.
Collapse
Affiliation(s)
- Marcin Drop
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland; IBMM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Florian Jacquot
- Université Clermont Auvergne, INSERM U1107, NEURO-DOL, F-63000 Clermont-Ferrand, France
| | - Vittorio Canale
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Severine Chaumont-Dubel
- Institut de Génomique Fonctionelle, Université de Montpellier, CNRS INSERM, 34094 Montpellier, France
| | - Maria Walczak
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Grzegorz Satała
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Klaudia Nosalska
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| | | | - Karolina Słoczyńska
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Kamil Piska
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Sylvain Lamoine
- Université Clermont Auvergne, INSERM U1107, NEURO-DOL, F-63000 Clermont-Ferrand, France
| | - Elżbieta Pękala
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Nicolas Masurier
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Andrzej J Bojarski
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Maciej Pawłowski
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Jean Martinez
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Gilles Subra
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Xavier Bantreil
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Frédéric Lamaty
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Alain Eschalier
- Université Clermont Auvergne, INSERM U1107, NEURO-DOL, F-63000 Clermont-Ferrand, France
| | - Philippe Marin
- Institut de Génomique Fonctionelle, Université de Montpellier, CNRS INSERM, 34094 Montpellier, France
| | - Christine Courteix
- Université Clermont Auvergne, INSERM U1107, NEURO-DOL, F-63000 Clermont-Ferrand, France
| | - Paweł Zajdel
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland.
| |
Collapse
|
12
|
Kucwaj-Brysz K, Baltrukevich H, Czarnota K, Handzlik J. Chemical update on the potential for serotonin 5-HT 6 and 5-HT 7 receptor agents in the treatment of Alzheimer's disease. Bioorg Med Chem Lett 2021; 49:128275. [PMID: 34311086 DOI: 10.1016/j.bmcl.2021.128275] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 12/18/2022]
Abstract
Despite the better understanding of the mechanisms underlying Alzheimer's Disease (AD) and launched clinical trials, no AD-modifying treatment based on a synthetic drug has been introduced for almost twenty years. The serotonin 5-HT6 and 5-HT7 receptors turned out to be promising biological targets for modulation of central nervous system dysfunctions including cognitive impairment. Within this paper, we evaluate the pharmacological potency of both, 5-HT6R and 5-HT7R, agents in search for novel AD treatment. An overview of chemical structures of the 5-HTRs ligands with simultaneous procognitive action which have undergone preclinical and clinical studies within the last 10 years has been performed.
Collapse
Affiliation(s)
- Katarzyna Kucwaj-Brysz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Hanna Baltrukevich
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Kinga Czarnota
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland.
| |
Collapse
|
13
|
Design, Sustainable Synthesis and Biological Evaluation of a Novel Dual α2A/5-HT7 Receptor Antagonist with Antidepressant-Like Properties. Molecules 2021; 26:molecules26133828. [PMID: 34201675 PMCID: PMC8270334 DOI: 10.3390/molecules26133828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/26/2022] Open
Abstract
The complex pathophysiology of depression, together with the limits of currently available antidepressants, has resulted in the continuous quest for alternative therapeutic strategies. Numerous findings suggest that pharmacological blockade of α2-adrenoceptor might be beneficial for the treatment of depressive symptoms by increasing both norepinephrine and serotonin levels in certain brain areas. Moreover, the antidepressant properties of 5-HT7 receptor antagonists have been widely demonstrated in a large set of animal models. Considering the potential therapeutic advantages in targeting both α2-adrenoceptors and 5-HT7 receptors, we designed a small series of arylsulfonamide derivatives of (dihydrobenzofuranoxy)ethyl piperidines as dually active ligands. Following green chemistry principles, the designed compounds were synthesized entirely using a sustainable mechanochemical approach. The identified compound 8 behaved as a potent α2A/5-HT7 receptor antagonist and displayed moderate-to-high selectivity over α1-adrenoceptor subtypes and selected serotonin and dopaminergic receptors. Finally, compound 8 improved performance of mice in the forced swim test, displaying similar potency to the reference drug mirtazapine.
Collapse
|
14
|
Drop M, Canale V, Chaumont-Dubel S, Kurczab R, Satała G, Bantreil X, Walczak M, Koczurkiewicz-Adamczyk P, Latacz G, Gwizdak A, Krawczyk M, Gołębiowska J, Grychowska K, Bojarski AJ, Nikiforuk A, Subra G, Martinez J, Pawłowski M, Popik P, Marin P, Lamaty F, Zajdel P. 2-Phenyl-1 H-pyrrole-3-carboxamide as a New Scaffold for Developing 5-HT 6 Receptor Inverse Agonists with Cognition-Enhancing Activity. ACS Chem Neurosci 2021; 12:1228-1240. [PMID: 33705101 PMCID: PMC8041276 DOI: 10.1021/acschemneuro.1c00061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
![]()
Serotonin type 6
receptor (5-HT6R) has gained particular
interest as a promising target for treating cognitive deficits, given
the positive effects of its antagonists in a wide range of memory
impairment paradigms. Herein, we report on degradation of the 1H-pyrrolo[3,2-c]quinoline scaffold
to provide the 2-phenyl-1H-pyrrole-3-carboxamide,
which is devoid of canonical indole-like skeleton and retains recognition
of 5-HT6R. This modification has changed the compound’s
activity at 5-HT6R-operated signaling pathways from neutral
antagonism to inverse agonism. The study identified compound 27 that behaves as an inverse agonist of the 5-HT6R at the Gs and Cdk5 signaling pathways. Compound 27 showed high selectivity and metabolic stability and was brain penetrant.
Finally, 27 reversed scopolamine-induced memory decline
in the novel object recognition test and exhibited procognitive properties
in the attentional set-shifting task in rats. In light of these findings, 27 might be considered for further evaluation as a new cognition-enhancing
agent, while 2-phenyl-1H-pyrrole-3-carboxamide might
be used as a template for designing 5-HT6R inverse agonists.
Collapse
Affiliation(s)
- Marcin Drop
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Vittorio Canale
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Séverine Chaumont-Dubel
- Institut de Génomique Fonctionelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Rafał Kurczab
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Grzegorz Satała
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Xavier Bantreil
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Maria Walczak
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| | | | - Gniewomir Latacz
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Anna Gwizdak
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
- Institut de Génomique Fonctionelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Martyna Krawczyk
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Joanna Gołębiowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Katarzyna Grychowska
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Andrzej J. Bojarski
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Agnieszka Nikiforuk
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Gilles Subra
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Jean Martinez
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Maciej Pawłowski
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Piotr Popik
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Philippe Marin
- Institut de Génomique Fonctionelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Frédéric Lamaty
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Paweł Zajdel
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| |
Collapse
|
15
|
Guzmán-Rodríguez S, Chávez-Reyes J, Vázquez-León P, Soriano-Ursúa MA, Rosalez MN, Allende G, Marichal-Cancino BA. 1-Boc-Piperidine-4-Carboxaldehyde Prevents Binge-Eating Behaviour and Anxiety in Rats. Pharmacology 2021; 106:305-315. [PMID: 33756489 DOI: 10.1159/000513376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 11/24/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Piperidines are biogenic amines studied mainly in toxicology because they were initially found as alkaloids from peppers and insect venoms. Piperidines are also produced in the human body, and their actions seem to be related to wakefulness/sleep and other cognitive phenomena. Piperidines have been minimally characterized for therapeutic applications. In this context, 1-Boc-piperidine-4-carboxaldehyde (1-Boc-piperidine) is a piperidine-derivative molecule with no mechanism of action reported, although its uses include the synthesis of GPR119 selective agonists that have been patented as anti-obesity drugs. OBJECTIVES The aim of this work was to study the effects of 1-Boc-piperidine on binge-eating behaviour and anxiety in Wistar rats. METHODS In experimental protocol 1, binge-eating behaviour was induced in animals that received pre-treatment (i.p.) with (i) vehicle (methanol 10%; 1 mL/kg), (ii) 1-Boc-piperidine (1 µmol kg-1), or (iii) 1-Boc-piperidine (10 µmol kg-1). In experimental protocol 2, mildly stressed animals were evaluated in the elevated plus maze under the acute effects of the pre-treatments applied in experimental protocol 1. RESULTS AND CONCLUSIONS 1-Boc-piperidine decreased, in a dose-dependent manner, the intake of calories from a succulent hyper-caloric food in a binge-eating protocol in female rats, whereas the acute exposition to this piperidine exerted an anxiolytic effect in the male rat. In both effects, the mechanism of action remains to be characterized.
Collapse
Affiliation(s)
- Sergio Guzmán-Rodríguez
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, Aguascalientes, Mexico
| | - Jesús Chávez-Reyes
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, Aguascalientes, Mexico
| | - Priscila Vázquez-León
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, Aguascalientes, Mexico
| | - Marvin A Soriano-Ursúa
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Melvin N Rosalez
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Gonzalo Allende
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, Aguascalientes, Mexico
| | - Bruno A Marichal-Cancino
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, Aguascalientes, Mexico,
| |
Collapse
|
16
|
Vanda D, Canale V, Chaumont-Dubel S, Kurczab R, Satała G, Koczurkiewicz-Adamczyk P, Krawczyk M, Pietruś W, Blicharz K, Pękala E, Bojarski AJ, Popik P, Marin P, Soural M, Zajdel P. Imidazopyridine-Based 5-HT 6 Receptor Neutral Antagonists: Impact of N1-Benzyl and N1-Phenylsulfonyl Fragments on Different Receptor Conformational States. J Med Chem 2021; 64:1180-1196. [PMID: 33439019 DOI: 10.1021/acs.jmedchem.0c02009] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
G-protein coupled receptors (GPCRs) exist in an equilibrium of multiple conformational states, including different active states, which depend on the nature of the bound ligand. In consequence, different conformational states can initiate specific signal transduction pathways. The study identified compound 7e, which acts as a potent 5-hydroxytryptamine type 6 receptor (5-HT6R) neutral antagonist at Gs and does not impact neurite growth (process controlled by Cdk5). MD simulations highlighted receptor conformational changes for 7e and inverse agonist PZ-1444. In cell-based assays, neutral antagonists of the 5-HT6R (7e and CPPQ), but not inverse agonists (SB-258585, intepirdine, PZ-1444), displayed glioprotective properties against 6-hydroxydopamine-induced and doxorubicin-induced cytotoxicity. These suggest that targeting the activated conformational state of the 5-HT6R with neutral antagonists implicates the protecting properties of astrocytes. Additionally, 7e prevented scopolamine-induced learning deficits in the novel object recognition test in rats. We propose 7e as a probe for further understanding of the functional outcomes of different states of the 5-HT6R.
Collapse
Affiliation(s)
- David Vanda
- Faculty of Science, Department of Organic Chemistry, Palacký University, 17. listopadu 12, Olomouc 771 46, Czech Republic
| | - Vittorio Canale
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, Kraków 30-688, Poland
| | - Severine Chaumont-Dubel
- Institut de Génomique Fonctionnelle, Univ. Montpellier, INSERM, CNRS, 141 Rue de la Cardonille, Montpellier 34-094, France
| | - Rafał Kurczab
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków 31-343, Poland
| | - Grzegorz Satała
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków 31-343, Poland
| | | | - Martyna Krawczyk
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków 31-343, Poland
| | - Wojciech Pietruś
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków 31-343, Poland
| | - Klaudia Blicharz
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, Kraków 30-688, Poland
| | - Elżbieta Pękala
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, Kraków 30-688, Poland
| | - Andrzej J Bojarski
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków 31-343, Poland
| | - Piotr Popik
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków 31-343, Poland
| | - Philippe Marin
- Institut de Génomique Fonctionnelle, Univ. Montpellier, INSERM, CNRS, 141 Rue de la Cardonille, Montpellier 34-094, France
| | - Miroslav Soural
- Faculty of Science, Department of Organic Chemistry, Palacký University, 17. listopadu 12, Olomouc 771 46, Czech Republic.,Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, Olomouc 779 00, Czech Republic
| | - Paweł Zajdel
- Faculty of Pharmacy, Department of Organic Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, Kraków 30-688, Poland
| |
Collapse
|
17
|
Gupta PK, Yadav AK, Sharma AK, Singh KN. Iodine-catalyzed thioallylation of indoles using Bunte salts prepared from Baylis-Hillman bromides. Org Biomol Chem 2021; 19:3484-3488. [PMID: 33899895 DOI: 10.1039/d1ob00377a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Metal-free iodine-catalyzed regioselective thioallylation of indoles has been accomplished at room temperature using Bunte salts prepared from Baylis-Hillman bromides. The resulting multi-functional C3 thioallylated indoles exhibit ample structural diversity and good functional group tolerance.
Collapse
Affiliation(s)
- Prince Kumar Gupta
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Arvind Kumar Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Anup Kumar Sharma
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Krishna Nand Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
18
|
Wesołowska A, Rychtyk J, Gdula-Argasińska J, Górecka K, Wilczyńska-Zawal N, Jastrzębska-Więsek M, Partyka A. Effect of 5-HT 6 Receptor Ligands Combined with Haloperidol or Risperidone on Antidepressant-/Anxiolytic-Like Behavior and BDNF Regulation in Hippocampus and Prefrontal Cortex of Rats. Neuropsychiatr Dis Treat 2021; 17:2105-2127. [PMID: 34211274 PMCID: PMC8240864 DOI: 10.2147/ndt.s309818] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/19/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The presence of depressive and anxiety symptoms in patients with schizophrenia may have an important impact on treatment and compliance. Hence, interventions addressing such comorbidity in schizophrenia should be explored. One target may be a serotonergic 5-HT6 receptor (5-HT6R) since its ligands displayed antidepressant- and anxiolytic-like activities in preclinical experiments. METHODS Acute and chronic (21 days) administration of haloperidol or risperidone in combination with a selective 5-HT6R agonist (WAY-181187) or antagonist (SB-742457) to rats was performed for detecting antidepressant- and anxiolytic-like behaviors. In addition, the level of brain-derived neurotrophic factor (BDNF) protein and its gene expression in hippocampus and prefrontal cortex were determined. RESULTS Both single and chronic administration of WAY-181187 with haloperidol produced antidepressant- and anxiolytic-like activities. SB-742457 did not provide full benefits in terms of improvement of haloperidol-induced adverse mood effects. However, the administration of SB-742457 with risperidone triggered its anxiolytic-like activity. Both 5-HT6R ligands evoked no changes in haloperidol-induced effects on BDNF level. WAY-181187 induced repression of the BDNF gene while SB-742457 increased its expression in both structures. 5-HT6R ligands, when combined with risperidone, did not change BDNF protein level and increased gene expression in the hippocampus, while they elevated BDNF level and potentiated gene expression in the prefrontal cortex. CONCLUSION The combined administration of WAY-181187 and haloperidol provided the greatest benefits, which were manifested by antidepressant-like effects and suppression of the anxiogenic-like properties. The combined administration of risperidone with both agonist and antagonist resulted only in an anxiolytic-like effect. It seems that the anxiolytic-like effects induced by haloperidol or risperidone with the addition of 5-HT6R ligands are task-specific. The data on BDNF protein and gene expression did not fully correspond with the behavioral outcomes, and thus it appears that other factors/mechanisms are involved in the observed antidepressant- and/or anxiolytic-like effects.
Collapse
Affiliation(s)
- Anna Wesołowska
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Joanna Rychtyk
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Joanna Gdula-Argasińska
- Department of Radioligands, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Katarzyna Górecka
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Natalia Wilczyńska-Zawal
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | | | - Anna Partyka
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
19
|
Constitutive Activity of Serotonin Receptor 6 Regulates Human Cerebral Organoids Formation and Depression-like Behaviors. Stem Cell Reports 2020; 16:75-88. [PMID: 33357407 PMCID: PMC7815944 DOI: 10.1016/j.stemcr.2020.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 01/13/2023] Open
Abstract
Serotonin receptor 6 (5-HT6R), a typical G protein-coupled receptor (GPCR) mainly expressed in the neurogenic area with constitutive activity, is of particular interest as a promising target for emotional impairment. Here, we found that 5-HT6R was highly expressed in human NSCs and activation of the receptor promoted self-renewal of human NSCs, and thus induced the expansion and folding of human cerebral organoids; dysfunction of receptor or inhibition of its constitutive activity resulted in the premature differentiation of NSCs, which ultimately depleted the NSC pool. The following mechanistic study revealed that EPAC-CREB signaling was involved in 5-HT6R regulation. Furthermore, we showed that mice with genetic deletion of 5-HT6R or knockin A268R mutant presented depression-like behaviors and impaired hippocampal neurogenesis for progressive decrease of the NSC pool. Thus, this study indicates that the modulation of 5-HT6R and its constitutive activity may provide a therapeutic alternative to alleviate depression. 5-HT6R regulates human neural stem cell proliferation The constitutive activity of 5-HT6R is essential for human neural stem cell's multipotency 5-HT6R modulates neurogenesis of human cerebral organoids Mice with reduced constitutive activity of 5-HT6R show depression-like behaviors
Collapse
|
20
|
Gopi C, Dhanaraju MD. Synthesis and antioxidant properties of 2-(3-(hydroxyimino)methyl)-1H-indol-1-yl)acetamide derivatives. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00090-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The main aim of this work was to synthesise a novel N-(substituted phenyl)-2-(3-(hydroxyimino) methyl)-1H-indol-1-yl) acetamide derivatives and evaluate their antioxidant activity. These compounds were prepared by a condensation reaction between 1H-indole carbaldehyde oxime and 2-chloro acetamide derivatives. The newly synthesised compound structures were characterised by FT-IR, 1H-NMR, mass spectroscopy and elemental analysis. Furthermore, the above-mentioned compounds were screened for antioxidant activity by using ferric reducing antioxidant power (FRAP) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) methods.
Result
The antioxidant activity result reveals that most of the compounds were exhibiting considerable activity in both methods and the values are very closer to the standards. Among the synthesised compounds, compound 3j, 3a and 3k were shown remarkable activity at low concentration.
Conclusion
Compounds 3j, 3a and 3k were shown highest activity among the prepared analogues due to the attachment of halogens connected at the appropriate place in the phenyl ring. Hence, these substituted phenyl rings considered as a perfect side chain for the indole nucleus for the development of the new antioxidant agents.
Collapse
|
21
|
Yin YY, Tian CY, Fang XX, Shang C, Zhang LM, Xu Q, Li YF. The Faster-Onset Antidepressant Effects of Hypidone Hydrochloride (YL-0919) in Monkeys Subjected to Chronic Unpredictable Stress. Front Pharmacol 2020; 11:586879. [PMID: 33324217 PMCID: PMC7725870 DOI: 10.3389/fphar.2020.586879] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/14/2020] [Indexed: 11/13/2022] Open
Abstract
Given the limited monkey models of depression available to date, as well as the procedural complexity and time investments that they involve, the ability to test the efficacy and time course of antidepressants in monkey models is greatly restricted. The present study attempted to build a simple and feasible monkey model of depression with chronic unpredictable stress (CUS) and evaluate the antidepressant effect and onset time of fluoxetine hydrochloride (FLX) and the new drug hypidone hydrochloride (YL-0919), a potent and selective 5-HT reuptake inhibitor, 5-HT1A receptor partial agonist and 5-HT6 receptor full agonist. Female cynomolgus monkeys with low social status in their colonies were selected and subjected to CUS for 8 weeks by means of food and water deprivation, space restriction, loud noise, strobe light, and intimidation with fake snakes. Huddling, self-clasping, locomotion and environmental exploration were monitored to evaluate behavioral changes. In addition, the window-opening test was used to evaluate the exploratory interest of the monkeys. The present results revealed that CUS-exposed monkeys displayed significant depression-like behaviors, including significant decreases in exploratory interest, locomotion, and exploration as well as significant increases in huddling and self-clasping behavior and the level of fecal cortisol after 8 weeks of CUS. Treatment with FLX (2.4 mg/kg, i. g.) or YL-0919 (1.2 mg/kg, i. g.) markedly reversed the depression-like behaviors caused by CUS, producing significant antidepressant effects. YL-0919 (once daily for 9 days) had a faster-onset antidepressant effect, compared with FLX (once daily for 17 days). In summary, the present study first established a CUS model using female cynomolgus monkeys with low social status and then successfully evaluated the onset time of 5-HTergic antidepressants. The results suggested that monkeys exposed to CUS displayed significant depression-like behaviors, and both FLX and YL-0919 produced antidepressant effects in this model. Moreover, YL-0919 appeared to act faster than FLX. The present study provides a promising prospect for the evaluation of fast-onset antidepressant drugs based on a CUS monkey model.
Collapse
Affiliation(s)
- Yong-Yu Yin
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | | | - Xin-Xin Fang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Chao Shang
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China
| | - Li-Ming Zhang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Qiang Xu
- Yantai Yuhuangding Hospital, Yantai, China
| | - Yun-Feng Li
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China.,Beijing Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
22
|
Steinke I, Ghanei N, Govindarajulu M, Yoo S, Zhong J, Amin RH. Drug Discovery and Development of Novel Therapeutics for Inhibiting TMAO in Models of Atherosclerosis and Diabetes. Front Physiol 2020; 11:567899. [PMID: 33192565 PMCID: PMC7658318 DOI: 10.3389/fphys.2020.567899] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022] Open
Abstract
Diabetes mellitus exists as a comorbidity with congestive heart failure (CHF). However, the exact molecular signaling mechanism linking CHF as the major form of mortality from diabetes remains unknown. Type 2 diabetic patients display abnormally high levels of metabolic products associated with gut dysbiosis. One such metabolite, trimethylamine N-oxide (TMAO), has been observed to be directly related with increased incidence of cardiovascular diseases (CVD) in human patients. TMAO a gut-liver metabolite, comes from the metabolic degenerative product trimethylamine (TMA) that is produced from gut microbial metabolism. Elevated levels of TMAO in diabetics and obese patients are observed to have a direct correlation with increased risk for major adverse cardiovascular events. The pro-atherogenic effect of TMAO is attributed to enhancing inflammatory pathways with cholesterol and bile acid dysregulation, promoting foam cell formation. Recent studies have revealed several potential therapeutic strategies for reducing TMAO levels and will be the central focus for the current review. However, few have focused on developing rational drug therapeutics and may be due to the gaps in knowledge for understanding the mechanism by which microbial TMA producing enzymes and hepatic flavin-containing monoxygenase (FMO) can work together in preventing elevation of TMAO levels. Therefore, it is critical to understand the advantages of developing a novel rational drug design strategy that manipulates FMO production of TMAO and TMA production by microbial enzymes. This review will focus on the inspection of FMO manipulation, as well as gut microbiota dysbiosis and its influence on metabolic disorders including cardiovascular disease and describe novel potential pharmacological therapeutic development.
Collapse
Affiliation(s)
- Ian Steinke
- Drug Discovery and Development, Auburn University, Auburn, AL, United States
| | - Nila Ghanei
- Drug Discovery and Development, Auburn University, Auburn, AL, United States
| | - Manoj Govindarajulu
- Drug Discovery and Development, Auburn University, Auburn, AL, United States
| | - Sieun Yoo
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL, United States
| | - Juming Zhong
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL, United States
| | - Rajesh H Amin
- Drug Discovery and Development, Auburn University, Auburn, AL, United States
| |
Collapse
|
23
|
Martin PY, Doly S, Hamieh AM, Chapuy E, Canale V, Drop M, Chaumont-Dubel S, Bantreil X, Lamaty F, Bojarski AJ, Zajdel P, Eschalier A, Marin P, Courteix C. mTOR activation by constitutively active serotonin6 receptors as new paradigm in neuropathic pain and its treatment. Prog Neurobiol 2020; 193:101846. [DOI: 10.1016/j.pneurobio.2020.101846] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/06/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023]
|
24
|
Canale V, Frisi V, Bantreil X, Lamaty F, Zajdel P. Sustainable Synthesis of a Potent and Selective 5-HT 7 Receptor Antagonist Using a Mechanochemical Approach. J Org Chem 2020; 85:10958-10965. [PMID: 32706254 PMCID: PMC7458427 DOI: 10.1021/acs.joc.0c01044] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
A mechanochemical
procedure was developed to obtain PZ-1361, a potent and
selective 5-HT7 receptor antagonist, with
antidepressant properties in rodents. The elaborated protocol offered
several advantages over classical batch synthesis, including improvement
of the overall yield (from 34% to 64%), reduction of reaction time
(from 60 to 5.5 h), limitation of the use of toxic solvents, and the
formation of byproducts. This approach represents a rare example of
the synthesis of biologically active compounds exclusively performed
using mechanochemical reactions.
Collapse
Affiliation(s)
- Vittorio Canale
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, Kraków 30-688, Poland
| | - Valeria Frisi
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, Kraków 30-688, Poland
| | - Xavier Bantreil
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | - Frédéric Lamaty
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | - Paweł Zajdel
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, Kraków 30-688, Poland
| |
Collapse
|
25
|
Are the Hydantoin-1,3,5-triazine 5-HT 6R Ligands a Hope to a Find New Procognitive and Anti-Obesity Drug? Considerations Based on Primary In Vivo Assays and ADME-Tox Profile In Vitro. Molecules 2019; 24:molecules24244472. [PMID: 31817628 PMCID: PMC6943527 DOI: 10.3390/molecules24244472] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/21/2019] [Accepted: 12/03/2019] [Indexed: 11/21/2022] Open
Abstract
Though the 5-HT6 serotonin receptor is an important target giving both agonists and antagonists similar therapeutic potency in the treatment of topic CNS-diseases, no 5-HT6R ligand has reached the pharmaceutical market yet due to the too narrow chemical space of the known 5-HT6R agents and insufficient “drugability.” Recently, a new group of non-indole and non-sulfone hydantoin-triazine 5-HT6R ligands was found, where 3-((4-amino-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-yl)methyl)-5-methyl-5-(naphthalen-2-yl)imidazolidine-2,4-dione (KMP-10) was the most active member. This study is focused on wider pharmacological and “druglikeness” characteristics for KMP-10. A computer-aided insight into molecular interactions with 5-HT6R has been performed. “Druglikeness” was examined using an eight-test panel in vitro, i.e., a parallel artificial membrane permeability assay (PAMPA), and Caco-2 permeability-, P-glycoprotein (Pgp) affinity-, plasma protein binding-, metabolic stability- and drug–drug interaction-assays, as well as mutagenicity- and HepG2-hepatotoxicity risk tests. Behavioral studies in vivo, i.e., elevated plus-maze (EPM) and novel object recognition (NOR) tests, were performed. Extended studies on the influence of KMP-10 on rats’ metabolism, including biochemical tests, were conducted in vivo. Results indicated significant anxiolytic and precognitive properties, as well as some anti-obesity properties in vivo, and it was found to satisfy the “druglikeness” profile in vitro for KMP-10. The compound seems to be a good lead-structure and candidate for wider pharmacological studies in search for new CNS-drugs acting via 5-HT6R.
Collapse
|
26
|
Virtual screening-driven discovery of dual 5-HT 6/5-HT 2A receptor ligands with pro-cognitive properties. Eur J Med Chem 2019; 185:111857. [PMID: 31734022 DOI: 10.1016/j.ejmech.2019.111857] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/17/2019] [Accepted: 11/04/2019] [Indexed: 11/21/2022]
Abstract
A virtual screening campaign aimed at finding structurally new compounds active at 5-HT6R provided a set of candidates. Among those, one structure, 4-(5-{[(2-{5-fluoro-1H-pyrrolo[2,3-b]pyridin-3-yl}ethyl)amino]methyl}furan-2-yl)phenol (1, 5-HT6R Ki = 91 nM), was selected as a hit for further optimization. As expected, the chemical scaffold of selected compound was significantly different from all the serotonin receptor ligands published to date. Synthetic efforts, supported by molecular modelling, provided 43 compounds representing different substitution patterns. The derivative 42, 4-(5-{[(2-{5-fluoro-1H-pyrrolo[2,3-b]pyridin-3-yl}ethyl)amino]methyl}furan-2-yl)phenol (5-HT6R Ki = 25, 5-HT2AR Ki = 32 nM), was selected as a lead and showed a good brain/plasma concentration profile, and it reversed phencyclidine-induced memory impairment. Considering the unique activity profile, the obtained series might be a good starting point for the development of a novel antipsychotic or antidepressant with pro-cognitive properties.
Collapse
|
27
|
Vanda D, Zajdel P, Soural M. Imidazopyridine-based selective and multifunctional ligands of biological targets associated with psychiatric and neurodegenerative diseases. Eur J Med Chem 2019; 181:111569. [DOI: 10.1016/j.ejmech.2019.111569] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/26/2019] [Accepted: 07/28/2019] [Indexed: 12/18/2022]
|
28
|
Grychowska K, Chaumont-Dubel S, Kurczab R, Koczurkiewicz P, Deville C, Krawczyk M, Pietruś W, Satała G, Buda S, Piska K, Drop M, Bantreil X, Lamaty F, Pękala E, Bojarski AJ, Popik P, Marin P, Zajdel P. Dual 5-HT 6 and D 3 Receptor Antagonists in a Group of 1 H-Pyrrolo[3,2- c]quinolines with Neuroprotective and Procognitive Activity. ACS Chem Neurosci 2019; 10:3183-3196. [PMID: 30896921 DOI: 10.1021/acschemneuro.8b00618] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In light of the multifactorial origin of neurodegenerative disorders and some body of evidence indicating that pharmacological blockade of serotonin 5-HT6 and dopamine D3 receptors might be beneficial for cognitive decline, we envisioned (S)-1-[(3-chlorophenyl)sulfonyl]-4-(pyrrolidine-3-yl-amino)-1H-pyrrolo[3,2-c]quinoline (CPPQ), a neutral antagonist of 5-HT6R, as a chemical template for designing dual antagonists of 5-HT6/D3 receptors. As shown by in vitro experiments, supported by quantum chemical calculations and molecular dynamic simulations, introducing alkyl substituents at the pyrrolidine nitrogen of CPPQ, fulfilled structural requirements for simultaneous modulation of 5-HT6 and D3 receptors. The study identified compound 19 ((S)-1-((3-chlorophenyl)sulfonyl)-N-(1-isobutylpyrrolidin-3-yl)-1H-pyrrolo[3,2-c]quinolin-4-amine), which was classified as a dual 5-HT6/D3R antagonist (Ki(5-HT6) = 27 nM, Ki(D3) = 7 nM). Compound 19 behaved as a neutral antagonist at Gs signaling and had no influence on receptor-operated, cyclin-dependent kinase 5 (Cdk5)-dependent neurite growth. In contrast to the well characterized 5-HT6R antagonist intepirdine, compound 19 displayed neuroprotective properties against astrocyte damage induced by doxorubicin, as shown using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) staining to assess cell metabolic activity and lactate dehydrogenase (LDH) release as an index of cell membrane disruption. This feature is of particular importance considering the involvement of loss of homeostatic function of glial cells in the progress of neurodegeneration. Biological results obtained for 19 in in vitro tests, translated into procognitive properties in phencyclidine (PCP)-induced memory decline in the novel object recognition (NOR) task in rats.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Szymon Buda
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Kraków, Poland
| | | | | | - Xavier Bantreil
- IBMM, UMR 5247, CNRS, Université de Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France
| | - Frédéric Lamaty
- IBMM, UMR 5247, CNRS, Université de Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France
| | | | | | | | - Philippe Marin
- IGF, Université de Montpellier, CNRS INSERM, 34094 Montpellier, France
| | | |
Collapse
|
29
|
2-Aminoimidazole-based antagonists of the 5-HT 6 receptor - A new concept in aminergic GPCR ligand design. Eur J Med Chem 2019; 179:1-15. [PMID: 31229883 DOI: 10.1016/j.ejmech.2019.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/17/2019] [Accepted: 06/01/2019] [Indexed: 01/14/2023]
Abstract
A new strategy in the design of aminergic GPCR ligands is proposed - the use of aromatic, heterocyclic basic moieties in place of the evergreen piperazine or alicyclic and aliphatic amines. This hypothesis has been tested using a benchmark series of 5-HT6R antagonists obtained by coupling variously substituted 2-aminoimidazole moieties to the well established 1-benzenesulfonyl-1H-indoles, which served as the ligands cores. The crystallographic studies revealed that upon protonation, the 2-aminoimidazole fragment triggers a resonance driven conformational change leading to a form of higher affinity. This molecular switch may be responsible for the observed differences in 5-HT6R activity of the studied chemotypes with different amine-like fragments. Considering the multiple functionalization sites of the embedded guanidine fragment, diverse libraries were constructed, and the relationships between the structure and activity, metabolic stability, and solubility were established. Compounds from the N-(1H-imidazol-2-yl)acylamide chemotype (10a-z) exhibited high affinity for 5-HT6R and very high selectivity over 5-HT1A, 5-HT2A, 5-HT7 and D2 receptors (negligible binding), which was attributed to their very weak basicity. The lead compound in the series 4-methyl-5-[1-(naphthalene-1-sulfonyl)-1H-indol-3-yl]-1H-imidazol-2-amine (9i) was shown to reverse the cognitive impairment caused by the administration of scopolamine in rats indicating procognitive potential.
Collapse
|
30
|
Partyka A, Jastrzębska-Więsek M, Antkiewicz-Michaluk L, Michaluk J, Wąsik A, Canale V, Zajdel P, Kołaczkowski M, Wesołowska A. Novel antagonists of 5-HT6 and/or 5-HT7 receptors affect the brain monoamines metabolism and enhance the anti-immobility activity of different antidepressants in rats. Behav Brain Res 2019; 359:9-16. [DOI: 10.1016/j.bbr.2018.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/14/2018] [Accepted: 10/02/2018] [Indexed: 12/19/2022]
|
31
|
Żmudzka E, Sałaciak K, Sapa J, Pytka K. Serotonin receptors in depression and anxiety: Insights from animal studies. Life Sci 2018; 210:106-124. [PMID: 30144453 DOI: 10.1016/j.lfs.2018.08.050] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/13/2018] [Accepted: 08/20/2018] [Indexed: 12/19/2022]
Abstract
Serotonin regulates many physiological processes including sleep, appetite, and mood. Thus, serotonergic system is an important target in the treatment of psychiatric disorders, such as major depression and anxiety. This natural neurotransmitter interacts with 7 families of its receptors (5-HT1-7), which cause a variety of pharmacological effects. Using genetically modified animals and selective or preferential agonists and antagonist, numerous studies demonstrated the involvement of almost all serotonin receptor subtypes in antidepressant- or anxiolytic-like effects. In this review, based on animal studies, we discuss the possible involvement of serotonin receptor subtypes in depression and anxiety.
Collapse
Affiliation(s)
- Elżbieta Żmudzka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Kinga Sałaciak
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Jacek Sapa
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland.
| |
Collapse
|
32
|
Lozupone M, La Montagna M, D'Urso F, Piccininni C, Sardone R, Dibello V, Giannelli G, Solfrizzi V, Greco A, Daniele A, Quaranta N, Seripa D, Bellomo A, Logroscino G, Panza F. Pharmacotherapy for the treatment of depression in patients with alzheimer's disease: a treatment-resistant depressive disorder. Expert Opin Pharmacother 2018; 19:823-842. [PMID: 29726758 DOI: 10.1080/14656566.2018.1471136] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Pharmacotherapy for the treatment of depressive disorders in Alzheimer's Disease (AD) represents a clinical challenge. pharmacological options are often attempted after a period of watchful waiting (8-12 weeks). monoaminergic antidepressant drugs have shown only modest or null clinical benefits, maybe because the etiology of depressive symptoms in ad patients is fundamentally different from that of nondemented subjects. AREAS COVERED The following article looks at the selective serotonin reuptake inhibitor sertraline, which is one of the most frequently studied antidepressant medications in randomized controlled trials (RCTs). It also discusses many other pharmacological approaches that have proven to be inadequate (antipsychotics, acetylcholinesterase inhibitors, anticonvulsants, hormone replacement therapy) and new drug classes (mainly affecting glutamate transmission) that are being studied for treating depression in AD. It also gives discussion to the phase II RCT on the alternative drug S47445 and the potential effect on cognition of the multimodal antidepressant vortioxetine in older depressed patients. Finally, it discusses the N-methyl-D-aspartate antagonist ketamine. EXPERT OPINION The present RCT methodologies are too disparate to draw firm conclusions. Future studies are required to identify effective and multimodal pharmacological treatments that efficiently treat depression in AD. Genotyping may boost antidepressant treatment success.
Collapse
Affiliation(s)
- Madia Lozupone
- a Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs , University of Bari Aldo Moro , Bari , Italy
| | - Maddalena La Montagna
- b Psychiatric Unit, Department of Clinical and Experimental Medicine , University of Foggia , Foggia , Italy
| | - Francesca D'Urso
- b Psychiatric Unit, Department of Clinical and Experimental Medicine , University of Foggia , Foggia , Italy
| | - Carla Piccininni
- b Psychiatric Unit, Department of Clinical and Experimental Medicine , University of Foggia , Foggia , Italy
| | - Rodolfo Sardone
- c Department of Epidemiology and Biostatistics , National Institute of Gastroenterology "S. de Bellis" Research Hospital , Castellana Grotte, Bari , Italy
| | - Vittorio Dibello
- d Interdisciplinary Department of Medicine (DIM), Section of Dentistry , University of Bari Aldo Moro , Bari , Italy
| | - Gianluigi Giannelli
- c Department of Epidemiology and Biostatistics , National Institute of Gastroenterology "S. de Bellis" Research Hospital , Castellana Grotte, Bari , Italy
| | - Vincenzo Solfrizzi
- e Geriatric Medicine-Memory Unit and Rare Disease Centre , University of Bari Aldo Moro , Bari , Italy
| | - Antonio Greco
- f Geriatric Unit & Laboratory of Gerontology and Geriatrics, Department of Medical Sciences , IRCCS "Casa Sollievo della Sofferenza" , San Giovanni Rotondo, Foggia , Italy
| | - Antonio Daniele
- g Institute of Neurology , Catholic University of Sacred Heart , Rome , Italy
| | - Nicola Quaranta
- h Otolaryngology Unit , University of Bari "Aldo Moro" , Bari , Italy
| | - Davide Seripa
- f Geriatric Unit & Laboratory of Gerontology and Geriatrics, Department of Medical Sciences , IRCCS "Casa Sollievo della Sofferenza" , San Giovanni Rotondo, Foggia , Italy
| | - Antonello Bellomo
- b Psychiatric Unit, Department of Clinical and Experimental Medicine , University of Foggia , Foggia , Italy
| | - Giancarlo Logroscino
- a Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs , University of Bari Aldo Moro , Bari , Italy.,i Department of Clinical Research in Neurology , University of Bari Aldo Moro, "Pia Fondazione Cardinale G. Panico" , Tricase, Lecce , Italy
| | - Francesco Panza
- a Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs , University of Bari Aldo Moro , Bari , Italy.,f Geriatric Unit & Laboratory of Gerontology and Geriatrics, Department of Medical Sciences , IRCCS "Casa Sollievo della Sofferenza" , San Giovanni Rotondo, Foggia , Italy.,i Department of Clinical Research in Neurology , University of Bari Aldo Moro, "Pia Fondazione Cardinale G. Panico" , Tricase, Lecce , Italy
| |
Collapse
|
33
|
Novel multi-target azinesulfonamides of cyclic amine derivatives as potential antipsychotics with pro-social and pro-cognitive effects. Eur J Med Chem 2018; 145:790-804. [PMID: 29407591 DOI: 10.1016/j.ejmech.2018.01.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/09/2017] [Accepted: 01/01/2018] [Indexed: 01/12/2023]
Abstract
Currently used antipsychotics are characterized by multireceptor mode of action. While antagonism of dopamine D2 receptors is responsible for the alleviation of "positive" symptoms of schizophrenia and the effects at other, particularly serotonergic receptors are necessary for their additional therapeutic effects, there is no consensus regarding an "ideal" target engagement. Here, a detailed SAR analysis in a series of 45 novel azinesulfonamides of cyclic amine derivatives, involving the aryl-piperazine/piperidine pharmacophore, central alicyclic amine and azinesulfonamide groups has led to the selection of (S)-4-((2-(2-(4-(benzo[b]thiophen-4-yl)piperazin-1-yl)ethyl)pyrrolidin-1-yl)sulfonyl)isoquinoline (62). The polypharmacology profile of 62, characterized by partial 5-HT1AR agonism, 5-HT2A/5-HT7/D2/D3R antagonism, and blockade of SERT, reduced the "positive"-like, and "negative"-like symptoms of psychoses. Compound 62 produced no catalepsy, demonstrated a low hyperprolactinemia liability and displayed pro-cognitive effects in the novel object recognition task and attentional set-shifting test. While association of in vitro features with the promising in vivo profile of 62 is still not fully established, its clinical efficacy should be verified in further stages of development.
Collapse
|
34
|
Novel non-sulfonamide 5-HT 6 receptor partial inverse agonist in a group of imidazo[4,5- b ]pyridines with cognition enhancing properties. Eur J Med Chem 2018; 144:716-729. [DOI: 10.1016/j.ejmech.2017.12.053] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 12/09/2017] [Accepted: 12/14/2017] [Indexed: 11/20/2022]
|
35
|
Partyka A, Kurczab R, Canale V, Satała G, Marciniec K, Pasierb A, Jastrzębska-Więsek M, Pawłowski M, Wesołowska A, Bojarski AJ, Zajdel P. The impact of the halogen bonding on D 2 and 5-HT 1A/5-HT 7 receptor activity of azinesulfonamides of 4-[(2-ethyl)piperidinyl-1-yl]phenylpiperazines with antipsychotic and antidepressant properties. Bioorg Med Chem 2017; 25:3638-3648. [PMID: 28529043 DOI: 10.1016/j.bmc.2017.04.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 03/30/2017] [Accepted: 04/20/2017] [Indexed: 02/03/2023]
Abstract
A series of azinesulfonamides of long-chain arylpiperazine derivatives with semi-rigid alkylene spacer was designed, synthesized, and biologically evaluated using in vitro methods for their affinity for dopaminergic D2 and serotoninergic 5-HT1A, 5-HT2A, 5-HT6 and 5-HT7 receptors. Docking to homology models revealed a possible halogen bond formation in complexes of the most potent ligands and the target receptors. The study allowed for the identification of compound 5-({4-(2-[4-(2,3-dichlorophenyl)piperazin-1-yl]ethyl)piperidin-1-yl}sulfonyl)quinoline (21), which behaved as D2, 5-HT1A and 5-HT7 receptor antagonist. In preliminary in vivo studies, compound 21 displayed distinct antipsychotic properties in the MK-801-evoked hyperactivity test in mice at a dose of 10mg/kg, and exerted antidepressant-like effect in a forced swim test in mice (MED=0.625mg/kg, i.p.).
Collapse
Affiliation(s)
- Anna Partyka
- Department of Clinical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Rafał Kurczab
- Institute of Pharmacology, Polish Academy of Sciences, Department of Medicinal Chemistry, 12 Smętna Street, 31-343 Krakow, Poland
| | - Vittorio Canale
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Grzegorz Satała
- Institute of Pharmacology, Polish Academy of Sciences, Department of Medicinal Chemistry, 12 Smętna Street, 31-343 Krakow, Poland
| | - Krzysztof Marciniec
- Department of Organic Chemistry, Medical University of Silesia, 4 Jagiellońska Street, 41-200 Sosnowiec, Poland
| | - Agnieszka Pasierb
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Magdalena Jastrzębska-Więsek
- Department of Clinical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Maciej Pawłowski
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Anna Wesołowska
- Department of Clinical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Andrzej J Bojarski
- Institute of Pharmacology, Polish Academy of Sciences, Department of Medicinal Chemistry, 12 Smętna Street, 31-343 Krakow, Poland
| | - Paweł Zajdel
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland.
| |
Collapse
|
36
|
Nirogi R, Shinde A, Kambhampati RS, Mohammed AR, Saraf SK, Badange RK, Bandyala TR, Bhatta V, Bojja K, Reballi V, Subramanian R, Benade V, Palacharla RC, Bhyrapuneni G, Jayarajan P, Goyal V, Jasti V. Discovery and Development of 1-[(2-Bromophenyl)sulfonyl]-5-methoxy-3-[(4-methyl-1-piperazinyl)methyl]-1H-indole Dimesylate Monohydrate (SUVN-502): A Novel, Potent, Selective and Orally Active Serotonin 6 (5-HT 6) Receptor Antagonist for Potential Treatment of Alzheimer's Disease. J Med Chem 2017; 60:1843-1859. [PMID: 28212021 DOI: 10.1021/acs.jmedchem.6b01662] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Optimization of a novel series of 3-(piperazinylmethyl) indole derivatives as 5-hydroxytryptamine-6 receptor (5-HT6R) antagonists resulted in identification of 1-[(2-bromophenyl)sulfonyl]-5-methoxy-3-[(4-methyl-1-piperazinyl)methyl]-1H-indole dimesylate monohydrate (5al, SUVN-502) as a clinical candidate for potential treatment of cognitive disorders. It has high affinity at human 5-HT6R (Ki = 2.04 nM) and selectivity over 100 target sites which include receptors, enzymes, peptides, growth factors, ion channels, steroids, immunological factors, second messengers, and prostaglandins. It has high selectivity over 5-HT2A receptor. It is orally bioavailable and brain penetrant with robust preclinical efficacy. The combination of 5al, donepezil, and memantine (triple combination) produces synergistic effects in extracellular levels of acetylcholine in the ventral hippocampus. Preclinical efficacy in triple combination and high selectivity over 5-HT2A receptors are the differentiating features which culminated in selection of 5al for further development. The Phase-1 evaluation of safety and pharmacokinetics has been completed, allowing for the initiation of a Phase-2 proof of concept study.
Collapse
Affiliation(s)
- Ramakrishna Nirogi
- Discovery Research, Suven Life Sciences Ltd , Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Anil Shinde
- Discovery Research, Suven Life Sciences Ltd , Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Rama Sastry Kambhampati
- Discovery Research, Suven Life Sciences Ltd , Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Abdul Rasheed Mohammed
- Discovery Research, Suven Life Sciences Ltd , Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Sangram Keshari Saraf
- Discovery Research, Suven Life Sciences Ltd , Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Rajesh Kumar Badange
- Discovery Research, Suven Life Sciences Ltd , Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Thrinath Reddy Bandyala
- Discovery Research, Suven Life Sciences Ltd , Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Venugopalarao Bhatta
- Discovery Research, Suven Life Sciences Ltd , Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Kumar Bojja
- Discovery Research, Suven Life Sciences Ltd , Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Veena Reballi
- Discovery Research, Suven Life Sciences Ltd , Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Ramkumar Subramanian
- Discovery Research, Suven Life Sciences Ltd , Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Vijay Benade
- Discovery Research, Suven Life Sciences Ltd , Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Raghava Choudary Palacharla
- Discovery Research, Suven Life Sciences Ltd , Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Gopinadh Bhyrapuneni
- Discovery Research, Suven Life Sciences Ltd , Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Pradeep Jayarajan
- Discovery Research, Suven Life Sciences Ltd , Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Vinod Goyal
- Discovery Research, Suven Life Sciences Ltd , Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Venkat Jasti
- Discovery Research, Suven Life Sciences Ltd , Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| |
Collapse
|
37
|
Serotonin 5-HT 6 Receptor Antagonists in Alzheimer's Disease: Therapeutic Rationale and Current Development Status. CNS Drugs 2017; 31:19-32. [PMID: 27914038 DOI: 10.1007/s40263-016-0399-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in elderly people. Because of the lack of effective treatments for this illness, research focused on identifying compounds that restore cognition and functional impairments in patients with AD is a very active field. Since its discovery in 1993, the serotonin 5-HT6 receptor has received increasing attention, and a growing number of studies supported 5-HT6 receptor antagonism as a target for improving cognitive dysfunction in AD. This article reviews the rationale behind investigations into the targeting of 5-HT6 receptors as a symptomatic treatment for cognitive and/or behavioral symptoms of AD. In addition to describing the available clinical evidence, this article also describes the purported biochemical and neurochemical mechanisms of action by which 5-HT6 receptor antagonists could influence cognition, and the preclinical data supporting this therapeutic approach to AD. A large number of publications describing the development of ligands for this receptor have come to light and preclinical data indicate the procognitive efficacy of 5-HT6 receptor antagonists. Subsequently, the number of patents protecting 5-HT6 chemical entities has continuously grown. Some of these compounds have successfully undergone phase I clinical studies and have been further evaluated in clinical phase II trials with variable success. Phase II studies have also revealed the potential of combining 5-HT6 receptor antagonism and cholinesterase inhibition. Two of these antagonists, idalopirdine and RVT-101, have been further developed into ongoing phase III clinical trials. Overall, 5-HT6 receptor antagonists can reasonably be regarded as potential drug candidates for the treatment of AD.
Collapse
|
38
|
Rak A, Canale V, Marciniec K, Żmudzki P, Kotańska M, Knutelska J, Siwek A, Stachowicz G, Bednarski M, Nowiński L, Zygmunt M, Zajdel P, Sapa J. Arylsulfonamide derivatives of (aryloxy)ethyl pyrrolidines and piperidines as α 1-adrenergic receptor antagonist with uro-selective activity. Bioorg Med Chem 2016; 24:5582-5591. [PMID: 27658792 DOI: 10.1016/j.bmc.2016.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/06/2016] [Accepted: 09/08/2016] [Indexed: 02/01/2023]
Abstract
A series of arylsulfonamide derivatives of (aryloxy)ethyl pyrrolidines and piperidines was synthesized to develop new α1-adrenoceptor antagonists with uroselective profile. Biological evaluation for α1- and α2-adrenorecepor showed that tested compounds 13-37 displayed high-to-moderate affinity for the α1-adrenoceptor (Ki=34-348nM) and moderate selectivity over α2-receptor subtype. Compounds with highest affinity and selectivity for α1-adrenoceptor were evaluated in vitro for their intrinsic activity toward α1A- and α1B-adrenoceptor subtypes. All compounds behaved as antagonists at both α1-adrenoceptor subtypes, displaying 2- to 6-fold functional preference to α1A-subtype. Among them, N-{1-[2-(2-methoxyphenoxy)ethyl]piperidin-4-yl}isoquinoline-4-sulfonamide (25) and 3-chloro-2-fluoro-N-{[1-(2-(2-isopropoxyphenoxy)ethyl)piperidin-4-yl]methyl}benzene sulfonamide (34) displayed the highest preference to α1A-adrenoceptor. Finally, compounds 25 and 34 (2-5mg/kg, iv), in contrast to tamsulosin (1-2mg/kg, iv), did not significantly decrease systolic and diastolic blood pressure in normotensive anesthetized rats to determine their influence on blood pressure.
Collapse
Affiliation(s)
- Aleksandra Rak
- Department of Pharmacological Screening, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Vittorio Canale
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Krzysztof Marciniec
- Department of Organic Chemistry, Medical University of Silesia, 4 Jagiellonska Street, 41-200 Sosnowiec, Poland
| | - Paweł Żmudzki
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Magdalena Kotańska
- Department of Pharmacological Screening, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Joanna Knutelska
- Department of Pharmacological Screening, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Gabriela Stachowicz
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Marek Bednarski
- Department of Pharmacological Screening, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland.
| | - Leszek Nowiński
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Małgorzata Zygmunt
- Department of Pharmacological Screening, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Paweł Zajdel
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Jacek Sapa
- Department of Pharmacological Screening, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| |
Collapse
|