1
|
Dawood DH, Sayed MM, Tohamy STK, Nossier ES. New Thiophenyl-pyrazolyl-thiazole Hybrids as DHFR Inhibitors: Design, Synthesis, Antimicrobial Evaluation, Molecular Modeling, and Biodistribution Studies. ACS OMEGA 2023; 8:39250-39268. [PMID: 37901585 PMCID: PMC10600881 DOI: 10.1021/acsomega.3c04736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023]
Abstract
The antibiotic resistance problems constitute a considerable threat to human health worldwide; thus, the discovery of new antimicrobial candidates to conquer this issue is an imperative requirement. From this view, new thiophenyl-pyrazolyl-thiazole hybrids 3-10 were synthesized and screened for their antibacterial efficiency versus Gram - and Gram + bacterial strains compared to the reference drug amoxicillin. It was noticed that the new hybrids displayed significant antibacterial efficacy versus Gram - bacteria, especially against Pseudomonas aeruginosa. Also, all the screened candidates demonstrated a noticeable antifungal effect against Candida albicans (MICs = 3.9-125 μg/mL) relative to fluconazole (MIC = 250 μg/mL). Moreover, the new hybrids were investigated for their antituberculosis potency against Mycobacterium tuberculosis (RCMB 010126). Derivatives 4c, 6b, 8b, 9b, and 10b demonstrated prominent antituberculosis efficiency (MICs = 0.12-1.95 μg/mL) compared with the reference drug isoniazid (MIC = 0.12 μg/mL). The latter derivatives were further assessed for their inhibitory potency versus M. tuberculosis DHFR enzyme. The compounds 4c, 6b and 10b presented a remarkable suppression effect with IC50 values of 4.21, 5.70, and 10.59 μM, respectively, compared to that of trimethoprim (IC50 = 6.23 μM). Furthermore, biodistribution profile using radiolabeling way revealed a perceived uptake of 131I-compound 6b into infection induced models. The docking study for the new hybrids 4c, 6b, 8b, 9b and 10b was performed to illustrate the various binding modes with Mtb DHFR enzyme. In silico ADMET studies for the most potent inhibitors 4c, 6b and 10b were also accomplished to predict their pharmacokinetic and physicochemical features.
Collapse
Affiliation(s)
- Dina H. Dawood
- Chemistry
of Natural and Microbial Products Department, Pharmaceutical and Drug
Industries Research Institute, National
Research Centre, 33 El
Bohouth Street, Dokki, Giza 12622, Egypt
| | - Manal M. Sayed
- Labeled
Compounds Department, Hot Labs.center, Egyptian
Atomic Energy Authority (EAEA), P.O.
Box 13759, Cairo, Egypt
| | - Sally T. K. Tohamy
- Department
of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt
| | - Eman S. Nossier
- Department
of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of
Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt
- The
National Committee of Drugs, Academy of
Scientific Research and Technology, Cairo 11516, Egypt
| |
Collapse
|
2
|
Vásquez AF, Gómez LA, González Barrios A, Riaño-Pachón DM. Identification of Active Compounds against Melanoma Growth by Virtual Screening for Non-Classical Human DHFR Inhibitors. Int J Mol Sci 2022; 23:13946. [PMID: 36430425 PMCID: PMC9694616 DOI: 10.3390/ijms232213946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Antifolates such as methotrexate (MTX) have been largely known as anticancer agents because of their role in blocking nucleic acid synthesis and cell proliferation. Their mechanism of action lies in their ability to inhibit enzymes involved in the folic acid cycle, especially human dihydrofolate reductase (hDHFR). However, most of them have a classical structure that has proven ineffective against melanoma, and, therefore, inhibitors with a non-classical lipophilic structure are increasingly becoming an attractive alternative to circumvent this clinical resistance. In this study, we conducted a protocol combining virtual screening (VS) and cell-based assays to identify new potential non-classical hDHFR inhibitors. Among 173 hit compounds identified (average logP = 3.68; average MW = 378.34 Da), two-herein, called C1 and C2-exhibited activity against melanoma cell lines B16 and A375 by MTT and Trypan-Blue assays. C1 showed cell growth arrest (39% and 56%) and C2 showed potent cytotoxic activity (77% and 51%) in a dose-dependent manner. The effects of C2 on A375 cell viability were greater than MTX (98% vs 60%) at equivalent concentrations and times. Our results indicate that the integrated in silico/in vitro approach provided a benchmark to identify novel promising non-classical DHFR inhibitors showing activity against melanoma cells.
Collapse
Affiliation(s)
- Andrés Felipe Vásquez
- Grupo de Diseño de Productos y Procesos (GDPP), School of Chemical Engineering, Universidad de los Andes, Bogotá 111711, Colombia
- Naturalius SAS, Bogotá 110221, Colombia
| | - Luis Alberto Gómez
- Laboratorio de Fisiología Molecular, Instituto Nacional de Salud, Bogotá 111321, Colombia
- Department of Physiological Sciences, School of Medicine, Universidad Nacional de Colombia, Bogotá 11001, Colombia
| | - Andrés González Barrios
- Grupo de Diseño de Productos y Procesos (GDPP), School of Chemical Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| | - Diego M. Riaño-Pachón
- Laboratório de Biologia Computacional, Evolutiva e de Sistemas, Centro de Energia Nuclear na Agricultura (CENA), Universidade de São Paulo, Piracicaba 05508-060, SP, Brazil
| |
Collapse
|
3
|
The Broad-Spectrum Antitrypanosomal Inhibitory Efficiency of the Antimetabolite/Anticancer Drug Raltitrexed. Processes (Basel) 2022. [DOI: 10.3390/pr10112158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Raltitrexed is a classical antifolate drug with antimetabolite and anticancer properties. In this research, we provide its detailed antitrypanosomal inhibition against six Trypanosoma species and investigate its potential mode of action. Molecular dynamics (MD) simulations and in silico analyses were used to track the binding strength and stability. Raltitrexed showed broad-spectrum trypanocidal actions against Trypanosoma brucei brucei GUTat3.1, T. b. rhodesiense IL1501, T. b. gambiense IL1922, T. evansi Tansui, T. equiperdum IVM-t1 and T. congolense IL3000. The estimated IC50 was found to be in the range of 5.18–24.13 µg/mL, indicating inhibition of Trypanosoma in the low micromolar range. Although the co-crystallized ligand had robust hydrogen bonding and lipophilic characteristics, its docking score was only −4.6 compared to raltitrexed’s −7.78, indicating strong binding with T. brucei dihydrofolate reductase-thymidylate synthase (TbDHFR-TS). MD simulations support the strong binding of raltitrexed with TbDHFR-TS evidenced by low root mean square deviation (RMSD), low residues fluctuations, a tight radius of gyration (ROG) and an average of 3.38 ± 1.3 hydrogen bonds during 50 ns MD simulation. The prospective extended spectrum of raltitrexed against Trypanosoma species grants further research for the synthesis of raltitrexed derivatives and repurposing against other protozoa.
Collapse
|
4
|
Krucinska J, Lombardo MN, Erlandsen H, Estrada A, Si D, Viswanathan K, Wright DL. Structure-guided functional studies of plasmid-encoded dihydrofolate reductases reveal a common mechanism of trimethoprim resistance in Gram-negative pathogens. Commun Biol 2022; 5:459. [PMID: 35562546 PMCID: PMC9106665 DOI: 10.1038/s42003-022-03384-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 04/20/2022] [Indexed: 11/20/2022] Open
Abstract
Two plasmid-encoded dihydrofolate reductase (DHFR) isoforms, DfrA1 and DfrA5, that give rise to high levels of resistance in Gram-negative bacteria were structurally and biochemically characterized to reveal the mechanism of TMP resistance and to support phylogenic groupings for drug development against antibiotic resistant pathogens. Preliminary screening of novel antifolates revealed related chemotypes that showed high levels of inhibitory potency against Escherichia coli chromosomal DHFR (EcDHFR), DfrA1, and DfrA5. Kinetics and biophysical analysis, coupled with crystal structures of trimethoprim bound to EcDHFR, DfrA1 and DfrA5, and two propargyl-linked antifolates (PLA) complexed with EcDHFR, DfrA1 and DfrA5, were determined to define structural features of the substrate binding pocket and guide synthesis of pan-DHFR inhibitors. Critical residue variations in two of the most clinically prevalent DHFR isoforms are identified as a common structural element in trimethoprim-resistant DHFR which impose changes on enzyme catalysis and ligand-cofactor cooperativity.
Collapse
Affiliation(s)
- Jolanta Krucinska
- Department of Pharmaceutical Sciences, University of Connecticut, 69N. Eagleville Rd., Storrs, CT, 06269, USA
| | - Michael N Lombardo
- Department of Pharmaceutical Sciences, University of Connecticut, 69N. Eagleville Rd., Storrs, CT, 06269, USA
| | - Heidi Erlandsen
- Center for Open Research Resources & Equipment (COR2E), University of Connecticut, 91N. Eagleville Rd., Storrs, CT, 06269, USA
| | - Alexavier Estrada
- Department of Pharmaceutical Sciences, University of Connecticut, 69N. Eagleville Rd., Storrs, CT, 06269, USA
| | - Debjani Si
- Department of Pharmaceutical Sciences, University of Connecticut, 69N. Eagleville Rd., Storrs, CT, 06269, USA
| | - Kishore Viswanathan
- Department of Pharmaceutical Sciences, University of Connecticut, 69N. Eagleville Rd., Storrs, CT, 06269, USA
| | - Dennis L Wright
- Department of Pharmaceutical Sciences, University of Connecticut, 69N. Eagleville Rd., Storrs, CT, 06269, USA.
| |
Collapse
|
5
|
Kobauri P, Galenkamp NS, Schulte AM, de Vries J, Simeth NA, Maglia G, Thallmair S, Kolarski D, Szymanski W, Feringa BL. Hypothesis-Driven, Structure-Based Design in Photopharmacology: The Case of eDHFR Inhibitors. J Med Chem 2022; 65:4798-4817. [PMID: 35258959 PMCID: PMC8958501 DOI: 10.1021/acs.jmedchem.1c01962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Photopharmacology
uses light to regulate the biological activity
of drugs. This precise control is obtained through the incorporation
of molecular photoswitches into bioactive molecules. A major challenge
for photopharmacology is the rational design of photoswitchable drugs
that show light-induced activation. Computer-aided drug design is
an attractive approach toward more effective, targeted design. Herein,
we critically evaluated different structure-based approaches for photopharmacology
with Escherichia coli dihydrofolate reductase (eDHFR)
as a case study. Through the iterative examination of our hypotheses,
we progressively tuned the design of azobenzene-based, photoswitchable
eDHFR inhibitors in five design–make–switch–test–analyze
cycles. Targeting a hydrophobic subpocket of the enzyme and a specific
salt bridge only with the thermally metastable cis-isomer emerged as the most promising design strategy. We identified
three inhibitors that could be activated upon irradiation and reached
potencies in the low-nanomolar range. Above all, this systematic study
provided valuable insights for future endeavors toward rational photopharmacology.
Collapse
Affiliation(s)
- Piermichele Kobauri
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Nicole S Galenkamp
- Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Albert M Schulte
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Jisk de Vries
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Nadja A Simeth
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Institute for Organic and Biomolecular Chemistry, University of Goettingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - Giovanni Maglia
- Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Sebastian Thallmair
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.,Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße 1, 60438 Frankfurt am Main, Germany
| | - Dušan Kolarski
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,DWI-Leibniz Institut für interaktive Materialien e.V., RWTH Aachen University, Forckenbeckstraße 50, 52074 Aachen, Germany
| | - Wiktor Szymanski
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Department of Radiology, Medical Imaging Center, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
6
|
Wang WY, Yang ZH, Li AL, Liu QS, Sun Y, Gu W. Design, synthesis, anticancer activity and mechanism studies of novel 2-amino-4-aryl-pyrimidine derivatives of ursolic acid. NEW J CHEM 2022. [DOI: 10.1039/d1nj05294b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A series of novel 2-amino-4-aryl-pyrimidine derivatives of ursolic acid were designed, synthesized, and evaluated for their anticancer activities against four cancer cell lines (MCF-7, HeLa, HepG2, and A549) and a human hepatocyte cell line (LO2) via MTT assay.
Collapse
Affiliation(s)
- Wen-Yan Wang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Zi-Hui Yang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - A-Liang Li
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Qing-Song Liu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Yue Sun
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Wen Gu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| |
Collapse
|
7
|
Shulpekova Y, Nechaev V, Kardasheva S, Sedova A, Kurbatova A, Bueverova E, Kopylov A, Malsagova K, Dlamini JC, Ivashkin V. The Concept of Folic Acid in Health and Disease. Molecules 2021; 26:molecules26123731. [PMID: 34207319 PMCID: PMC8235569 DOI: 10.3390/molecules26123731] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022] Open
Abstract
Folates have a pterine core structure and high metabolic activity due to their ability to accept electrons and react with O-, S-, N-, C-bounds. Folates play a role as cofactors in essential one-carbon pathways donating methyl-groups to choline phospholipids, creatine, epinephrine, DNA. Compounds similar to folates are ubiquitous and have been found in different animals, plants, and microorganisms. Folates enter the body from the diet and are also synthesized by intestinal bacteria with consequent adsorption from the colon. Three types of folate and antifolate cellular transporters have been found, differing in tissue localization, substrate affinity, type of transferring, and optimal pH for function. Laboratory criteria of folate deficiency are accepted by WHO. Severe folate deficiencies, manifesting in early life, are seen in hereditary folate malabsorption and cerebral folate deficiency. Acquired folate deficiency is quite common and is associated with poor diet and malabsorption, alcohol consumption, obesity, and kidney failure. Given the observational data that folates have a protective effect against neural tube defects, ischemic events, and cancer, food folic acid fortification was introduced in many countries. However, high physiological folate concentrations and folate overload may increase the risk of impaired brain development in embryogenesis and possess a growth advantage for precancerous altered cells.
Collapse
Affiliation(s)
- Yulia Shulpekova
- Department of Internal Diseases Propedeutics, Sechenov University, 119121 Moscow, Russia; (Y.S.); (V.N.); (S.K.); (A.S.); (A.K.); (E.B.); (V.I.)
| | - Vladimir Nechaev
- Department of Internal Diseases Propedeutics, Sechenov University, 119121 Moscow, Russia; (Y.S.); (V.N.); (S.K.); (A.S.); (A.K.); (E.B.); (V.I.)
| | - Svetlana Kardasheva
- Department of Internal Diseases Propedeutics, Sechenov University, 119121 Moscow, Russia; (Y.S.); (V.N.); (S.K.); (A.S.); (A.K.); (E.B.); (V.I.)
| | - Alla Sedova
- Department of Internal Diseases Propedeutics, Sechenov University, 119121 Moscow, Russia; (Y.S.); (V.N.); (S.K.); (A.S.); (A.K.); (E.B.); (V.I.)
| | - Anastasia Kurbatova
- Department of Internal Diseases Propedeutics, Sechenov University, 119121 Moscow, Russia; (Y.S.); (V.N.); (S.K.); (A.S.); (A.K.); (E.B.); (V.I.)
| | - Elena Bueverova
- Department of Internal Diseases Propedeutics, Sechenov University, 119121 Moscow, Russia; (Y.S.); (V.N.); (S.K.); (A.S.); (A.K.); (E.B.); (V.I.)
| | - Arthur Kopylov
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 119121 Moscow, Russia;
| | - Kristina Malsagova
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 119121 Moscow, Russia;
- Correspondence: ; Tel.: +7-499-764-9878
| | | | - Vladimir Ivashkin
- Department of Internal Diseases Propedeutics, Sechenov University, 119121 Moscow, Russia; (Y.S.); (V.N.); (S.K.); (A.S.); (A.K.); (E.B.); (V.I.)
| |
Collapse
|
8
|
Wróbel A, Drozdowska D. Recent Design and Structure-Activity Relationship Studies on the Modifications of DHFR Inhibitors as Anticancer Agents. Curr Med Chem 2021; 28:910-939. [PMID: 31622199 DOI: 10.2174/0929867326666191016151018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Dihydrofolate reductase (DHFR) has been known for decades as a molecular target for antibacterial, antifungal and anti-malarial treatments. This enzyme is becoming increasingly important in the design of new anticancer drugs, which is confirmed by numerous studies including modelling, synthesis and in vitro biological research. This review aims to present and discuss some remarkable recent advances in the research of new DHFR inhibitors with potential anticancer activity. METHODS The scientific literature of the last decade on the different types of DHFR inhibitors has been searched. The studies on design, synthesis and investigation structure-activity relationships were summarized and divided into several subsections depending on the leading molecule and its structural modification. Various methods of synthesis, potential anticancer activity and possible practical applications as DHFR inhibitors of new chemical compounds were described and discussed. RESULTS This review presents the current state of knowledge on the modification of known DHFR inhibitors and the structures and searches for about eighty new molecules, designed as potential anticancer drugs. In addition, DHFR inhibitors acting on thymidylate synthase (TS), carbon anhydrase (CA) and even DNA-binding are presented in this paper. CONCLUSION Thorough physicochemical characterization and biological investigations highlight the structure-activity relationship of DHFR inhibitors. This will enable even better design and synthesis of active compounds, which would have the expected mechanism of action and the desired activity.
Collapse
Affiliation(s)
- Agnieszka Wróbel
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University, Białystok, Poland
| | - Danuta Drozdowska
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University, Białystok, Poland
| |
Collapse
|
9
|
He J, Qiao W, An Q, Yang T, Luo Y. Dihydrofolate reductase inhibitors for use as antimicrobial agents. Eur J Med Chem 2020; 195:112268. [PMID: 32298876 DOI: 10.1016/j.ejmech.2020.112268] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/22/2020] [Accepted: 03/22/2020] [Indexed: 02/05/2023]
Abstract
Drug-resistant bacteria pose an increasingly serious threat to mankind all over the world. However, the currently available clinical treatments do not meet the urgent demand.Therefore, it is desirable to find new targets and inhibitors to overcome the problems of antibiotic resistance. Dihydrofolate reductase (DHFR) is an important enzyme required to maintain bacterial growth, and hence inhibitors of DHFR have been proven as effective agents for treating bacterial infections. This review provides insights into the recent discovery of antimicrobial agents targeting DHFR. In particular, three pathogens, Escherichia coli (E. coli), Mycobacterium tuberculosis(Mtb) and Staphylococcus aureus(S. aureus), and research strategies are emphasized. DHFR inhibitors are expected to be good alternatives to fight bacterial infections.
Collapse
Affiliation(s)
- Juan He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Wenliang Qiao
- Lung Cancer Center, Laboratory of Lung Cancer, Western China Hospital of Sichuan University
| | - Qi An
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Tao Yang
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
10
|
Reeve SM, Si D, Krucinska J, Yan Y, Viswanathan K, Wang S, Holt GT, Frenkel MS, Ojewole AA, Estrada A, Agabiti SS, Alverson JB, Gibson ND, Priestley ND, Wiemer AJ, Donald BR, Wright DL. Toward Broad Spectrum Dihydrofolate Reductase Inhibitors Targeting Trimethoprim Resistant Enzymes Identified in Clinical Isolates of Methicillin Resistant Staphylococcus aureus. ACS Infect Dis 2019; 5:1896-1906. [PMID: 31565920 DOI: 10.1021/acsinfecdis.9b00222] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The spread of plasmid borne resistance enzymes in clinical Staphylococcus aureus isolates is rendering trimethoprim and iclaprim, both inhibitors of dihydrofolate reductase (DHFR), ineffective. Continued exploitation of these targets will require compounds that can broadly inhibit these resistance-conferring isoforms. Using a structure-based approach, we have developed a novel class of ionized nonclassical antifolates (INCAs) that capture the molecular interactions that have been exclusive to classical antifolates. These modifications allow for a greatly expanded spectrum of activity across these pathogenic DHFR isoforms, while maintaining the ability to penetrate the bacterial cell wall. Using biochemical, structural, and computational methods, we are able to optimize these inhibitors to the conserved active sites of the endogenous and trimethoprim resistant DHFR enzymes. Here, we report a series of INCA compounds that exhibit low nanomolar enzymatic activity and potent cellular activity with human selectivity against a panel of clinically relevant TMP resistant (TMPR) and methicillin resistant Staphylococcus aureus (MRSA) isolates.
Collapse
Affiliation(s)
- Stephanie M. Reeve
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N. Eagleville Road, Storrs, Connecticut 06269, United States
| | - Debjani Si
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N. Eagleville Road, Storrs, Connecticut 06269, United States
| | - Jolanta Krucinska
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N. Eagleville Road, Storrs, Connecticut 06269, United States
| | - Yongzhao Yan
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N. Eagleville Road, Storrs, Connecticut 06269, United States
| | - Kishore Viswanathan
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N. Eagleville Road, Storrs, Connecticut 06269, United States
| | - Siyu Wang
- Department of Computer Science, Duke University, 308 Research Drive, Durham, North Carolina 27708, United States
- Program in Computational Biology and Bioinformatics, Duke University, 101 Science Drive, Durham, North Carolina 27708, United States
| | - Graham T. Holt
- Department of Computer Science, Duke University, 308 Research Drive, Durham, North Carolina 27708, United States
- Program in Computational Biology and Bioinformatics, Duke University, 101 Science Drive, Durham, North Carolina 27708, United States
| | - Marcel S. Frenkel
- Department of Biochemistry, Duke University Medical Center, 255 Nanaline H. Duke, Durham, North Carolina 27710, United States
| | - Adegoke A. Ojewole
- Department of Computer Science, Duke University, 308 Research Drive, Durham, North Carolina 27708, United States
- Program in Computational Biology and Bioinformatics, Duke University, 101 Science Drive, Durham, North Carolina 27708, United States
| | - Alexavier Estrada
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N. Eagleville Road, Storrs, Connecticut 06269, United States
| | - Sherry S. Agabiti
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N. Eagleville Road, Storrs, Connecticut 06269, United States
| | - Jeremy B. Alverson
- Department of Chemistry, University of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
| | - Nathan D. Gibson
- Department of Chemistry, University of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
| | - Nigel D. Priestley
- Department of Chemistry, University of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
| | - Andrew J. Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N. Eagleville Road, Storrs, Connecticut 06269, United States
| | - Bruce R. Donald
- Department of Computer Science, Duke University, 308 Research Drive, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University Medical Center, 255 Nanaline H. Duke, Durham, North Carolina 27710, United States
- Department of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27708, United States
| | - Dennis L. Wright
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N. Eagleville Road, Storrs, Connecticut 06269, United States
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, Storrs, Connecticut 06269, United States
| |
Collapse
|
11
|
Trimethoprim and other nonclassical antifolates an excellent template for searching modifications of dihydrofolate reductase enzyme inhibitors. J Antibiot (Tokyo) 2019; 73:5-27. [PMID: 31578455 PMCID: PMC7102388 DOI: 10.1038/s41429-019-0240-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/07/2019] [Accepted: 08/22/2019] [Indexed: 12/17/2022]
Abstract
The development of new mechanisms of resistance among pathogens, the occurrence and transmission of genes responsible for antibiotic insensitivity, as well as cancer diseases have been a serious clinical problem around the world for over 50 years. Therefore, intense searching of new leading structures and active substances, which may be used as new drugs, especially against strain resistant to all available therapeutics, is very important. Dihydrofolate reductase (DHFR) has attracted a lot of attention as a molecular target for bacterial resistance over several decades, resulting in a number of useful agents. Trimethoprim (TMP), (2,4-diamino-5-(3′,4′,5′-trimethoxybenzyl)pyrimidine) is the well-known dihydrofolate reductase inhibitor and one of the standard antibiotics used in urinary tract infections (UTIs). This review highlights advances in design, synthesis, and biological evaluations in structural modifications of TMP as DHFR inhibitors. In addition, this report presents the differences in the active site of human and pathogen DHFR. Moreover, an excellent review of DHFR inhibition and their relevance to antimicrobial and parasitic chemotherapy was presented.
Collapse
|
12
|
Zhang Y, Wang Y, Zhao Y, Gu W, Zhu Y, Wang S. Novel camphor-based pyrimidine derivatives induced cancer cell death through a ROS-mediated mitochondrial apoptosis pathway. RSC Adv 2019; 9:29711-29720. [PMID: 35531556 PMCID: PMC9071996 DOI: 10.1039/c9ra05900h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/15/2019] [Indexed: 12/17/2022] Open
Abstract
A series of novel camphor-based pyrimidine derivatives (3a–3x) have been synthesized; their structures were determined by using conventional methods and compound 3f was further confirmed through single crystal XRD analysis. The cytotoxic activity of the target compounds against a panel of human normal (GES-1) and cancer cell lines (MDA-MB-231, RPMI-8226, A549) was evaluated by MTS assay. Here we found that compound 3f exhibited the strongest anti-tumor activity, comparable to that of etoposide, and had much lower cytotoxicity to normal GES-1 cells (IC50 > 50 μM) than the reference drug (IC50 = 8.89 μM). Subsequent mechanism studies in MDA-MB-231 cells revealed that compound 3f caused G0/G1 phase arrest and apoptosis in a dose dependent manner. Moreover, the loss of mitochondrial membrane potential and enhancement of cellular ROS levels were also observed upon 3f treatment, which indicated that 3f exerted cytotoxic activity by a ROS-mediated mitochondrial apoptosis pathway. This result was confirmed by a significant increase in the expression of pro-apoptotic proteins Bax, cytochrome C and caspase-3, and downregulation of anti-apoptosis protein Bcl-2. Overall, 3f can be adopted for further investigation in the development of antitumor agents based on natural products. A series of novel camphor-based pyrimidine derivatives were synthesized and characterized. We found the compound 3f exhibited strongest anti-tumor activity via ROS-mediated mitochondrial apoptosis pathway.![]()
Collapse
Affiliation(s)
- Yan Zhang
- College of Chemical Engineering, Nanjing Forestry University Nanjing Jiangsu 210037 People's Republic of China +86 25 85427812 +86 25 85427812
| | - Yunyun Wang
- College of Chemical Engineering, Nanjing Forestry University Nanjing Jiangsu 210037 People's Republic of China +86 25 85427812 +86 25 85427812
| | - Yuxun Zhao
- College of Chemical Engineering, Nanjing Forestry University Nanjing Jiangsu 210037 People's Republic of China +86 25 85427812 +86 25 85427812
| | - Wen Gu
- College of Chemical Engineering, Nanjing Forestry University Nanjing Jiangsu 210037 People's Republic of China +86 25 85427812 +86 25 85427812.,Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing 210037 P. R. China
| | - Yongqiang Zhu
- Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd Nanjing 210046 P. R. China
| | - Shifa Wang
- College of Chemical Engineering, Nanjing Forestry University Nanjing Jiangsu 210037 People's Republic of China +86 25 85427812 +86 25 85427812.,Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing 210037 P. R. China
| |
Collapse
|
13
|
Lombardo MN, G-Dayanandan N, Keshipeddy S, Zhou W, Si D, Reeve SM, Alverson J, Barney P, Walker L, Hoody J, Priestley ND, Obach RS, Wright DL. Structure-Guided In Vitro to In Vivo Pharmacokinetic Optimization of Propargyl-Linked Antifolates. Drug Metab Dispos 2019; 47:995-1003. [PMID: 31201212 PMCID: PMC7184189 DOI: 10.1124/dmd.119.086504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/03/2019] [Indexed: 12/17/2022] Open
Abstract
Pharmacokinetic/pharmacodynamic properties are strongly correlated with the in vivo efficacy of antibiotics. Propargyl-linked antifolates, a novel class of antibiotics, demonstrate potent antibacterial activity against both Gram-positive and Gram-negative pathogenic bacteria, including multidrug-resistant Staphylococcus aureus. Here, we report our efforts to optimize the pharmacokinetic profile of this class to best match the established pharmacodynamic properties. High-resolution crystal structures were used in combination with in vitro pharmacokinetic models to design compounds that not only are metabolically stable in vivo but also retain potent antibacterial activity. The initial lead compound was prone to both N-oxidation and demethylation, which resulted in an abbreviated in vivo half-life (∼20 minutes) in mice. Stability of leads toward mouse liver microsomes was primarily used to guide medicinal chemistry efforts so robust efficacy could be demonstrated in a mouse disease model. Structure-based drug design guided mitigation of N-oxide formation through substitutions of sterically demanding groups adjacent to the pyridyl nitrogen. Additionally, deuterium and fluorine substitutions were evaluated for their effect on the rate of oxidative demethylation. The resulting compound was characterized and demonstrated to have a low projected clearance in humans with limited potential for drug-drug interactions as predicted by cytochrome P450 inhibition as well as an in vivo exposure profile that optimizes the potential for bactericidal activity, highlighting how structural data, merged with substitutions to introduce metabolic stability, are a powerful approach to drug design.
Collapse
Affiliation(s)
- M N Lombardo
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (M.N.L., N.G.-D., S.K., W.Z., D.S., S.M.R., D.L.W.); Pfizer Worldwide Research & Development, Pharmacokinetics, Dynamics, and Metabolism, Groton, Connecticut (R.S.O.); and Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana (J.A., P.B., L.W., J.H., N.D.P.)
| | - N G-Dayanandan
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (M.N.L., N.G.-D., S.K., W.Z., D.S., S.M.R., D.L.W.); Pfizer Worldwide Research & Development, Pharmacokinetics, Dynamics, and Metabolism, Groton, Connecticut (R.S.O.); and Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana (J.A., P.B., L.W., J.H., N.D.P.)
| | - S Keshipeddy
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (M.N.L., N.G.-D., S.K., W.Z., D.S., S.M.R., D.L.W.); Pfizer Worldwide Research & Development, Pharmacokinetics, Dynamics, and Metabolism, Groton, Connecticut (R.S.O.); and Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana (J.A., P.B., L.W., J.H., N.D.P.)
| | - W Zhou
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (M.N.L., N.G.-D., S.K., W.Z., D.S., S.M.R., D.L.W.); Pfizer Worldwide Research & Development, Pharmacokinetics, Dynamics, and Metabolism, Groton, Connecticut (R.S.O.); and Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana (J.A., P.B., L.W., J.H., N.D.P.)
| | - D Si
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (M.N.L., N.G.-D., S.K., W.Z., D.S., S.M.R., D.L.W.); Pfizer Worldwide Research & Development, Pharmacokinetics, Dynamics, and Metabolism, Groton, Connecticut (R.S.O.); and Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana (J.A., P.B., L.W., J.H., N.D.P.)
| | - S M Reeve
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (M.N.L., N.G.-D., S.K., W.Z., D.S., S.M.R., D.L.W.); Pfizer Worldwide Research & Development, Pharmacokinetics, Dynamics, and Metabolism, Groton, Connecticut (R.S.O.); and Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana (J.A., P.B., L.W., J.H., N.D.P.)
| | - J Alverson
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (M.N.L., N.G.-D., S.K., W.Z., D.S., S.M.R., D.L.W.); Pfizer Worldwide Research & Development, Pharmacokinetics, Dynamics, and Metabolism, Groton, Connecticut (R.S.O.); and Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana (J.A., P.B., L.W., J.H., N.D.P.)
| | - P Barney
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (M.N.L., N.G.-D., S.K., W.Z., D.S., S.M.R., D.L.W.); Pfizer Worldwide Research & Development, Pharmacokinetics, Dynamics, and Metabolism, Groton, Connecticut (R.S.O.); and Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana (J.A., P.B., L.W., J.H., N.D.P.)
| | - L Walker
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (M.N.L., N.G.-D., S.K., W.Z., D.S., S.M.R., D.L.W.); Pfizer Worldwide Research & Development, Pharmacokinetics, Dynamics, and Metabolism, Groton, Connecticut (R.S.O.); and Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana (J.A., P.B., L.W., J.H., N.D.P.)
| | - J Hoody
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (M.N.L., N.G.-D., S.K., W.Z., D.S., S.M.R., D.L.W.); Pfizer Worldwide Research & Development, Pharmacokinetics, Dynamics, and Metabolism, Groton, Connecticut (R.S.O.); and Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana (J.A., P.B., L.W., J.H., N.D.P.)
| | - N D Priestley
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (M.N.L., N.G.-D., S.K., W.Z., D.S., S.M.R., D.L.W.); Pfizer Worldwide Research & Development, Pharmacokinetics, Dynamics, and Metabolism, Groton, Connecticut (R.S.O.); and Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana (J.A., P.B., L.W., J.H., N.D.P.)
| | - R S Obach
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (M.N.L., N.G.-D., S.K., W.Z., D.S., S.M.R., D.L.W.); Pfizer Worldwide Research & Development, Pharmacokinetics, Dynamics, and Metabolism, Groton, Connecticut (R.S.O.); and Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana (J.A., P.B., L.W., J.H., N.D.P.)
| | - D L Wright
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (M.N.L., N.G.-D., S.K., W.Z., D.S., S.M.R., D.L.W.); Pfizer Worldwide Research & Development, Pharmacokinetics, Dynamics, and Metabolism, Groton, Connecticut (R.S.O.); and Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana (J.A., P.B., L.W., J.H., N.D.P.)
| |
Collapse
|
14
|
Hajian B, Scocchera E, Shoen C, Krucinska J, Viswanathan K, G-Dayanandan N, Erlandsen H, Estrada A, Mikušová K, Korduláková J, Cynamon M, Wright D. Drugging the Folate Pathway in Mycobacterium tuberculosis: The Role of Multi-targeting Agents. Cell Chem Biol 2019; 26:781-791.e6. [PMID: 30930162 DOI: 10.1016/j.chembiol.2019.02.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/22/2019] [Accepted: 02/24/2019] [Indexed: 01/19/2023]
Abstract
The folate biosynthetic pathway offers many druggable targets that have yet to be exploited in tuberculosis therapy. Herein, we have identified a series of small molecules that interrupt Mycobacterium tuberculosis (Mtb) folate metabolism by dual targeting of dihydrofolate reductase (DHFR), a key enzyme in the folate pathway, and its functional analog, Rv2671. We have also compared the antifolate activity of these compounds with that of para-aminosalicylic acid (PAS). We found that the bioactive metabolite of PAS, in addition to previously reported activity against DHFR, inhibits flavin-dependent thymidylate synthase in Mtb, suggesting a multi-targeted mechanism of action for this drug. Finally, we have shown that antifolate treatment in Mtb decreases the production of mycolic acids, most likely due to perturbation of the activated methyl cycle. We conclude that multi-targeting of the folate pathway in Mtb is associated with highly potent anti-mycobacterial activity.
Collapse
Affiliation(s)
- Behnoush Hajian
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Eric Scocchera
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | | | - Jolanta Krucinska
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Kishore Viswanathan
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | | | - Heidi Erlandsen
- Center for Open Research Resources and Equipment, University of Connecticut, Storrs, CT 06269, USA
| | - Alexavier Estrada
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Katarína Mikušová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina CH-1, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Jana Korduláková
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina CH-1, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | | | - Dennis Wright
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
15
|
Rana RM, Rampogu S, Zeb A, Son M, Park C, Lee G, Yoon S, Baek A, Parameswaran S, Park SJ, Lee KW. In Silico Study Probes Potential Inhibitors of Human Dihydrofolate Reductase for Cancer Therapeutics. J Clin Med 2019; 8:jcm8020233. [PMID: 30754680 PMCID: PMC6406960 DOI: 10.3390/jcm8020233] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/05/2019] [Accepted: 02/08/2019] [Indexed: 01/10/2023] Open
Abstract
Dihydrofolate reductase (DHFR) is an essential cellular enzyme and thereby catalyzes thereduction of dihydrofolate to tetrahydrofolate (THF). In cancer medication, inhibition of humanDHFR (hDHFR) remains a promising strategy, as it depletes THF and slows DNA synthesis and cellproliferation. In the current study, ligand-based pharmacophore modeling identified and evaluatedthe critical chemical features of hDHFR inhibitors. A pharmacophore model (Hypo1) was generatedfrom known inhibitors of DHFR with a correlation coefficient (0.94), root mean square (RMS)deviation (0.99), and total cost value (125.28). Hypo1 was comprised of four chemical features,including two hydrogen bond donors (HDB), one hydrogen bond acceptor (HBA), and onehydrophobic (HYP). Hypo1 was validated using Fischer's randomization, test set, and decoy setvalidations, employed as a 3D query in a virtual screening at Maybridge, Chembridge, Asinex,National Cancer Institute (NCI), and Zinc databases. Hypo1-retrieved compounds were filtered byan absorption, distribution, metabolism, excretion, and toxicity (ADMET) assessment test andLipinski's rule of five, where the drug-like hit compounds were identified. The hit compounds weredocked in the active site of hDHFR and compounds with Goldfitness score was greater than 44.67(docking score for the reference compound), clustering analysis, and hydrogen bond interactionswere identified. Furthermore, molecular dynamics (MD) simulation identified three compounds asthe best inhibitors of hDHFR with the lowest root mean square deviation (1.2 Å to 1.8 Å), hydrogenbond interactions with hDHFR, and low binding free energy (-127 kJ/mol to -178 kJ/mol). Finally,the toxicity prediction by computer (TOPKAT) affirmed the safety of the novel inhibitors of hDHFRin human body. Overall, we recommend novel hit compounds of hDHFR for cancer and rheumatoidarthritis chemotherapeutics.
Collapse
Affiliation(s)
- Rabia Mukhtar Rana
- Division of Life Sciences, Division of Applied Life Science (BK21 Plus), Research Institute of NaturalScience (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea.
| | - Shailima Rampogu
- Division of Life Sciences, Division of Applied Life Science (BK21 Plus), Research Institute of NaturalScience (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea.
| | - Amir Zeb
- Division of Life Sciences, Division of Applied Life Science (BK21 Plus), Research Institute of NaturalScience (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea.
| | - Minky Son
- Division of Life Sciences, Division of Applied Life Science (BK21 Plus), Research Institute of NaturalScience (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea.
| | - Chanin Park
- Division of Life Sciences, Division of Applied Life Science (BK21 Plus), Research Institute of NaturalScience (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea.
| | - Gihwan Lee
- Division of Life Sciences, Division of Applied Life Science (BK21 Plus), Research Institute of NaturalScience (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea.
| | - Sanghwa Yoon
- Division of Life Sciences, Division of Applied Life Science (BK21 Plus), Research Institute of NaturalScience (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea.
| | - Ayoung Baek
- Division of Life Sciences, Division of Applied Life Science (BK21 Plus), Research Institute of NaturalScience (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea.
| | - Sarvanan Parameswaran
- Division of Life Sciences, Division of Applied Life Science (BK21 Plus), Research Institute of NaturalScience (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea.
| | - Seok Ju Park
- Department of Internal Medicine, College of Medicine, Busan Paik Hospital, Inje University,Busan 47392, Korea.
| | - Keun Woo Lee
- Division of Life Sciences, Division of Applied Life Science (BK21 Plus), Research Institute of NaturalScience (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea.
| |
Collapse
|
16
|
Srinivasan B, Tonddast-Navaei S, Roy A, Zhou H, Skolnick J. Chemical space of Escherichia coli dihydrofolate reductase inhibitors: New approaches for discovering novel drugs for old bugs. Med Res Rev 2018; 39:684-705. [PMID: 30192413 DOI: 10.1002/med.21538] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/16/2018] [Accepted: 08/09/2018] [Indexed: 12/15/2022]
Abstract
Escherichia coli Dihydrofolate reductase is an important enzyme that is essential for the survival of the Gram-negative microorganism. Inhibitors designed against this enzyme have demonstrated application as antibiotics. However, either because of poor bioavailability of the small-molecules resulting from their inability to cross the double membrane in Gram-negative bacteria or because the microorganism develops resistance to the antibiotics by mutating the DHFR target, discovery of new antibiotics against the enzyme is mandatory to overcome drug-resistance. This review summarizes the field of DHFR inhibition with special focus on recent efforts to effectively interface computational and experimental efforts to discover novel classes of inhibitors that target allosteric and active-sites in drug-resistant variants of EcDHFR.
Collapse
Affiliation(s)
- Bharath Srinivasan
- Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, Atlanta, Georgia
| | - Sam Tonddast-Navaei
- Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, Atlanta, Georgia
| | - Ambrish Roy
- Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, Atlanta, Georgia
| | - Hongyi Zhou
- Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, Atlanta, Georgia
| | - Jeffrey Skolnick
- Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
17
|
Li Y, Lin J, Ma J, Song L, Lin H, Tang B, Chen D, Su G, Ye S, Zhu X, Luo F, Hou Z. Methotrexate-Camptothecin Prodrug Nanoassemblies as a Versatile Nanoplatform for Biomodal Imaging-Guided Self-Active Targeted and Synergistic Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:34650-34665. [PMID: 28920426 DOI: 10.1021/acsami.7b10027] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
"All-in-one" carrier-free-based nano-multi-drug self-delivery system could combine triple advantages of small molecules, nanoscale characteristics, and synergistic combination therapy together. Researches have showed that dual-acting small-molecular methotrexate (MTX) could target and kill the folate-receptor-overexpressing cancer cells. Inspired by this mechanism, a novel collaborative early-phase tumor-selective targeting and late-phase synergistic anticancer approach was developed for the self-assembly of chemotherapeutic drug-drug conjugate, which showed various advantages of more simplicity, efficiency, and flexibility over the conventional approach based only on single or combination cancer chemotherapy. MTX and 10-hydroxyl camptothecin (CPT) were chosen to conjugate through ester linkage. Because of the amphiphilicity and ionicity, MTX-CPT conjugates as molecular building blocks could self-assemble into MTX-CPT nanoparticles (MTX-CPT NPs) in aqueous solution, thus notably improving the aqueous solubility of CPT and the membrane permeability of MTX. The MTX-CPT NPs with a precise drug-to-drug ratio showed pH-/esterase-responsive drug release, sequential function "Targeting-Anticancer" switch, and real-time monitoring fluorescence "Off-On" switch. By doping with a lipophilic near-infrared (NIR) cyanine dye (e.g., 1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide, DiR), the prepared DiR-loaded MTX-CPT NPs acted as an effective probe for in vivo NIR fluorescence (NIRF) and photoacoustic (PA) dual-modal imaging. Both in vitro and in vivo studies demonstrated that MTX-CPT NPs could specifically codeliver multidrug to different sites of action with distinct anticancer mechanisms to kill folate-receptor-overexpressing tumor cells in a synergistic way. This novel, simple, and highly convergent self-targeting nanomulti-drug codelivery system exhibited great potential in cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Bowen Tang
- College of Pharmacy, Western University of Health Science , Pomona, California 91766, United States
| | | | - Guanghao Su
- Children's Hospital of Soochow University , Suzhou 215025, PR China
| | | | | | | | | |
Collapse
|
18
|
Syntheses and antiproliferative evaluation of 6-thienyl, 6-polyphenyl aryl and 6-naphthyl derivatives of 2,4-diaminopyrido[3,2-d]pyramidine as non-classical antifolate targeting DHFR. Chem Res Chin Univ 2017. [DOI: 10.1007/s40242-017-7153-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
G-Dayanandan N, Scocchera EW, Keshipeddy S, Jones HF, Anderson AC, Wright DL. Direct Substitution of Arylalkynyl Carbinols Provides Access to Diverse Terminal Acetylene Building Blocks. Org Lett 2017; 19:142-145. [PMID: 27959567 DOI: 10.1021/acs.orglett.6b03438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To develop next generation antifolates for the treatment of trimethoprim-resistant bacteria, synthetic methods were needed to prepare a diverse array of 3-aryl-propynes with various substitutions at the propargyl position. A direct route was sought whereby nucleophilic addition of acetylene to aryl carboxaldehydes would be followed by reduction or substitution of the resulting propargyl alcohol. The direct reduction, methylation, and dimethylation of these readily available alcohols provide efficient access to this uncommon functional array. In addition, an unusual silane exchange reaction was observed in the reduction of the propargylic alcohols.
Collapse
Affiliation(s)
- Narendran G-Dayanandan
- Department of Pharmaceutical Sciences, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Eric W Scocchera
- Department of Pharmaceutical Sciences, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Santosh Keshipeddy
- Department of Pharmaceutical Sciences, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Heather F Jones
- Department of Pharmaceutical Sciences, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Amy C Anderson
- Department of Pharmaceutical Sciences, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Dennis L Wright
- Department of Pharmaceutical Sciences, University of Connecticut , Storrs, Connecticut 06269, United States.,Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269, United States
| |
Collapse
|
20
|
Reeve SM, Scocchera EW, G-Dayanadan N, Keshipeddy S, Krucinska J, Hajian B, Ferreira J, Nailor M, Aeschlimann J, Wright DL, Anderson AC. MRSA Isolates from United States Hospitals Carry dfrG and dfrK Resistance Genes and Succumb to Propargyl-Linked Antifolates. Cell Chem Biol 2016; 23:1458-1467. [PMID: 27939900 DOI: 10.1016/j.chembiol.2016.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 09/15/2016] [Accepted: 11/14/2016] [Indexed: 10/20/2022]
Abstract
Antibiotic resistance is a rapidly evolving health concern that requires a sustained effort to understand mechanisms of resistance and to develop new agents that overcome those mechanisms. The dihydrofolate reductase (DHFR) inhibitor, trimethoprim (TMP), remains one of the most important orally administered antibiotics. However, resistance through chromosomal mutations and mobile, plasmid-encoded insensitive DHFRs threatens the continued use of this agent. We are pursuing the development of new propargyl-linked antifolate (PLA) DHFR inhibitors designed to evade these mechanisms. While analyzing contemporary TMP-resistant clinical isolates of methicillin-resistant and sensitive Staphylococcus aureus, we discovered two mobile resistance elements, dfrG and dfrK. This is the first identification of these resistance mechanisms in the United States. These resistant organisms were isolated from a variety of infection sites, show clonal diversity, and each contain distinct resistance genotypes for common antibiotics. Several PLAs showed significant activity against these resistant strains by direct inhibition of the TMP resistance elements.
Collapse
Affiliation(s)
- Stephanie M Reeve
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA
| | - Eric W Scocchera
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA
| | - Narendran G-Dayanadan
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA
| | - Santosh Keshipeddy
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA
| | - Jolanta Krucinska
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA
| | - Behnoush Hajian
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA
| | - Jacob Ferreira
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA
| | - Michael Nailor
- Department of Pharmacy Practice, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA; Department of Pharmacy Services, Hartford Hospital, 80 Seymour Street, Hartford, CT 06102, USA
| | - Jeffrey Aeschlimann
- Department of Pharmacy Practice, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA; Division of Infectious Diseases and Department of Pharmacy Services, UConn Health/John Dempsey Hospital, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Dennis L Wright
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA.
| | - Amy C Anderson
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA
| |
Collapse
|
21
|
Zurawski DV, Lee RE. A Tribute to Amy Anderson (1969−2016): Leader, Role Model, and Advocate for Structure-Based Design of New Antimicrobial Agents. ACS Infect Dis 2016. [DOI: 10.1021/acsinfecdis.6b00156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniel V. Zurawski
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Richard E. Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| |
Collapse
|
22
|
Schiffer C. Remembering Professor Amy Christine Anderson. Cell Chem Biol 2016. [DOI: 10.1016/j.chembiol.2016.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Hajian B, Scocchera E, Keshipeddy S, G-Dayanandan N, Shoen C, Krucinska J, Reeve S, Cynamon M, Anderson AC, Wright DL. Propargyl-Linked Antifolates Are Potent Inhibitors of Drug-Sensitive and Drug-Resistant Mycobacterium tuberculosis. PLoS One 2016; 11:e0161740. [PMID: 27580226 PMCID: PMC5006990 DOI: 10.1371/journal.pone.0161740] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/10/2016] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium tuberculosis continues to cause widespread, life-threatening disease. In the last decade, this threat has grown dramatically as multi- and extensively-drug resistant (MDR and XDR) bacteria have spread globally and the number of agents that effectively treat these infections is significantly reduced. We have been developing the propargyl-linked antifolates (PLAs) as potent inhibitors of the essential enzyme dihydrofolate reductase (DHFR) from bacteria and recently found that charged PLAs with partial zwitterionic character showed improved mycobacterial cell permeability. Building on a hypothesis that these PLAs may penetrate the outer membrane of M. tuberculosis and inhibit the essential cytoplasmic DHFR, we screened a group of PLAs for antitubercular activity. In this work, we identified several PLAs as potent inhibitors of the growth of M. tuberculosis with several of the compounds exhibiting minimum inhibition concentrations equal to or less than 1 μg/mL. Furthermore, two of the compounds were very potent inhibitors of MDR and XDR strains. A high resolution crystal structure of one PLA bound to DHFR from M. tuberculosis reveals the interactions of the ligands with the target enzyme.
Collapse
Affiliation(s)
- Behnoush Hajian
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, United States of America
| | - Eric Scocchera
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, United States of America
| | - Santosh Keshipeddy
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, United States of America
| | - Narendran G-Dayanandan
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, United States of America
| | - Carolyn Shoen
- Veterans Affairs Medical Center, Syracuse, New York, United States of America
| | - Jolanta Krucinska
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, United States of America
| | - Stephanie Reeve
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, United States of America
| | - Michael Cynamon
- Veterans Affairs Medical Center, Syracuse, New York, United States of America
| | - Amy C. Anderson
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, United States of America
- * E-mail: (ACA); (DLW)
| | - Dennis L. Wright
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, United States of America
- * E-mail: (ACA); (DLW)
| |
Collapse
|
24
|
Reeve SM, Scocchera E, Ferreira JJ, G-Dayanandan N, Keshipeddy S, Wright DL, Anderson AC. Charged Propargyl-Linked Antifolates Reveal Mechanisms of Antifolate Resistance and Inhibit Trimethoprim-Resistant MRSA Strains Possessing Clinically Relevant Mutations. J Med Chem 2016; 59:6493-500. [PMID: 27308944 DOI: 10.1021/acs.jmedchem.6b00688] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Drug-resistant enzymes must balance catalytic function with inhibitor destabilization to provide a fitness advantage. This sensitive balance, often involving very subtle structural changes, must be achieved through a selection process involving a minimal number of eligible point mutations. As part of a program to design propargyl-linked antifolates (PLAs) against trimethoprim-resistant dihydrofolate reductase (DHFR) from Staphylococcus aureus, we have conducted a thorough study of several clinically observed chromosomal mutations in the enzyme at the cellular, biochemical, and structural levels. Through this work, we have identified a promising lead series that displays significantly greater activity against these mutant enzymes and strains than TMP. The best inhibitors have enzyme inhibition and MIC values near or below that of trimethoprim against wild-type S. aureus. Moreover, these studies employ a series of crystal structures of several mutant enzymes bound to the same inhibitor; analysis of the structures reveals a more detailed molecular understanding of drug resistance in this important enzyme.
Collapse
Affiliation(s)
- Stephanie M Reeve
- Department of Pharmaceutical Sciences, University of Connecticut , 69 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Eric Scocchera
- Department of Pharmaceutical Sciences, University of Connecticut , 69 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Jacob J Ferreira
- Department of Pharmaceutical Sciences, University of Connecticut , 69 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Narendran G-Dayanandan
- Department of Pharmaceutical Sciences, University of Connecticut , 69 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Santosh Keshipeddy
- Department of Pharmaceutical Sciences, University of Connecticut , 69 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Dennis L Wright
- Department of Pharmaceutical Sciences, University of Connecticut , 69 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Amy C Anderson
- Department of Pharmaceutical Sciences, University of Connecticut , 69 North Eagleville Road, Storrs, Connecticut 06269, United States
| |
Collapse
|