1
|
Nguyen NH, Sheng S, Banerjee A, Guerriero CJ, Chen J, Wang X, Mackie TD, Welling PA, Kleyman TR, Bahar I, Carlson AE, Brodsky JL. Characterization of hyperactive mutations in the renal potassium channel ROMK uncovers unique effects on channel biogenesis and ion conductance. Mol Biol Cell 2024; 35:ar119. [PMID: 39024255 PMCID: PMC11449386 DOI: 10.1091/mbc.e23-12-0494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
Hypertension affects one billion people worldwide and is the most common risk factor for cardiovascular disease, yet a comprehensive picture of its underlying genetic factors is incomplete. Amongst regulators of blood pressure is the renal outer medullary potassium (ROMK) channel. While select ROMK mutants are prone to premature degradation and lead to disease, heterozygous carriers of some of these same alleles are protected from hypertension. Therefore, we hypothesized that gain-of-function (GoF) ROMK variants which increase potassium flux may predispose people to hypertension. To begin to test this hypothesis, we employed genetic screens and a candidate-based approach to identify six GoF variants in yeast. Subsequent functional assays in higher cells revealed two variant classes. The first group exhibited greater stability in the endoplasmic reticulum, enhanced channel assembly, and/or increased protein at the cell surface. The second group of variants resided in the PIP2-binding pocket, and computational modeling coupled with patch-clamp studies demonstrated lower free energy for channel opening and slowed current rundown, consistent with an acquired PIP2-activated state. Together, these findings advance our understanding of ROMK structure-function, suggest the existence of hyperactive ROMK alleles in humans, and establish a system to facilitate the development of ROMK-targeted antihypertensives.
Collapse
Affiliation(s)
- Nga H. Nguyen
- Department of Biological Sciences, School of Medicine, University of Pittsburgh, PA 15260
| | - Shaohu Sheng
- Renal-Electrolyte Division, Department of Medicine, School of Medicine, University of Pittsburgh, PA 15260
| | - Anupam Banerjee
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, PA 15260
| | | | - Jingxin Chen
- Renal-Electrolyte Division, Department of Medicine, School of Medicine, University of Pittsburgh, PA 15260
| | - Xueqi Wang
- Renal-Electrolyte Division, Department of Medicine, School of Medicine, University of Pittsburgh, PA 15260
| | - Timothy D. Mackie
- Department of Biological Sciences, School of Medicine, University of Pittsburgh, PA 15260
| | - Paul A. Welling
- Division of Nephrology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Thomas R. Kleyman
- Renal-Electrolyte Division, Department of Medicine, School of Medicine, University of Pittsburgh, PA 15260
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, PA 15260
| | - Anne E. Carlson
- Department of Biological Sciences, School of Medicine, University of Pittsburgh, PA 15260
| | - Jeffrey L. Brodsky
- Department of Biological Sciences, School of Medicine, University of Pittsburgh, PA 15260
| |
Collapse
|
2
|
Richter JM, Gunaga P, Yadav N, Bora RO, Bhide R, Rajugowda N, Govindrajulu K, Godesi S, Akuthota N, Rao P, Sivaraman A, Panda M, Kaspady M, Gupta A, Mathur A, Levesque PC, Gulia J, Dokania M, Ramarao M, Kole P, Chacko S, Lentz KA, Sivaprasad Lvj S, Thatipamula RP, Sridhar S, Kamble S, Govindrajan A, Soleman SI, Gordon DA, Wexler RR, Priestley ES. Discovery of BMS-986308: A Renal Outer Medullary Potassium Channel Inhibitor for the Treatment of Heart Failure. J Med Chem 2024; 67:9731-9744. [PMID: 38807539 DOI: 10.1021/acs.jmedchem.4c00893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Recent literature reports highlight the importance of the renal outer medullary potassium (ROMK) channel in renal sodium and potassium homeostasis and emphasize the potential impact that ROMK inhibitors could have as a novel mechanism diuretic in heart failure patients. A series of piperazine-based ROMK inhibitors were designed and optimized to achieve excellent ROMK potency, hERG selectivity, and ADME properties, which led to the identification of compound 28 (BMS-986308). BMS-986308 demonstrated efficacy in the volume-loaded rat diuresis model as well as promising in vitro and in vivo profiles and was therefore advanced to clinical development.
Collapse
Affiliation(s)
- Jeremy M Richter
- Bristol Myers Squibb Research & Early Development, Princeton, New Jersey 08540, United States
| | - Prashantha Gunaga
- Biocon Bristol Myers Squibb Research Center, Syngene International Limited, Bangalore 560099, India
| | - Navnath Yadav
- Biocon Bristol Myers Squibb Research Center, Syngene International Limited, Bangalore 560099, India
| | - Rajesh Onkardas Bora
- Biocon Bristol Myers Squibb Research Center, Syngene International Limited, Bangalore 560099, India
| | - Rajeev Bhide
- Bristol Myers Squibb Research & Early Development, Princeton, New Jersey 08540, United States
| | - Nagendra Rajugowda
- Biocon Bristol Myers Squibb Research Center, Syngene International Limited, Bangalore 560099, India
| | - Kavitha Govindrajulu
- Biocon Bristol Myers Squibb Research Center, Syngene International Limited, Bangalore 560099, India
| | - Sreenivasulu Godesi
- Biocon Bristol Myers Squibb Research Center, Syngene International Limited, Bangalore 560099, India
| | - Nagarjuna Akuthota
- Biocon Bristol Myers Squibb Research Center, Syngene International Limited, Bangalore 560099, India
| | - Prasanna Rao
- Biocon Bristol Myers Squibb Research Center, Syngene International Limited, Bangalore 560099, India
| | - Aneesh Sivaraman
- Biocon Bristol Myers Squibb Research Center, Syngene International Limited, Bangalore 560099, India
| | - Manoranjan Panda
- Bristol Myers Squibb Research & Early Development, Princeton, New Jersey 08540, United States
| | - Mahammed Kaspady
- Biocon Bristol Myers Squibb Research Center, Syngene International Limited, Bangalore 560099, India
| | - Anuradha Gupta
- Bristol Myers Squibb Research & Early Development, Princeton, New Jersey 08540, United States
| | - Arvind Mathur
- Bristol Myers Squibb Research & Early Development, Princeton, New Jersey 08540, United States
| | - Paul C Levesque
- Bristol Myers Squibb Research & Early Development, Princeton, New Jersey 08540, United States
| | - Jyoti Gulia
- Biocon Bristol Myers Squibb Research Center, Syngene International Limited, Bangalore 560099, India
| | - Manoj Dokania
- Biocon Bristol Myers Squibb Research Center, Syngene International Limited, Bangalore 560099, India
| | - Manjunath Ramarao
- Bristol Myers Squibb Research & Early Development, Princeton, New Jersey 08540, United States
| | - Prashant Kole
- Biocon Bristol Myers Squibb Research Center, Syngene International Limited, Bangalore 560099, India
| | - Silvi Chacko
- Bristol Myers Squibb Research & Early Development, Princeton, New Jersey 08540, United States
| | - Kimberley A Lentz
- Bristol Myers Squibb Research & Early Development, Princeton, New Jersey 08540, United States
| | - Sankara Sivaprasad Lvj
- Biocon Bristol Myers Squibb Research Center, Syngene International Limited, Bangalore 560099, India
| | | | - Srikanth Sridhar
- Biocon Bristol Myers Squibb Research Center, Syngene International Limited, Bangalore 560099, India
| | - Shyam Kamble
- Biocon Bristol Myers Squibb Research Center, Syngene International Limited, Bangalore 560099, India
| | - Arun Govindrajan
- Biocon Bristol Myers Squibb Research Center, Syngene International Limited, Bangalore 560099, India
| | - Sharif I Soleman
- Bristol Myers Squibb Research & Early Development, Princeton, New Jersey 08540, United States
| | - David A Gordon
- Bristol Myers Squibb Research & Early Development, Princeton, New Jersey 08540, United States
| | - Ruth R Wexler
- Bristol Myers Squibb Research & Early Development, Princeton, New Jersey 08540, United States
| | - E Scott Priestley
- Bristol Myers Squibb Research & Early Development, Princeton, New Jersey 08540, United States
| |
Collapse
|
3
|
Wang A, Luo X, Meng X, Lu Z, Chen K, Yang Y. Discovery of a Novel Bifunctional Steroid Analog, YXG-158, as an Androgen Receptor Degrader and CYP17A1 Inhibitor for the Treatment of Enzalutamide-Resistant Prostate Cancer. J Med Chem 2023; 66:9972-9991. [PMID: 37458396 DOI: 10.1021/acs.jmedchem.3c00880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The androgen/androgen receptor (AR) signaling pathway plays an important role in castration-resistant prostate cancer (CRPC). Bifunctional agents that simultaneously degrade AR and inhibit androgen synthesis are expected to block the androgen/AR signaling pathway more thoroughly, demonstrating the promising therapeutic potential for CRPC, even enzalutamide-resistant CRPC. Herein, a series of steroid analogs were designed, synthesized, and identified as selective AR degraders, among which YXG-158 (23-h) was the most potent antitumor compound with dual functions of AR degradation and CYP17A1 inhibition. In addition, 23-h abrogated the hERG inhibition and exhibited excellent PK profiles. In vivo, 23-h effectively inhibited the growth of hormone-sensitive organs in the Hershberger assay and exhibited robust antitumor efficacy both in enzalutamide-sensitive (LNCaP/AR) and enzalutamide-resistant (C4-2b-ENZ) xenograft models. Thus, 23-h was chosen as a preclinical candidate for the treatment of enzalutamide-resistant prostate cancer.
Collapse
Affiliation(s)
- Ao Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xianggang Luo
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Xin Meng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhengyu Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kaixian Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yushe Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| |
Collapse
|
4
|
Mahmoudi A, Butler AE, Banach M, Jamialahmadi T, Sahebkar A. Identification of Potent Small-Molecule PCSK9 Inhibitors Based on Quantitative Structure-Activity Relationship, Pharmacophore Modeling, and Molecular Docking Procedure. Curr Probl Cardiol 2023; 48:101660. [PMID: 36841313 DOI: 10.1016/j.cpcardiol.2023.101660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 02/17/2023] [Indexed: 02/27/2023]
Abstract
The leading cause of atherosclerotic cardiovascular disease (ASCVD) is elevated low-density lipoprotein cholesterol (LDL-C). Proprotein convertase subtilisin/kexin type 9 (PCSK9) attaches to the domain of LDL receptor (LDLR), diminishing LDL-C influx and LDLR cell surface presentation in hepatocytes, resulting in higher circulating LDL-C levels. PCSK9 dysfunction has been linked to lower levels of plasma LDLC and a decreased risk of coronary heart disease (CHD). Herein, using virtual screening tools, we aimed to identify a potent small-molecule PCSK9 inhibitor in compounds that are currently being studied in clinical trials. We first performed chemical absorption, distribution, metabolism, excretion, and toxicity (ADMET) filtering of 9800 clinical trial compounds obtained from the ZINC 15 database using Lipinski's rule of 5 and achieved 3853 compounds. Two-dimensional (2D) quantitative structure-activity relationship (QSAR) was initiated by computing molecular descriptors and selecting important descriptors of 23 PCSK9 inhibitors. Multivariate calibration was performed with the partial least square regression (PLS) method with 18 compounds for training to design the QSAR model and 5 compounds for the test set to assess the model. The best latent variables (LV) (LV=6) with the lowest value of Root-Mean-Square Error of Cross-Validation (RMSECV) of 0.48 and leave-one-out cross-validation correlation coefficient (R2CV) = 0.83 were obtained for the QSAR model. The low RMSEC (0.21) with high R²cal (0.966) indicates the probability of fit between the experimental data and the calibration model. Using QSAR analysis of 3853 compounds, 2635 had a pIC50<1 and were considered for pharmacophore screening. The PHASE module (a complete package for pharmacophore modeling) designed the pharmacophore hypothesis through multiple ligands. The top 14 compounds (pIC50>1) were defined as active, whereas 9 (pIC50<1) were considered as an inactive set. Three five-point pharmacophore hypotheses achieved the highest score: DHHRR1, DHHRR2, and DHRRR1. The highest and best model with survival scores (5.365) was DHHRR1, comprising 1 hydrogen donor (D), 2 hydrophobic groups (H), and 2 rings of aromatic (R) features. We selected the molecules with a higher 1.5 fitness score (257 compounds) in pharmacophore screening (DHHRR1) for molecular docking screening. Molecular docking indicates that ZINC000051951669, with a binding affinity: of -13.2 kcal/mol and 2 H-bonds, has the highest binding to the PCSK9 protein. ZINC000011726230 with energy binding: -11.4 kcal/mol and 3 H-bonds, ZINC000068248147 with binding affinity: -10.7 kcal/mol and 1 H-bond, ZINC000029134440 with a binding affinity: -10.6 kcal/mol and 4 H-bonds were ranked next, respectively. To conclude, the archived molecules identified as inhibitory PCSK9 candidates, and especially ZINC000051951669 may therefore significantly inhibit PCSK9 and should be considered in the newly designed trials.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL) Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland; Department of Cardiology and Congenital Diseases of Adults, Polish Mother's Memorial Hospital Research institute (PMMHRI), Lodz, Poland; Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
The Post-Translational Modification Networking in WNK-Centric Hypertension Regulation and Electrolyte Homeostasis. Biomedicines 2022; 10:biomedicines10092169. [PMID: 36140271 PMCID: PMC9496095 DOI: 10.3390/biomedicines10092169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
The with-no-lysine (WNK) kinase family, comprising four serine-threonine protein kinases (WNK1-4), were first linked to hypertension due to their mutations in association with pseudohypoaldosteronism type II (PHAII). WNK kinases regulate crucial blood pressure regulators, SPAK/OSR1, to mediate the post-translational modifications (PTMs) of their downstream ion channel substrates, such as sodium chloride co-transporter (NCC), epithelial sodium chloride (ENaC), renal outer medullary potassium channel (ROMK), and Na/K/2Cl co-transporters (NKCCs). In this review, we summarize the molecular pathways dysregulating the WNKs and their downstream target renal ion transporters. We summarize each of the genetic variants of WNK kinases and the small molecule inhibitors that have been discovered to regulate blood pressure via WNK-triggered PTM cascades.
Collapse
|
6
|
Jiang J, Ding FX, Zhou X, Bateman TJ, Dong S, Gu X, Keh deJesus R, Pio B, Tang H, Chobanian HR, Levorse D, Hu M, Thomas-Fowlkes B, Margulis M, Koehler M, Weinglass A, Gibson J, Houle K, Yudkovitz J, Hampton C, Pai LY, Samuel K, Cutarelli T, Sullivan K, Parmee ER, Davies I, Pasternak A. Discovery of MK-8153, a Potent and Selective ROMK Inhibitor and Novel Diuretic/Natriuretic. J Med Chem 2021; 64:7691-7701. [PMID: 34038119 DOI: 10.1021/acs.jmedchem.1c00406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A renal outer medullary potassium channel (ROMK, Kir1.1) is a putative drug target for a novel class of diuretics with potential for treating hypertension and heart failure. Our first disclosed clinical ROMK compound, 2 (MK-7145), demonstrated robust diuresis, natriuresis, and blood pressure lowering in preclinical models, with reduced urinary potassium excretion compared to the standard of care diuretics. However, 2 projected to a short human half-life (∼5 h) that could necessitate more frequent than once a day dosing. In addition, a short half-life would confer a high peak-to-trough ratio which could evoke an excessive peak diuretic effect, a common liability associated with loop diuretics such as furosemide. This report describes the discovery of a new ROMK inhibitor 22e (MK-8153), with a longer projected human half-life (∼14 h), which should lead to a reduced peak-to-trough ratio, potentially extrapolating to more extended and better tolerated diuretic effects.
Collapse
Affiliation(s)
- Jinlong Jiang
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Fa-Xiang Ding
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Xiaoyan Zhou
- Quantitative Biosciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Thomas J Bateman
- Pharmacokinetics Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Shuzhi Dong
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Xin Gu
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Reynalda Keh deJesus
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Barbara Pio
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Haifeng Tang
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Harry R Chobanian
- Quantitative Biosciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Dorothy Levorse
- Discovery and Preclinical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Mengwei Hu
- Discovery and Preclinical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Brande Thomas-Fowlkes
- Quantitative Biosciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Michael Margulis
- Quantitative Biosciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Martin Koehler
- Quantitative Biosciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Adam Weinglass
- Quantitative Biosciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Jack Gibson
- Quantitative Biosciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Kevin Houle
- Quantitative Biosciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Joel Yudkovitz
- Quantitative Biosciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Caryn Hampton
- Quantitative Biosciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Lee-Yuh Pai
- Quantitative Biosciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Koppara Samuel
- Pharmacokinetics Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Timothy Cutarelli
- Discovery Process Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Kathleen Sullivan
- Quantitative Biosciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Emma R Parmee
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Ian Davies
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Alexander Pasternak
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| |
Collapse
|
7
|
Titko T, Perekhoda L, Drapak I, Tsapko Y. Modern trends in diuretics development. Eur J Med Chem 2020; 208:112855. [PMID: 33007663 DOI: 10.1016/j.ejmech.2020.112855] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/06/2020] [Accepted: 09/15/2020] [Indexed: 01/02/2023]
Abstract
Diuretics are the first-line therapy for widespread cardiovascular and non-cardiovascular diseases. Traditional diuretics are commonly prescribed for treatment in patients with hypertension, edema and heart failure, as well as with a number of kidney problems. They are diseases with high mortality, and the number of patients suffering from heart and kidney diseases is increasing year by year. The use of several classes of diuretics currently available for clinical use exhibits an overall favorable risk/benefit balance. However, they are not devoid of side effects. Hence, pharmaceutical researchers have been making efforts to develop new drugs with a better pharmacological profile. High-throughput screening, progress in protein structure analysis and modern methods of chemical modification have opened good possibilities for identification of new promising agents for preclinical and clinical testing. In this review, we provide an overview of the medicinal chemistry approaches toward the development of small molecule compounds showing diuretic activity that have been discovered over the past decade and are interesting drug candidates. We have discussed promising natriuretics/aquaretics/osmotic diuretics from such classes as: vasopressin receptor antagonists, SGLT2 inhibitors, urea transporters inhibitors, aquaporin antagonists, adenosine receptor antagonists, natriuretic peptide receptor agonists, ROMK inhibitors, WNK-SPAK inhibitors, and pendrin inhibitors.
Collapse
Affiliation(s)
- Tetiana Titko
- Department of Medicinal Chemistry, National University of Pharmacy, 53 Pushkinska Str., 61002, Kharkiv, Ukraine.
| | - Lina Perekhoda
- Department of Medicinal Chemistry, National University of Pharmacy, 53 Pushkinska Str., 61002, Kharkiv, Ukraine.
| | - Iryna Drapak
- Department of General, Bioinorganic, Physical and Colloidal Chemistry, Danylo Halytsky Lviv National Medical University, 69 Pekarska Str., 79010, Lviv, Ukraine.
| | - Yevgen Tsapko
- Department of Inorganic Chemistry, National University of Pharmacy, 53 Pushkinska Str., 61002, Kharkiv, Ukraine.
| |
Collapse
|
8
|
Ruck RT, Chen Q, Rivera N, Kong J, Mangion IK, Tan L, Fleitz FJ. Bio- and Chemocatalysis for the Synthesis of Late Stage SAR-Enabling Intermediates for ROMK Inhibitors and MK-7145 for the Treatment of Hypertension and Heart Failure. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rebecca T. Ruck
- Process Research & Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Qinghao Chen
- Process Research & Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Nelo Rivera
- Process Research & Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Jongrock Kong
- Process Research & Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Ian K. Mangion
- Process Research & Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Lushi Tan
- Process Research & Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Fred J. Fleitz
- Process Research & Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
9
|
Alejandra GEE, Lauro FV, Marcela RN, Maria LR, Francisco DC, Virginia MA, Yazmin OA. Design and Synthesis of an Aniline Derivative with Biological Activity on Heart Failure. Comb Chem High Throughput Screen 2020; 24:220-232. [PMID: 32646352 DOI: 10.2174/1386207323666200709163008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/22/2020] [Accepted: 05/18/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Several compounds have been synthesized as a therapeutic alternative for heart failure; however, its preparation requires special conditions. OBJECTIVE The aim of this study, was to synthesize some aniline derivatives (4-9) from 3- ethynylaniline to evaluate their biological activity against heart failure. METHODS The synthesis of aniline derivatives involved a series of reactions such as etherification, addition, and cyclization. The structure of all compounds obtained was confirmed by spectroscopic and spectrometric methods. In addition, to evaluate the biological activity of compounds, an ischemia/reperfusion injury model was used. RESULTS The results showed that compound 8 decreases heart failure, which translates into a decrease in the infarction area compared to compounds 4-7 and 9. CONCLUSION This study reports a facile method for the preparation of aniline derivatives. This method offers some advantages such as; a simple procedure, low cost, and easy work up. In addition, compound 8 showed an interesting biological activity against heart failure. This phenomenon is particularly interesting because the biological activity induced by this compound could involve a molecular mechanism that is different from other drugs used for the treatment of heart failure.
Collapse
Affiliation(s)
| | - Figueroa-Valverde Lauro
- Laboratory of Pharmaco-Chemistry at the Faculty of Chemical Biological Sciences of the University Autonomous of Campeche, Av. Ex Hacienda Kala s/n, 24085 San Francisco de Campeche, Campeche, Mexico
| | - Rosas-Nexticapa Marcela
- Facultad de Nutricion, Universidad Veracruzana. Medicos y Odontologos s/n, 91010, Xalapa, Veracruz, Mexico
| | - Lopez-Ramos Maria
- Laboratory of Pharmaco-Chemistry at the Faculty of Chemical Biological Sciences of the University Autonomous of Campeche, Av. Ex Hacienda Kala s/n, 24085 San Francisco de Campeche, Campeche, Mexico
| | - Diaz Cedillo Francisco
- Escuela Nacional de Ciencias Biologicas del Instituto Politecnico Nacional. Prol. Carpio y Plan de Ayala s/n Col. Santo Tomas, Mexico
| | - Mateu-Armand Virginia
- Facultad de Nutricion, Universidad Veracruzana. Medicos y Odontologos s/n, 91010, Xalapa, Veracruz, Mexico
| | - Ortiz-Ake Yazmin
- Laboratory of Pharmaco-Chemistry at the Faculty of Chemical Biological Sciences of the University Autonomous of Campeche, Av. Ex Hacienda Kala s/n, 24085 San Francisco de Campeche, Campeche, Mexico
| |
Collapse
|
10
|
Walsh KB. Screening Technologies for Inward Rectifier Potassium Channels: Discovery of New Blockers and Activators. SLAS DISCOVERY 2020; 25:420-433. [PMID: 32292089 DOI: 10.1177/2472555220905558] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
K+ channels play a critical role in maintaining the normal electrical activity of excitable cells by setting the cell resting membrane potential and by determining the shape and duration of the action potential. In nonexcitable cells, K+ channels establish electrochemical gradients necessary for maintaining salt and volume homeostasis of body fluids. Inward rectifier K+ (Kir) channels typically conduct larger inward currents than outward currents, resulting in an inwardly rectifying current versus voltage relationship. This property of inward rectification results from the voltage-dependent block of the channels by intracellular polyvalent cations and makes these channels uniquely designed for maintaining the resting potential near the K+ equilibrium potential (EK). The Kir family of channels consist of seven subfamilies of channels (Kir1.x through Kir7.x) that include the classic inward rectifier (Kir2.x) channel, the G-protein-gated inward rectifier K+ (GIRK) (Kir3.x), and the adenosine triphosphate (ATP)-sensitive (KATP) (Kir 6.x) channels as well as the renal Kir1.1 (ROMK), Kir4.1, and Kir7.1 channels. These channels not only function to regulate electrical/electrolyte transport activity, but also serve as effector molecules for G-protein-coupled receptors (GPCRs) and as molecular sensors for cell metabolism. Of significance, Kir channels represent promising pharmacological targets for treating a number of clinical conditions, including cardiac arrhythmias, anxiety, chronic pain, and hypertension. This review provides a brief background on the structure, function, and pharmacology of Kir channels and then focuses on describing and evaluating current high-throughput screening (HTS) technologies, such as membrane potential-sensitive fluorescent dye assays, ion flux measurements, and automated patch clamp systems used for Kir channel drug discovery.
Collapse
Affiliation(s)
- Kenneth B Walsh
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
11
|
Papanicolaou KN, Ashok D, Liu T, Bauer TM, Sun J, Li Z, da Costa E, D'Orleans CC, Nathan S, Lefer DJ, Murphy E, Paolocci N, Foster DB, O'Rourke B. Global knockout of ROMK potassium channel worsens cardiac ischemia-reperfusion injury but cardiomyocyte-specific knockout does not: Implications for the identity of mitoKATP. J Mol Cell Cardiol 2020; 139:176-189. [PMID: 32004507 PMCID: PMC7849919 DOI: 10.1016/j.yjmcc.2020.01.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 01/16/2020] [Accepted: 01/23/2020] [Indexed: 01/29/2023]
Abstract
The renal-outer-medullary‑potassium (ROMK) channel, mutated in Bartter's syndrome, regulates ion exchange in kidney, but its extra-renal functions remain unknown. Additionally, ROMK was postulated to be the pore-forming subunit of the mitochondrial ATP-sensitive K+ channel (mitoKATP), a mediator of cardioprotection. Using global and cardiomyocyte-specific knockout mice (ROMK-GKO and ROMK-CKO respectively), we characterize the effects of ROMK knockout on mitochondrial ion handling, the response to pharmacological KATP channel modulators, and ischemia/reperfusion (I/R) injury. Mitochondria from ROMK-GKO hearts exhibited a lower threshold for Ca2+-triggered permeability transition pore (mPTP) opening but normal matrix volume changes during oxidative phosphorylation. Isolated perfused ROMK-GKO hearts exhibited impaired functional recovery and increased infarct size when I/R was preceded by an ischemic preconditioning (IPC) protocol. Because ROMK-GKO mice exhibited severe renal defects and cardiac remodeling, we further characterized ROMK-CKO hearts to avoid confounding systemic effects. Mitochondria from ROMK-CKO hearts had unchanged matrix volume responses during oxidative phosphorylation and still swelled upon addition of a mitoKATP opener, but exhibited a lower threshold for mPTP opening, similar to GKO mitochondria. Nevertheless, I/R induced damage was not exacerbated in ROMK-CKO hearts, either ex vivo or in vivo. Lastly, we examined the response of ROMK-CKO hearts to ex vivo I/R injury with or without IPC and found that IPC still protected these hearts, suggesting that cardiomyocyte ROMK does not participate significantly in the cardioprotective pathway elicited by IPC. Collectively, our findings from these novel strains of mice suggest that cardiomyocyte ROMK is not a central mediator of mitoKATP function, although it can affect mPTP activation threshold.
Collapse
Affiliation(s)
- Kyriakos N Papanicolaou
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Deepthi Ashok
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ting Liu
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tyler M Bauer
- Cardiovascular Branch, NHLBI, NIH, 10 Center Drive, Bethesda, MD, USA
| | - Junhui Sun
- Cardiovascular Branch, NHLBI, NIH, 10 Center Drive, Bethesda, MD, USA
| | - Zhen Li
- Cardiovascular Center of Excellence, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA, USA; Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA, USA
| | - Eduardo da Costa
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Charles Crepy D'Orleans
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sara Nathan
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David J Lefer
- Cardiovascular Center of Excellence, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA, USA; Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA, USA
| | - Elizabeth Murphy
- Cardiovascular Branch, NHLBI, NIH, 10 Center Drive, Bethesda, MD, USA
| | - Nazareno Paolocci
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - D Brian Foster
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brian O'Rourke
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
12
|
Aretz CD, Vadukoot AK, Hopkins CR. Discovery of Small Molecule Renal Outer Medullary Potassium (ROMK) Channel Inhibitors: A Brief History of Medicinal Chemistry Approaches To Develop Novel Diuretic Therapeutics. J Med Chem 2019; 62:8682-8694. [PMID: 31034224 DOI: 10.1021/acs.jmedchem.8b01891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The renal outer medullary potassium (ROMK) channel is a member of the inwardly rectifying family of potassium (Kir, Kir1.1) channels. It is primarily expressed in two regions of the kidney, the cortical collecting duct (CCD) and the thick ascending loop of Henle (TALH). At the CCD it tightly regulates potassium secretion while controlling potassium recycling in TALH. As loss-of-function mutations lead to salt wasting and low blood pressure, it has been surmised that inhibitors of ROMK would represent a target for new and improved diuretics for the treatment of hypertension and heart failure. In this review, we discuss and provide an overview of the medicinal chemistry approaches toward the development of small molecule ROMK inhibitors over the past decade.
Collapse
Affiliation(s)
- Christopher D Aretz
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| | - Anish K Vadukoot
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| | - Corey R Hopkins
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| |
Collapse
|
13
|
Sammons MF, Kharade SV, Filipski KJ, Boehm M, Smith AC, Shavnya A, Fernando DP, Dowling MS, Carpino PA, Castle NA, Zellmer SG, Antonio BM, Gosset JR, Carlo A, Denton JS. Discovery and in Vitro Optimization of 3-Sulfamoylbenzamides as ROMK Inhibitors. ACS Med Chem Lett 2018; 9:125-130. [PMID: 29456800 DOI: 10.1021/acsmedchemlett.7b00481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/19/2018] [Indexed: 02/05/2023] Open
Abstract
Inhibitors of the renal outer medullary potassium channel (ROMK) show promise as novel mechanism diuretics, with potentially lower risk of diuretic-induced hypokalemia relative to current thiazide and loop diuretics. Here, we report the identification of a novel series of 3-sulfamoylbenzamide ROMK inhibitors. Starting from HTS hit 4, this series was optimized to provide ROMK inhibitors with good in vitro potencies and well-balanced ADME profiles. In contrast to previously reported small-molecule ROMK inhibitors, members of this series were demonstrated to be highly selective for inhibition of human over rat ROMK and to be insensitive to the N171D pore mutation that abolishes inhibitory activity of previously reported ROMK inhibitors.
Collapse
Affiliation(s)
- Matthew F. Sammons
- Pfizer Worldwide Research & Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Sujay V. Kharade
- Department
of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Kevin J. Filipski
- Pfizer Worldwide Research & Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Markus Boehm
- Pfizer Worldwide Research & Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Aaron C. Smith
- Pfizer Worldwide Research & Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Andre Shavnya
- Pfizer Worldwide Research & Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Dilinie P. Fernando
- Pfizer Worldwide Research & Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Matthew S. Dowling
- Pfizer Worldwide Research & Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Philip A. Carpino
- Pfizer Worldwide Research & Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Neil A. Castle
- Neusentis, Pfizer Worldwide Research & Development, Durham, North Carolina 27703, United States
| | - Shannon G. Zellmer
- Neusentis, Pfizer Worldwide Research & Development, Durham, North Carolina 27703, United States
| | - Brett M. Antonio
- Neusentis, Pfizer Worldwide Research & Development, Durham, North Carolina 27703, United States
| | - James R. Gosset
- Pfizer Worldwide Research & Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Anthony Carlo
- Pfizer Worldwide Research & Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jerod S. Denton
- Department
of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| |
Collapse
|
14
|
The therapeutic potential of targeting the K ir1.1 (renal outer medullary K +) channel. Future Med Chem 2017; 9:1963-1977. [PMID: 29076349 DOI: 10.4155/fmc-2017-0083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Kir1.1 (renal outer medullary K+) channels are potassium channels expressed almost exclusively in the kidney and play a role in the body's electrolyte and water balance. Potassium efflux through Kir1.1 compliments the role of transporters and sodium channels that are the targets of known diuretics. Consequently, loss-of-function mutations in men and rodents are associated with salt wasting and low blood pressure. On this basis, Kir1.1 inhibitors may have value in the treatment of hypertension and heart failure. Efforts to develop small molecule Kir1.1 inhibitors produced MK-7145, which entered into clinical trials. The present manuscript describes the structure-activity relationships associated with this scaffold alongside other preclinical Kir1.1 blockers.
Collapse
|
15
|
Seidel E, Scholl UI. Genetic mechanisms of human hypertension and their implications for blood pressure physiology. Physiol Genomics 2017; 49:630-652. [PMID: 28887369 DOI: 10.1152/physiolgenomics.00032.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Hypertension, or elevated blood pressure, constitutes a major public health burden that affects more than 1 billion people worldwide and contributes to ~9 million deaths annually. Hereditary factors are thought to contribute to up to 50% of interindividual blood pressure variability. Blood pressure in the general population approximately shows a normal distribution and is thought to be a polygenic trait. In rare cases, early-onset hypertension or hypotension are inherited as Mendelian traits. The identification of the underlying Mendelian genes and variants has contributed to our understanding of the physiology of blood pressure regulation, emphasizing renal salt handling and the renin angiotensin aldosterone system as players in the determination of blood pressure. Genome-wide association studies (GWAS) have revealed more than 100 variants that are associated with blood pressure, typically with small effect sizes, which cumulatively explain ~3.5% of blood pressure trait variability. Several GWAS associations point to a role of the vasculature in the pathogenesis of hypertension. Despite these advances, the majority of the genetic contributors to blood pressure regulation are currently unknown; whether large-scale exome or genome sequencing studies will unravel these factors remains to be determined.
Collapse
Affiliation(s)
- Eric Seidel
- Department of Nephrology, Medical School, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ute I Scholl
- Department of Nephrology, Medical School, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
16
|
Volkov OA, Cosner CC, Brockway AJ, Kramer M, Booker M, Zhong S, Ketcherside A, Wei S, Longgood J, McCoy M, Richardson TE, Wring SA, Peel M, Klinger JD, Posner BA, De Brabander JK, Phillips MA. Identification of Trypanosoma brucei AdoMetDC Inhibitors Using a High-Throughput Mass Spectrometry-Based Assay. ACS Infect Dis 2017; 3:512-526. [PMID: 28350440 DOI: 10.1021/acsinfecdis.7b00022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human African trypanosomiasis (HAT) is a fatal infectious disease caused by the eukaryotic pathogen Trypanosoma brucei (Tb). Available treatments are difficult to administer and have significant safety issues. S-Adenosylmethionine decarboxylase (AdoMetDC) is an essential enzyme in the parasite polyamine biosynthetic pathway. Previous attempts to develop TbAdoMetDC inhibitors into anti-HAT therapies failed due to poor brain exposure. Here, we describe a large screening campaign of two small-molecule libraries (∼400,000 compounds) employing a new high-throughput (∼7 s per sample) mass spectrometry-based assay for AdoMetDC activity. As a result of primary screening, followed by hit confirmation and validation, we identified 13 new classes of reversible TbAdoMetDC inhibitors with low-micromolar potency (IC50) against both TbAdoMetDC and T. brucei parasite cells. The majority of these compounds were >10-fold selective against the human enzyme. Importantly, compounds from four classes demonstrated high propensity to cross the blood-brain barrier in a cell monolayer assay. Biochemical analysis demonstrated that compounds from eight classes inhibited intracellular TbAdoMetDC in the parasite, although evidence for a secondary off-target component was also present. The discovery of several new TbAdoMetDC inhibitor chemotypes provides new hits for lead optimization programs aimed to deliver a novel treatment for HAT.
Collapse
Affiliation(s)
| | | | | | - Martin Kramer
- Genzyme Corp. (now Sanofi Genzyme), 153 Second Avenue, Waltham, Massachusetts 02451-1122, United States
| | - Michael Booker
- Genzyme Corp. (now Sanofi Genzyme), 153 Second Avenue, Waltham, Massachusetts 02451-1122, United States
| | | | | | | | | | | | - Thomas E. Richardson
- Scynexis, Inc. (now Avista Pharma Solutions), 3501 Tricenter Boulevard, Suite
C, Durham, North Carolina 27713, United States
| | - Stephen A. Wring
- Scynexis, Inc. (now Avista Pharma Solutions), 3501 Tricenter Boulevard, Suite
C, Durham, North Carolina 27713, United States
| | - Michael Peel
- Scynexis, Inc. (now Avista Pharma Solutions), 3501 Tricenter Boulevard, Suite
C, Durham, North Carolina 27713, United States
| | - Jeffrey D. Klinger
- Genzyme Corp. (now Sanofi Genzyme), 153 Second Avenue, Waltham, Massachusetts 02451-1122, United States
| | | | | | | |
Collapse
|
17
|
Cheng CJ, Rodan AR, Huang CL. Emerging Targets of Diuretic Therapy. Clin Pharmacol Ther 2017; 102:420-435. [PMID: 28560800 DOI: 10.1002/cpt.754] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/15/2017] [Accepted: 05/21/2017] [Indexed: 12/14/2022]
Abstract
Diuretics are commonly prescribed for treatment in patients with hypertension, edema, or heart failure. Studies on hypertensive and salt-losing disorders and on urea transporters have contributed to better understanding of mechanisms of renal salt and water reabsorption and their regulation. Proteins involved in the regulatory pathways are emerging targets for diuretic and aquaretic therapy. Integrative high-throughput screening, protein structure analysis, and chemical modification have identified promising agents for preclinical testing in animals. These include WNK-SPAK inhibitors, ClC-K channel antagonists, ROMK channel antagonists, and pendrin and urea transporter inhibitors. We discuss the potential advantages and side effects of these potential diuretics.
Collapse
Affiliation(s)
- C-J Cheng
- Department of Medicine, Division of Nephrology, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan
| | - A R Rodan
- Department of Medicine, Division of Nephrology, University of Utah, Salt Lake City, Utah, USA
| | - C-L Huang
- Department of Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
18
|
Improvement of hERG-ROMK index of spirocyclic ROMK inhibitors through scaffold optimization and incorporation of novel pharmacophores. Bioorg Med Chem Lett 2017; 27:2559-2566. [DOI: 10.1016/j.bmcl.2017.03.086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/26/2017] [Accepted: 03/28/2017] [Indexed: 12/15/2022]
|
19
|
Hampton C, Zhou X, Priest BT, Pai LY, Felix JP, Thomas-Fowlkes B, Liu J, Kohler M, Xiao J, Corona A, Price O, Gill C, Shah K, Rasa C, Tong V, Owens K, Ormes J, Tang H, Roy S, Sullivan KA, Metzger JM, Alonso-Galicia M, Kaczorowski GJ, Pasternak A, Garcia ML. The Renal Outer Medullary Potassium Channel Inhibitor, MK-7145, Lowers Blood Pressure, and Manifests Features of Bartters Syndrome Type II Phenotype. ACTA ACUST UNITED AC 2016; 359:194-206. [DOI: 10.1124/jpet.116.235150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/14/2016] [Indexed: 12/13/2022]
|