1
|
Ragshaniya A, Kumar V, Tittal RK, Lal K. Nascent pharmacological advancement in adamantane derivatives. Arch Pharm (Weinheim) 2024; 357:e2300595. [PMID: 38128028 DOI: 10.1002/ardp.202300595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
The adamantane moiety has attracted significant attention since its discovery in 1933 due to its remarkable structural, chemical, and medicinal properties. This molecule has a notable impact in the therapeutic field because of its "add-on" lipophilicity to any pharmacophoric moieties. As in the case of molecular hybridization, in which one pharmacophore is attached to another one(s) with a probability of increasing the biological activity, adding an adamantane unit improves the absorption distribution, metabolism and excretion properties of the resultant hybrid molecule. This review summarizes various reports highlighting the biological activities of adamantane-based synthetic compounds and their structure-activity relationship study. The information presented in this review may open up possible dimensions for adamantane-based drug development and discovery in the pharmaceutical industry after proper structural modifications.
Collapse
Affiliation(s)
- Aman Ragshaniya
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| | - Vijay Kumar
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| | - Ram Kumar Tittal
- Department of Chemistry, National Institute of Technology, Kurukshetra, Haryana, India
| | - Kashmiri Lal
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| |
Collapse
|
2
|
Georgiou K, Konstantinidi A, Hutterer J, Freudenberger K, Kolarov F, Lambrinidis G, Stylianakis I, Stampelou M, Gauglitz G, Kolocouris A. Accurate calculation of affinity changes to the close state of influenza A M2 transmembrane domain in response to subtle structural changes of adamantyl amines using free energy perturbation methods in different lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184258. [PMID: 37995846 DOI: 10.1016/j.bbamem.2023.184258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/18/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Experimental binding free energies of 27 adamantyl amines against the influenza M2(22-46) WT tetramer, in its closed form at pH 8, were measured by ITC in DPC micelles. The measured Kd's range is ~44 while the antiviral potencies (IC50) range is ~750 with a good correlation between binding free energies computed with Kd and IC50 values (r = 0.76). We explored with MD simulations (ff19sb, CHARMM36m) the binding profile of complexes with strong, moderate and weak binders embedded in DMPC, DPPC, POPC or a viral mimetic membrane and using different experimental starting structures of M2. To predict accurately differences in binding free energy in response to subtle changes in the structure of the ligands, we performed 18 alchemical perturbative single topology FEP/MD NPT simulations (OPLS2005) using the BAR estimator (Desmond software) and 20 dual topology calculations TI/MD NVT simulations (ff19sb) using the MBAR estimator (Amber software) for adamantyl amines in complex with M2(22-46) WT in DMPC, DPPC, POPC. We observed that both methods with all lipids show a very good correlation between the experimental and calculated relative binding free energies (r = 0.77-0.87, mue = 0.36-0.92 kcal mol-1) with the highest performance achieved with TI/MBAR and lowest performance with FEP/BAR in DMPC bilayers. When antiviral potencies are used instead of the Kd values for computing the experimental binding free energies we obtained also good performance with both FEP/BAR (r = 0.83, mue = 0.75 kcal mol-1) and TI/MBAR (r = 0.69, mue = 0.77 kcal mol-1).
Collapse
Affiliation(s)
- Kyriakos Georgiou
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens (NKUA), Panepistimiopolis-Zografou, 15771 Athens, Greece
| | - Athina Konstantinidi
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens (NKUA), Panepistimiopolis-Zografou, 15771 Athens, Greece
| | - Johanna Hutterer
- Institut für Physikalische und Theoretische Chemie, Eberhard-Karls-Universität, D-72076 Tübingen, Germany
| | - Kathrin Freudenberger
- Institut für Physikalische und Theoretische Chemie, Eberhard-Karls-Universität, D-72076 Tübingen, Germany
| | - Felix Kolarov
- Institut für Physikalische und Theoretische Chemie, Eberhard-Karls-Universität, D-72076 Tübingen, Germany; Roche, Penzberg, Bavaria, Germany
| | - George Lambrinidis
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens (NKUA), Panepistimiopolis-Zografou, 15771 Athens, Greece
| | - Ioannis Stylianakis
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens (NKUA), Panepistimiopolis-Zografou, 15771 Athens, Greece
| | - Margarita Stampelou
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens (NKUA), Panepistimiopolis-Zografou, 15771 Athens, Greece
| | - Günter Gauglitz
- Institut für Physikalische und Theoretische Chemie, Eberhard-Karls-Universität, D-72076 Tübingen, Germany
| | - Antonios Kolocouris
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens (NKUA), Panepistimiopolis-Zografou, 15771 Athens, Greece.
| |
Collapse
|
3
|
Papadourakis M, Sinenka H, Matricon P, Hénin J, Brannigan G, Pérez-Benito L, Pande V, van Vlijmen H, de Graaf C, Deflorian F, Tresadern G, Cecchini M, Cournia Z. Alchemical Free Energy Calculations on Membrane-Associated Proteins. J Chem Theory Comput 2023; 19:7437-7458. [PMID: 37902715 PMCID: PMC11017255 DOI: 10.1021/acs.jctc.3c00365] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Indexed: 10/31/2023]
Abstract
Membrane proteins have diverse functions within cells and are well-established drug targets. The advances in membrane protein structural biology have revealed drug and lipid binding sites on membrane proteins, while computational methods such as molecular simulations can resolve the thermodynamic basis of these interactions. Particularly, alchemical free energy calculations have shown promise in the calculation of reliable and reproducible binding free energies of protein-ligand and protein-lipid complexes in membrane-associated systems. In this review, we present an overview of representative alchemical free energy studies on G-protein-coupled receptors, ion channels, transporters as well as protein-lipid interactions, with emphasis on best practices and critical aspects of running these simulations. Additionally, we analyze challenges and successes when running alchemical free energy calculations on membrane-associated proteins. Finally, we highlight the value of alchemical free energy calculations calculations in drug discovery and their applicability in the pharmaceutical industry.
Collapse
Affiliation(s)
- Michail Papadourakis
- Biomedical
Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
| | - Hryhory Sinenka
- Institut
de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, F-67083 Strasbourg Cedex, France
| | - Pierre Matricon
- Sosei
Heptares, Steinmetz Building,
Granta Park, Great Abington, Cambridge CB21 6DG, United
Kingdom
| | - Jérôme Hénin
- Laboratoire
de Biochimie Théorique UPR 9080, CNRS and Université Paris Cité, 75005 Paris, France
| | - Grace Brannigan
- Center
for Computational and Integrative Biology, Rutgers University−Camden, Camden, New Jersey 08103, United States of America
- Department
of Physics, Rutgers University−Camden, Camden, New Jersey 08102, United States
of America
| | - Laura Pérez-Benito
- CADD,
In Silico Discovery, Janssen Research &
Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Vineet Pande
- CADD,
In Silico Discovery, Janssen Research &
Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Herman van Vlijmen
- CADD,
In Silico Discovery, Janssen Research &
Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Chris de Graaf
- Sosei
Heptares, Steinmetz Building,
Granta Park, Great Abington, Cambridge CB21 6DG, United
Kingdom
| | - Francesca Deflorian
- Sosei
Heptares, Steinmetz Building,
Granta Park, Great Abington, Cambridge CB21 6DG, United
Kingdom
| | - Gary Tresadern
- CADD,
In Silico Discovery, Janssen Research &
Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Marco Cecchini
- Institut
de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, F-67083 Strasbourg Cedex, France
| | - Zoe Cournia
- Biomedical
Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
| |
Collapse
|
4
|
Stampolaki Μ, Hoffmann A, Tekwani K, Georgiou K, Tzitzoglaki C, Ma C, Becker S, Schmerer P, Döring K, Stylianakis I, Turcu AL, Wang J, Vázquez S, Andreas LB, Schmidtke M, Kolocouris A. A Study of the Activity of Adamantyl Amines against Mutant Influenza A M2 Channels Identified a Polycyclic Cage Amine Triple Blocker, Explored by Molecular Dynamics Simulations and Solid-State NMR. ChemMedChem 2023; 18:e202300182. [PMID: 37377066 DOI: 10.1002/cmdc.202300182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 06/29/2023]
Abstract
We compared the anti-influenza potencies of 57 adamantyl amines and analogs against influenza A virus with serine-31 M2 proton channel, usually termed as WT M2 channel, which is amantadine sensitive. We also tested a subset of these compounds against viruses with the amantadine-resistant L26F, V27A, A30T, G34E M2 mutant channels. Four compounds inhibited WT M2 virus in vitro with mid-nanomolar potency, with 27 compounds showing sub-micromolar to low micromolar potency. Several compounds inhibited L26F M2 virus in vitro with sub-micromolar to low micromolar potency, but only three compounds blocked L26F M2-mediated proton current as determined by electrophysiology (EP). One compound was found to be a triple blocker of WT, L26F, V27A M2 channels by EP assays, but did not inhibit V27A M2 virus in vitro, and one compound inhibited WT, L26F, V27A M2 in vitro without blocking V27A M2 channel. One compound blocked only L26F M2 channel by EP, but did not inhibit virus replication. The triple blocker compound is as long as rimantadine, but could bind and block V27A M2 channel due to its larger girth as revealed by molecular dynamics simulations, while MAS NMR informed on the interaction of the compound with M2(18-60) WT or L26F or V27A.
Collapse
Affiliation(s)
- Μarianna Stampolaki
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771, Athens, Greece
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany
| | - Anja Hoffmann
- Department of Medical Microbiology, Jena University Hospital, CMB Building, R. 443, Hans Knoell Str. 2, 07745, Jena (Germany), Germany
| | - Kumar Tekwani
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Kyriakos Georgiou
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771, Athens, Greece
| | - Christina Tzitzoglaki
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771, Athens, Greece
| | - Chunlong Ma
- Department of Medicinal Chemistry, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA
| | - Stefan Becker
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany
| | - Patrick Schmerer
- Department of Medical Microbiology, Jena University Hospital, CMB Building, R. 443, Hans Knoell Str. 2, 07745, Jena (Germany), Germany
| | - Kristin Döring
- Department of Medical Microbiology, Jena University Hospital, CMB Building, R. 443, Hans Knoell Str. 2, 07745, Jena (Germany), Germany
| | - Ioannis Stylianakis
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771, Athens, Greece
| | - Andreea L Turcu
- Facultat de Farmàcia i Ciències de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, Barcelona, 08028, Spain
| | - Jun Wang
- Department of Medicinal Chemistry, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA
| | - Santiago Vázquez
- Facultat de Farmàcia i Ciències de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, Barcelona, 08028, Spain
| | - Loren B Andreas
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany
| | - Michaela Schmidtke
- Department of Medical Microbiology, Jena University Hospital, CMB Building, R. 443, Hans Knoell Str. 2, 07745, Jena (Germany), Germany
| | - Antonios Kolocouris
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771, Athens, Greece
| |
Collapse
|
5
|
Ma S, Zhang Y, Zhang X, Xie H, Tong Q, Yu K, Yang J. Dynamic Interactions Between Brilliant Green and MscL Investigated by Solid-State NMR Spectroscopy and Molecular Dynamics Simulations. Chemistry 2023; 29:e202202106. [PMID: 36251739 DOI: 10.1002/chem.202202106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 11/22/2022]
Abstract
The mechanosensitive ion channel of large conductance (MscL) is a promising template for the development of new antibiotics due to its high conservation and uniqueness to microbes. Brilliant green (BG), a triarylmethane dye, has been identified as a new antibiotic targeted MscL. However, the detailed binding sites to MscL and the dynamic pathway of BG through the MscL channel remain unknown. Here, the dynamic interactions between BG and MscL were investigated using solid-state NMR spectroscopy and molecule dynamics (MD) simulations. Residue site-specific binding sites of BG to the MscL channel were identified by solid-state NMR. In addition, MD simulations revealed that BG conducts through the MscL channel via residues along the inner surface of the pore sequentially, in which the strong hydrophobic interactions between BG and hydrophobic residues F23 and I27 in the hydrophobic gate region of the MscL channel are major restrictions. Particularly, it was demonstrated that BG activates the MscL channel by reducing the hydrophobicity of the F23 in the gate region by water molecules that are bound to BG. Taken together, these simulations and experimental data provide novel insights into the dynamic interactions between BG and MscL, based on which new hydrophobic antibiotics and adjuvants targeting MscL can be developed.
Collapse
Affiliation(s)
- Shaojie Ma
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China.,Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P.R. China.,Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Yan Zhang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xuning Zhang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China.,Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Huayong Xie
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Qiong Tong
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Kunqian Yu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P.R. China
| | - Jun Yang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China.,Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China.,Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
6
|
Nguyen TH, La VNT, Burke K, Minh DDL. Bayesian regression and model selection for isothermal titration calorimetry with enantiomeric mixtures. PLoS One 2022; 17:e0273656. [PMID: 36173969 PMCID: PMC9521810 DOI: 10.1371/journal.pone.0273656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 08/13/2022] [Indexed: 11/26/2022] Open
Abstract
Bayesian regression is performed to infer parameters of thermodynamic binding models from isothermal titration calorimetry measurements in which the titrant is an enantiomeric mixture. For some measurements the posterior density is multimodal, indicating that additional data with a different protocol are required to uniquely determine the parameters. Models of increasing complexity-two-component binding, racemic mixture, and enantiomeric mixture-are compared using model selection criteria. To precisely estimate one of these criteria, the Bayes factor, a variation of bridge sampling is developed.
Collapse
Affiliation(s)
- Trung Hai Nguyen
- Laboratory of Theoretical and Computational Biophysics, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Van N. T. La
- Department of Biology, Illinois Institute of Technology, Chicago, IL, United States of America
| | - Kyle Burke
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, United States of America
| | - David D. L. Minh
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, United States of America
| |
Collapse
|
7
|
In Vitro Inhibition of Zika Virus Replication with Amantadine and Rimantadine Hydrochlorides. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12030052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus in which human infection became relevant during recent outbreaks in Latin America due to its unrecognized association with fetal neurological disorders. Currently, there are no approved effective antivirals or vaccines for the treatment or prevention of ZIKV infections. Amantadine and rimantadine are approved antivirals used against susceptible influenza A virus infections that have been shown to have antiviral activity against other viruses, such as dengue virus (DENV). Here, we report the in vitro effectiveness of both amantadine and rimantadine hydrochlorides against ZIKV replication, resulting in a dose-dependent reduction in viral titers of a ZIKV clinical isolate and two different ZIKV reference strains. Additionally, we demonstrate similar in vitro antiviral activity of these drugs against DENV-1 and yellow fever virus (YFV), although at higher drug concentrations for the latter. ZIKV replication was inhibited at drug concentrations well below cytotoxic levels of both compounds, as denoted by the high selectivity indexes obtained with the tested strains. Further work is absolutely needed to determine the potential clinical use of these antivirals against ZIKV infections, but our results suggest the existence of a highly conserved mechanism across flavivirus, susceptible to be blocked by modified more specific adamantane compounds.
Collapse
|
8
|
Thomaston JL, Samways ML, Konstantinidi A, Ma C, Hu Y, Bruce Macdonald HE, Wang J, Essex JW, DeGrado WF, Kolocouris A. Rimantadine Binds to and Inhibits the Influenza A M2 Proton Channel without Enantiomeric Specificity. Biochemistry 2021; 60:10.1021/acs.biochem.1c00437. [PMID: 34342217 PMCID: PMC8810914 DOI: 10.1021/acs.biochem.1c00437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The influenza A M2 wild-type (WT) proton channel is the target of the anti-influenza drug rimantadine. Rimantadine has two enantiomers, though most investigations into drug binding and inhibition have used a racemic mixture. Solid-state NMR experiments using the full length-M2 WT have shown significant spectral differences that were interpreted to indicate tighter binding for (R)- vs (S)-rimantadine. However, it was unclear if this correlates with a functional difference in drug binding and inhibition. Using X-ray crystallography, we have determined that both (R)- and (S)-rimantadine bind to the M2 WT pore with slight differences in the hydration of each enantiomer. However, this does not result in a difference in potency or binding kinetics, as shown by similar values for kon, koff, and Kd in electrophysiological assays and for EC50 values in cellular assays. We concluded that the slight differences in hydration for the (R)- and (S)-rimantadine enantiomers are not relevant to drug binding or channel inhibition. To further explore the effect of the hydration of the M2 pore on binding affinity, the water structure was evaluated by grand canonical ensemble molecular dynamics simulations as a function of the chemical potential of the water. Initially, the two layers of ordered water molecules between the bound drug and the channel's gating His37 residues mask the drug's chirality. As the chemical potential becomes more unfavorable, the drug translocates down to the lower water layer, and the interaction becomes more sensitive to chirality. These studies suggest the feasibility of displacing the upper water layer and specifically recognizing the lower water layers in novel drugs.
Collapse
Affiliation(s)
- Jessica L Thomaston
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, University of California, San Francisco, California 94158, United States
| | - Marley L Samways
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Athina Konstantinidi
- Department of Pharmaceutical Chemistry, School of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Chunlong Ma
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Hannah E Bruce Macdonald
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Jonathan W Essex
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - William F DeGrado
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, University of California, San Francisco, California 94158, United States
| | - Antonios Kolocouris
- Department of Pharmaceutical Chemistry, School of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| |
Collapse
|
9
|
McGuire KL, Hill JT, Busath DD. Increased Dissociation of Adamantanamines in Influenza A M2 S31N with Partial Block by Rimantadine. Biophys J 2020; 119:1811-1820. [PMID: 33080223 DOI: 10.1016/j.bpj.2020.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/06/2020] [Accepted: 09/15/2020] [Indexed: 11/15/2022] Open
Abstract
The ubiquitous mutation from serine (WT) to asparagine at residue 31 (S31N) in the influenza A M2 channel renders it insensitive to amantadine (AMT) and rimantadine (RMT) block, but it is unknown whether the inhibition results from weak binding or incomplete block. Two-electrode voltage clamp (TEVC) of transfected Xenopus oocytes revealed that the M2 S31N channel is essentially fully blocked by AMT at 10 mM, demonstrating that, albeit weak, AMT binding in a channel results in complete block of its proton current. In contrast, RMT achieves only a modest degree of block in the M2 S31N channel at 1 mM, with very little increase in block at 10 mM, indicating that the RMT binding site in the channel saturates with only modest block. From exponential curve fits to families of proton current wash-in and wash-out traces, the association rate constant (k1) is somewhat decreased for both AMT and RMT in the S31N, but the dissociation rate constant (k2) is dramatically increased compared with WT. The potentials of mean force (PMF) from adaptive biasing force (ABF) molecular dynamics simulations predict that rate constants should be exquisitely sensitive to the charge state of the His37 selectivity filter of M2. With one exception out of eight cases, predictions from the simulations with one and three charged side chains bracket the experimental rate constants, as expected for the acidic bath used in the TEVC assay. From simulations, the weak binding can be accounted for by changes in the potentials of mean force, but the partial block by RMT remains unexplained.
Collapse
Affiliation(s)
- Kelly L McGuire
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah.
| | - Jonathon T Hill
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - David D Busath
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| |
Collapse
|
10
|
Tzitzoglaki C, McGuire K, Lagarias P, Konstantinidi A, Hoffmann A, Fokina NA, Ma C, Papanastasiou IP, Schreiner PR, Vázquez S, Schmidtke M, Wang J, Busath DD, Kolocouris A. Chemical Probes for Blocking of Influenza A M2 Wild-type and S31N Channels. ACS Chem Biol 2020; 15:2331-2337. [PMID: 32786258 DOI: 10.1021/acschembio.0c00553] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We report on using the synthetic aminoadamantane-CH2-aryl derivatives 1-6 as sensitive probes for blocking M2 S31N and influenza A virus (IAV) M2 wild-type (WT) channels as well as virus replication in cell culture. The binding kinetics measured using electrophysiology (EP) for M2 S31N channel are very dependent on the length between the adamantane moiety and the first ring of the aryl headgroup realized in 2 and 3 and the girth and length of the adamantane adduct realized in 4 and 5. Study of 1-6 shows that, according to molecular dynamics (MD) simulations and molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) calculations, all bind in the M2 S31N channel with the adamantyl group positioned between V27 and G34 and the aryl group projecting out of the channel with the phenyl (or isoxazole in 6) embedded in the V27 cluster. In this outward binding configuration, an elongation of the ligand by only one methylene in rimantadine 2 or using diamantane or triamantane instead of adamantane in 4 and 5, respectively, causes incomplete entry and facilitates exit, abolishing effective block compared to the amantadine derivatives 1 and 6. In the active M2 S31N blockers 1 and 6, the phenyl and isoxazolyl head groups achieve a deeper binding position and high kon/low koff and high kon/high koff rate constants, compared to inactive 2-5, which have much lower kon and higher koff. Compounds 1-5 block the M2 WT channel by binding in the longer area from V27-H37, in the inward orientation, with high kon and low koff rate constants. Infection of cell cultures by influenza virus containing M2 WT or M2 S31N is inhibited by 1-5 or 1-4 and 6, respectively. While 1 and 6 block infection through the M2 block mechanism in the S31N variant, 2-4 may block M2 S31N virus replication in cell culture through the lysosomotropic effect, just as chloroquine is thought to inhibit SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Christina Tzitzoglaki
- Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis-Zografou, Athens 15771, Greece
| | - Kelly McGuire
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah 84602, United States
| | - Panagiotis Lagarias
- Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis-Zografou, Athens 15771, Greece
| | - Athina Konstantinidi
- Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis-Zografou, Athens 15771, Greece
| | - Anja Hoffmann
- Jena University Hospital, Department of Medical Microbiology, Section Experimental Virology, Hans Knoell Str. 2, D-07745 Jena, Germany
| | - Natalie A. Fokina
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Chulong Ma
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Ioannis P. Papanastasiou
- Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis-Zografou, Athens 15771, Greece
| | - Peter R. Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Santiago Vázquez
- Laboratori de Quı́mica Farmacèutica (Unitat Associada al CSIC), Departament de Farmacologia, Toxicologia i Quı́mica Terapèutica, Facultat de Farmàcia i Ciències de l’Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, Barcelona 08028, Spain
| | - Michaela Schmidtke
- Jena University Hospital, Department of Medical Microbiology, Section Experimental Virology, Hans Knoell Str. 2, D-07745 Jena, Germany
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - David D. Busath
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah 84602, United States
| | - Antonios Kolocouris
- Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis-Zografou, Athens 15771, Greece
| |
Collapse
|
11
|
Jalily PH, Duncan MC, Fedida D, Wang J, Tietjen I. Put a cork in it: Plugging the M2 viral ion channel to sink influenza. Antiviral Res 2020; 178:104780. [PMID: 32229237 PMCID: PMC7102647 DOI: 10.1016/j.antiviral.2020.104780] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/12/2020] [Accepted: 03/20/2020] [Indexed: 12/17/2022]
Abstract
The ongoing threat of seasonal and pandemic influenza to human health requires antivirals that can effectively supplement existing vaccination strategies. The M2 protein of influenza A virus (IAV) is a proton-gated, proton-selective ion channel that is required for virus replication and is an established antiviral target. While licensed adamantane-based M2 antivirals have been historically used, M2 mutations that confer major adamantane resistance are now so prevalent in circulating virus strains that these drugs are no longer recommended. Here we review the current understanding of IAV M2 structure and function, mechanisms of inhibition, the rise of drug resistance mutations, and ongoing efforts to develop new antivirals that target resistant forms of M2.
Collapse
Affiliation(s)
- Pouria H Jalily
- Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Maggie C Duncan
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - David Fedida
- Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tuscon, AZ, USA
| | - Ian Tietjen
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada; The Wistar Institute, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Keshavarz M, Solaymani-Mohammadi F, Namdari H, Arjeini Y, Mousavi MJ, Rezaei F. Metabolic host response and therapeutic approaches to influenza infection. Cell Mol Biol Lett 2020; 25:15. [PMID: 32161622 PMCID: PMC7059726 DOI: 10.1186/s11658-020-00211-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/26/2020] [Indexed: 12/17/2022] Open
Abstract
Based on available metabolomic studies, influenza infection affects a variety of cellular metabolic pathways to ensure an optimal environment for its replication and production of viral particles. Following infection, glucose uptake and aerobic glycolysis increase in infected cells continually, which results in higher glucose consumption. The pentose phosphate shunt, as another glucose-consuming pathway, is enhanced by influenza infection to help produce more nucleotides, especially ATP. Regarding lipid species, following infection, levels of triglycerides, phospholipids, and several lipid derivatives undergo perturbations, some of which are associated with inflammatory responses. Also, mitochondrial fatty acid β-oxidation decreases significantly simultaneously with an increase in biosynthesis of fatty acids and membrane lipids. Moreover, essential amino acids are demonstrated to decline in infected tissues due to the production of large amounts of viral and cellular proteins. Immune responses against influenza infection, on the other hand, could significantly affect metabolic pathways. Mainly, interferon (IFN) production following viral infection affects cell function via alteration in amino acid synthesis, membrane composition, and lipid metabolism. Understanding metabolic alterations required for influenza virus replication has revealed novel therapeutic methods based on targeted inhibition of these cellular metabolic pathways.
Collapse
Affiliation(s)
- Mohsen Keshavarz
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | - Haideh Namdari
- Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Yaser Arjeini
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Mousavi
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology and Allergy, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Farhad Rezaei
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- National Influenza Center, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Guo QY, Zhang LH, Zuo C, Huang DL, Wang ZA, Zheng JS, Tian CL. Channel activity of mirror-image M2 proton channel of influenza A virus is blocked by achiral or chiral inhibitors. Protein Cell 2020; 10:211-216. [PMID: 29679235 PMCID: PMC6338619 DOI: 10.1007/s13238-018-0536-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Qing-Yan Guo
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Long-Hua Zhang
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Chao Zuo
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Dong-Liang Huang
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Zhipeng A Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Ji-Shen Zheng
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.
| | - Chang-Lin Tian
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
14
|
Moreno N, Recio R, Valdivia V, Khiar N, Fernández I. N-Isopropylsulfinylimines vs. N-tert-butylsulfinylimines in the stereoselective synthesis of sterically hindered amines: an improved synthesis of enantiopure (R)- and (S)-rimantadine and the trifluoromethylated analogues. Org Biomol Chem 2019; 17:9854-9858. [PMID: 31720674 DOI: 10.1039/c9ob02241d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An improved fully stereoselective synthesis of both enantiomers of rimantadine and its trifluoromethylated analogues has been developed, using N-isopropylsulfinylimines as a starting chiral material, proving the superiority of the isopropyl group as a chiral inducer over the tert-butyl group in the case of hindered N-sulfinylimines.
Collapse
Affiliation(s)
- Nazaret Moreno
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García González, 2, 41012, Sevilla, Spain.
| | | | | | | | | |
Collapse
|
15
|
Thomaston JL, Polizzi NF, Konstantinidi A, Wang J, Kolocouris A, DeGrado WF. Inhibitors of the M2 Proton Channel Engage and Disrupt Transmembrane Networks of Hydrogen-Bonded Waters. J Am Chem Soc 2018; 140:15219-15226. [PMID: 30165017 DOI: 10.1021/jacs.8b06741] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Water-mediated interactions play key roles in drug binding. In protein sites with sparse polar functionality, a small-molecule approach is often viewed as insufficient to achieve high affinity and specificity. Here we show that small molecules can enable potent inhibition by targeting key waters. The M2 proton channel of influenza A is the target of the antiviral drugs amantadine and rimantadine. Structural studies of drug binding to the channel using X-ray crystallography have been limited because of the challenging nature of the target, with the one previously solved crystal structure limited to 3.5 Å resolution. Here we describe crystal structures of amantadine bound to M2 in the Inwardclosed conformation (2.00 Å), rimantadine bound to M2 in both the Inwardclosed (2.00 Å) and Inwardopen (2.25 Å) conformations, and a spiro-adamantyl amine inhibitor bound to M2 in the Inwardclosed conformation (2.63 Å). These X-ray crystal structures of the M2 proton channel with bound inhibitors reveal that ammonium groups bind to water-lined sites that are hypothesized to stabilize transient hydronium ions formed in the proton-conduction mechanism. Furthermore, the ammonium and adamantyl groups of the adamantyl-amine class of drugs are free to rotate in the channel, minimizing the entropic cost of binding. These drug-bound complexes provide the first high-resolution structures of drugs that interact with and disrupt networks of hydrogen-bonded waters that are widely utilized throughout nature to facilitate proton diffusion within proteins.
Collapse
Affiliation(s)
- Jessica L Thomaston
- Department of Pharmaceutical Chemistry , University of California , San Francisco , California 94158 , United States
| | - Nicholas F Polizzi
- Department of Pharmaceutical Chemistry , University of California , San Francisco , California 94158 , United States
| | - Athina Konstantinidi
- Department of Pharmaceutical Chemistry , National and Kapodistrian University of Athens , 15771 Athens , Greece
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy , University of Arizona , Tucson , Arizona 85721 , United States
| | - Antonios Kolocouris
- Department of Pharmaceutical Chemistry , National and Kapodistrian University of Athens , 15771 Athens , Greece
| | - William F DeGrado
- Department of Pharmaceutical Chemistry , University of California , San Francisco , California 94158 , United States
| |
Collapse
|
16
|
Drakopoulos A, Tzitzoglaki C, McGuire K, Hoffmann A, Konstantinidi A, Kolokouris D, Ma C, Freudenberger K, Hutterer J, Gauglitz G, Wang J, Schmidtke M, Busath DD, Kolocouris A. Unraveling the Binding, Proton Blockage, and Inhibition of Influenza M2 WT and S31N by Rimantadine Variants. ACS Med Chem Lett 2018. [PMID: 29541360 DOI: 10.1021/acsmedchemlett.7b00458] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Recently, the binding kinetics of a ligand-target interaction, such as the residence time of a small molecule on its protein target, are seen as increasingly important for drug efficacy. Here, we investigate these concepts to explain binding and proton blockage of rimantadine variants bearing progressively larger alkyl groups to influenza A virus M2 wild type (WT) and M2 S31N protein proton channel. We showed that resistance of M2 S31N to rimantadine analogues compared to M2 WT resulted from their higher koff rates compared to the kon rates according to electrophysiology (EP) measurements. This is due to the fact that, in M2 S31N, the loss of the V27 pocket for the adamantyl cage resulted in low residence time inside the M2 pore. Both rimantadine enantiomers have similar channel blockage and binding kon and koff against M2 WT. To compare the potency between the rimantadine variants against M2, we applied approaches using different mimicry of M2, i.e., isothermal titration calorimetry and molecular dynamics simulation, EP, and antiviral assays. It was also shown that a small change in an amino acid at site 28 of M2 WT, which does not line the pore, seriously affects M2 WT blockage kinetics.
Collapse
Affiliation(s)
- Antonios Drakopoulos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou 15771, Greece
| | - Christina Tzitzoglaki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou 15771, Greece
| | - Kelly McGuire
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah 84602, United States
| | - Anja Hoffmann
- Department of Medicinal Microbiology, Section Experimental Virology, Jena University Hospital, Hans Knoell Str. 2, D-07745 Jena, Germany
| | - Athina Konstantinidi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou 15771, Greece
| | - Dimitrios Kolokouris
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou 15771, Greece
| | - Chunlong Ma
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Kathrin Freudenberger
- Institut für Physikalische und Theoretische Chemie, Eberhard-Karls-Universität Tübingen, 72074 Tübingen, Germany
| | - Johanna Hutterer
- Institut für Physikalische und Theoretische Chemie, Eberhard-Karls-Universität Tübingen, 72074 Tübingen, Germany
| | - Günter Gauglitz
- Institut für Physikalische und Theoretische Chemie, Eberhard-Karls-Universität Tübingen, 72074 Tübingen, Germany
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Michaela Schmidtke
- Department of Medicinal Microbiology, Section Experimental Virology, Jena University Hospital, Hans Knoell Str. 2, D-07745 Jena, Germany
| | - David D. Busath
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah 84602, United States
| | - Antonios Kolocouris
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou 15771, Greece
| |
Collapse
|