1
|
Tu Y, Tan L, Tao H, Li Y, Liu H. CETSA and thermal proteome profiling strategies for target identification and drug discovery of natural products. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154862. [PMID: 37216761 DOI: 10.1016/j.phymed.2023.154862] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Monitoring target engagement at various stages of drug development is essential for natural product (NP)-based drug discovery and development. The cellular thermal shift assay (CETSA) developed in 2013 is a novel, broadly applicable, label-free biophysical assay based on the principle of ligand-induced thermal stabilization of target proteins, which enables direct assessment of drug-target engagement in physiologically relevant contexts, including intact cells, cell lysates and tissues. This review aims to provide an overview of the work principles of CETSA and its derivative strategies and their recent progress in protein target validation, target identification and drug lead discovery of NPs. METHODS A literature-based survey was conducted using the Web of Science and PubMed databases. The required information was reviewed and discussed to highlight the important role of CETSA-derived strategies in NP studies. RESULTS After nearly ten years of upgrading and evolution, CETSA has been mainly developed into three formats: classic Western blotting (WB)-CETSA for target validation, thermal proteome profiling (TPP, also known as MS-CETSA) for unbiased proteome-wide target identification, and high-throughput (HT)-CETSA for drug hit discovery and lead optimization. Importantly, the application possibilities of a variety of TPP approaches for the target discovery of bioactive NPs are highlighted and discussed, including TPP-temperature range (TPP-TR), TPP-compound concentration range (TPP-CCR), two-dimensional TPP (2D-TPP), cell surface-TPP (CS-TPP), simplified TPP (STPP), thermal stability shift-based fluorescence difference in 2D gel electrophoresis (TS-FITGE) and precipitate supported TPP (PSTPP). In addition, the key advantages, limitations and future outlook of CETSA strategies for NP studies are discussed. CONCLUSION The accumulation of CETSA-based data can significantly accelerate the elucidation of the mechanism of action and drug lead discovery of NPs, and provide strong evidence for NP treatment against certain diseases. The CETSA strategy will certainly bring a great return far beyond the initial investment and open up more possibilities for future NP-based drug research and development.
Collapse
Affiliation(s)
- Yanbei Tu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lihua Tan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Hongxun Tao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yanfang Li
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Hanqing Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
2
|
Caballero I, Lundgren S. A Shift in Thinking: Cellular Thermal Shift Assay-Enabled Drug Discovery. ACS Med Chem Lett 2023; 14:369-375. [PMID: 37077396 PMCID: PMC10108388 DOI: 10.1021/acsmedchemlett.2c00545] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
A decade has passed since the cellular thermal shift assay (CETSA) was introduced to the drug discovery community. Over the years, the method has guided numerous projects by providing insights about, for example, target engagement, lead generation, target identification, lead optimization, and preclinical profiling. With this Microperspective, we intend to highlight recently published applications of CETSA and how the data generated can enable efficient decision-making and prioritization throughout the drug discovery and development value chain.
Collapse
|
3
|
Gu J, Peng RK, Guo CL, Zhang M, Yang J, Yan X, Zhou Q, Li H, Wang N, Zhu J, Ouyang Q. Construction of a synthetic methodology-based library and its application in identifying a GIT/PIX protein-protein interaction inhibitor. Nat Commun 2022; 13:7176. [PMID: 36418900 PMCID: PMC9684509 DOI: 10.1038/s41467-022-34598-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 10/24/2022] [Indexed: 11/24/2022] Open
Abstract
In recent years, the flourishing of synthetic methodology studies has provided concise access to numerous molecules with new chemical space. These compounds form a large library with unique scaffolds, but their application in hit discovery is not systematically evaluated. In this work, we establish a synthetic methodology-based compound library (SMBL), integrated with compounds obtained from our synthetic researches, as well as their virtual derivatives in significantly larger scale. We screen the library and identify small-molecule inhibitors to interrupt the protein-protein interaction (PPI) of GIT1/β-Pix complex, an unrevealed target involved in gastric cancer metastasis. The inhibitor 14-5-18 with a spiro[bicyclo[2.2.1]heptane-2,3'-indolin]-2'-one scaffold, considerably retards gastric cancer metastasis in vitro and in vivo. Since the PPI targets are considered undruggable as they are hard to target, the successful application illustrates the structural specificity of SMBL, demonstrating its potential to be utilized as compound source for more challenging targets.
Collapse
Affiliation(s)
- Jing Gu
- grid.410570.70000 0004 1760 6682Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, 400038 Chongqing, China
| | - Rui-Kun Peng
- grid.410570.70000 0004 1760 6682Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, 400038 Chongqing, China
| | - Chun-Ling Guo
- grid.410570.70000 0004 1760 6682Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, 400038 Chongqing, China
| | - Meng Zhang
- grid.16821.3c0000 0004 0368 8293Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Yang
- grid.410570.70000 0004 1760 6682Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, 400038 Chongqing, China
| | - Xiao Yan
- grid.410570.70000 0004 1760 6682Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, 400038 Chongqing, China
| | - Qian Zhou
- grid.410570.70000 0004 1760 6682Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, 400038 Chongqing, China
| | - Hongwei Li
- grid.410570.70000 0004 1760 6682Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, 400038 Chongqing, China
| | - Na Wang
- grid.410570.70000 0004 1760 6682Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, 400038 Chongqing, China
| | - Jinwei Zhu
- grid.16821.3c0000 0004 0368 8293Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Qin Ouyang
- grid.410570.70000 0004 1760 6682Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, 400038 Chongqing, China
| |
Collapse
|
4
|
A Novel Strategy for Regulating mRNA's Degradation via Interfering the AUF1's Binding to mRNA. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103182. [PMID: 35630659 PMCID: PMC9143527 DOI: 10.3390/molecules27103182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022]
Abstract
The study on the mechanism and kinetics of mRNA degradation provides a new vision for chemical intervention on protein expression. The AU enrichment element (ARE) in mRNA 3′-UTR can be recognized and bound by the ARE binding protein (AU-rich Element factor (AUF1) to recruit RNase for degradation. In the present study, we proposed a novel strategy for expression regulation that interferes with the AUF1-RNA binding. A small-molecule compound, JNJ-7706621, was found to bind AUF1 protein and inhibit mRNA degradation by screening the commercial compound library. We discovered that JNJ-7706621 could inhibit the expression of AUF1 targeted gene IL8, an essential pro-inflammatory factor, by interfering with the mRNA homeostatic state. These studies provide innovative drug design strategies to regulate mRNA homeostasis.
Collapse
|
5
|
Ma C, Liu M, Zhang J, Cai H, Wu Y, Zhang Y, Ji Y, Shan H, Zou Z, Yang L, Liu L, Xu H, Lei H, Liu C, Zhou L, Cao Y, Zhou H, Wu Y. ZCL-082, a boron-containing compound, induces apoptosis of non-Hodgkin's lymphoma via targeting p90 ribosomal S6 kinase 1/NF-κB signaling pathway. Chem Biol Interact 2022; 351:109770. [PMID: 34861246 DOI: 10.1016/j.cbi.2021.109770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 10/07/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Despite the rapid progress in the diagnosis and treatment, the prognosis of some types of non-Hodgkin's lymphoma (NHL), especially those with double-hit or double-expressor genotypes, remains poor. Novel targets and compounds are needed to improve the prognosis of NHL. METHODS We investigated the effect of ZCL-082, a novel boron-containing compound with anti-proliferating activity against ovarian cancer cells, on NHL cells and human peripheral blood mononuclear cells by CCK-8 assay, Annexin V/PI double staining assay, RH123/PI double staining, Western blot, and immunohistochemistry. NF-κB pathway activity was analyzed using luciferase reporter gene assay and RT-PCR. The location of p65 was detected by immunofluorescence and nuclear/cytoplasmic fractionation assay. Immunoprecipitation and chromatin immunoprecipitation assays were used to detect the binding between p65 and p300. CETSA and molecular docking assay were carried out to test the interaction between ZCL-082 and p90 ribosomal S6 kinase 1 (RSK1). Kinase reaction was conducted to examine the inhibition of RSK1 kinase activity by ZCL-082. RESULTS We found that ZCL-082 can induce the apoptosis of various NHL cell lines in vitro and in vivo. ZCL-082 significantly inhibits TNFα- or LPS-induced NF-κB activation without disturbing TNFα-induced IκBα degradation or the nuclear translocation and DNA-binding ability of p65. However, ZCL-082 markedly suppresses the phosphorylation of p65 on Ser536 and the interaction between p65 and p300. The overexpression of the phosphomimetic mutant of p65 at Ser536 partially abrogates ZCL-082-induced cell death. We further found that ZCL-082 directly binds to and inhibits the activity of RSK1. RSK1 can phosphorylate RelA/p65 on Ser536 and its overexpression is associated with the poor prognosis of lymphoma. The overexpression of RSK1 partially rescues ZCL-082-induced cell death. Molecular docking studies show that ZCL-082 fits well with the N-terminal kinase domain of RSK1. Furthermore, the combination of ZCL-082 and BCL-2 inhibitor ABT-199 has a synergistic apoptosis-inducing effect against double-hit lymphoma cell line OCI-Ly10. DISCUSSION We found that ZCL-082 is a highly promising anti-lymphoma compound that targets RSK1 and interferes with the RSK1/NF-κB signaling pathway. The combination of ZCL-082 with BCL-2 inhibitor may represent a novel strategy to improve the outcome of double-hit or double-expressor lymphoma.
Collapse
Affiliation(s)
- Chunmin Ma
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Department of Rehabilitation, Shanghai General Hospital, Shanghai Jiao Tong University, No. 100, Haining Road, Shanghai, 200080, China
| | - Meng Liu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiong Zhang
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Haiyan Cai
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yunzhao Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ying Zhang
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yanjie Ji
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Huizhuang Shan
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhihui Zou
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Li Yang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ligen Liu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hanzhang Xu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hu Lei
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chuanxu Liu
- Department of Hematology, Xin-Hua Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin Er Road, Shanghai, China
| | - Li Zhou
- Department of Hematology, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin Er Road, Shanghai, China
| | - Yang Cao
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, 213003, PR China
| | - Huchen Zhou
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, 200240, Shanghai, China.
| | - Yingli Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
6
|
Deprez B, Bosc D, Charton J, Couturier C, Deprez-Poulain R, Flipo M, Leroux F, Villemagne B, Willand N. Molecular Design in Practice: A Review of Selected Projects in a French Research Institute That Illustrates the Link between Chemical Biology and Medicinal Chemistry. Molecules 2021; 26:6083. [PMID: 34641626 PMCID: PMC8512331 DOI: 10.3390/molecules26196083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/19/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022] Open
Abstract
Chemical biology and drug discovery are two scientific activities that pursue different goals but complement each other. The former is an interventional science that aims at understanding living systems through the modulation of its molecular components with compounds designed for this purpose. The latter is the art of designing drug candidates, i.e., molecules that act on selected molecular components of human beings and display, as a candidate treatment, the best reachable risk benefit ratio. In chemical biology, the compound is the means to understand biology, whereas in drug discovery, the compound is the goal. The toolbox they share includes biological and chemical analytic technologies, cell and whole-body imaging, and exploring the chemical space through state-of-the-art design and synthesis tools. In this article, we examine several tools shared by drug discovery and chemical biology through selected examples taken from research projects conducted in our institute in the last decade. These examples illustrate the design of chemical probes and tools to identify and validate new targets, to quantify target engagement in vitro and in vivo, to discover hits and to optimize pharmacokinetic properties with the control of compound concentration both spatially and temporally in the various biophases of a biological system.
Collapse
Affiliation(s)
- Benoit Deprez
- Univ. Lille, Inserm, Institut Pasteur Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France; (D.B.); (J.C.); (C.C.); (R.D.-P.); (M.F.); (F.L.); (B.V.)
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41-UMS 2014-PLBS, F-59000 Lille, France
| | - Damien Bosc
- Univ. Lille, Inserm, Institut Pasteur Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France; (D.B.); (J.C.); (C.C.); (R.D.-P.); (M.F.); (F.L.); (B.V.)
| | - Julie Charton
- Univ. Lille, Inserm, Institut Pasteur Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France; (D.B.); (J.C.); (C.C.); (R.D.-P.); (M.F.); (F.L.); (B.V.)
| | - Cyril Couturier
- Univ. Lille, Inserm, Institut Pasteur Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France; (D.B.); (J.C.); (C.C.); (R.D.-P.); (M.F.); (F.L.); (B.V.)
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41-UMS 2014-PLBS, F-59000 Lille, France
| | - Rebecca Deprez-Poulain
- Univ. Lille, Inserm, Institut Pasteur Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France; (D.B.); (J.C.); (C.C.); (R.D.-P.); (M.F.); (F.L.); (B.V.)
| | - Marion Flipo
- Univ. Lille, Inserm, Institut Pasteur Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France; (D.B.); (J.C.); (C.C.); (R.D.-P.); (M.F.); (F.L.); (B.V.)
| | - Florence Leroux
- Univ. Lille, Inserm, Institut Pasteur Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France; (D.B.); (J.C.); (C.C.); (R.D.-P.); (M.F.); (F.L.); (B.V.)
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41-UMS 2014-PLBS, F-59000 Lille, France
| | - Baptiste Villemagne
- Univ. Lille, Inserm, Institut Pasteur Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France; (D.B.); (J.C.); (C.C.); (R.D.-P.); (M.F.); (F.L.); (B.V.)
| | - Nicolas Willand
- Univ. Lille, Inserm, Institut Pasteur Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France; (D.B.); (J.C.); (C.C.); (R.D.-P.); (M.F.); (F.L.); (B.V.)
| |
Collapse
|
7
|
Li X, Gera L, Zhang S, Chen Y, Lou L, Wilson LM, Xie ZR, Sautto G, Liu D, Danaher A, Mamouni K, Yang Y, Du Y, Fu H, Kucuk O, Osunkoya AO, Zhou J, Wu D. Pharmacological inhibition of noncanonical EED-EZH2 signaling overcomes chemoresistance in prostate cancer. Theranostics 2021; 11:6873-6890. [PMID: 34093859 PMCID: PMC8171087 DOI: 10.7150/thno.49235] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 04/22/2021] [Indexed: 12/25/2022] Open
Abstract
Rationale: Chemoresistance is a major obstacle in prostate cancer (PCa) treatment. We sought to understand the underlying mechanism of PCa chemoresistance and discover new treatments to overcome docetaxel resistance. Methods: We developed a novel phenotypic screening platform for the discovery of specific inhibitors of chemoresistant PCa cells. The mechanism of action of the lead compound was investigated using computational, molecular and cellular approaches. The in vivo toxicity and efficacy of the lead compound were evaluated in clinically-relevant animal models. Results: We identified LG1980 as a lead compound that demonstrates high selectivity and potency against chemoresistant PCa cells. Mechanistically, LG1980 binds embryonic ectoderm development (EED), disrupts the interaction between EED and enhancer of zeste homolog 2 (EZH2), thereby inducing the protein degradation of EZH2 and inhibiting the phosphorylation and activity of EZH2. Consequently, LG1980 targets a survival signaling cascade consisting of signal transducer and activator of transcription 3 (Stat3), S-phase kinase-associated protein 2 (SKP2), ATP binding cassette B 1 (ABCB1) and survivin. As a lead compound, LG1980 is well tolerated in mice and effectively suppresses the in vivo growth of chemoresistant PCa and synergistically enhances the efficacy of docetaxel in xenograft models. Conclusions: These results indicate that pharmacological inhibition of EED-EZH2 interaction is a novel strategy for the treatment of chemoresistant PCa. LG1980 and its analogues have the potential to be integrated into standard of care to improve clinical outcomes in PCa patients.
Collapse
Affiliation(s)
- Xin Li
- Center for Cancer Research and Therapeutic Development and Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, USA
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Lajos Gera
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, School of Medicine, Aurora, CO, USA
| | - Shumin Zhang
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Yanhua Chen
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Lou
- School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Lauren Marie Wilson
- School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Zhong-Ru Xie
- School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Giuseppe Sautto
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | | | - Alira Danaher
- Center for Cancer Research and Therapeutic Development and Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, USA
| | - Kenza Mamouni
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Yang Yang
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology, and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Haian Fu
- Department of Pharmacology and Chemical Biology, and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Omer Kucuk
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Adeboye O. Osunkoya
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- Departments of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Daqing Wu
- Center for Cancer Research and Therapeutic Development and Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, USA
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- MetCure Therapeutics LLC, Atlanta, GA, USA
| |
Collapse
|
8
|
Herledan A, Andres M, Lejeune-Dodge A, Leroux F, Biela A, Piveteau C, Warenghem S, Couturier C, Deprez B, Deprez-Poulain R. Drug Target Engagement Using Coupled Cellular Thermal Shift Assay-Acoustic Reverse-Phase Protein Array. SLAS DISCOVERY 2019; 25:207-214. [PMID: 31885312 DOI: 10.1177/2472555219897256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the last 5 years, cellular thermal shift assay (CETSA), a technology based on ligand-induced changes in protein thermal stability, has been increasingly used in drug discovery to address the fundamental question of whether drug candidates engage their intended target in a biologically relevant setting. To analyze lysates from cells submitted to increasing temperature, the detection and quantification of the remaining soluble protein can be achieved using quantitative mass spectrometry, Western blotting, or AlphaScreen techniques. Still, these approaches can be time- and cell-consuming. To cope with limitations of throughput and protein amount requirements, we developed a new coupled assay combining the advantages of a nanoacoustic transfer system and reverse-phase protein array technology within CETSA experiments. We validated the technology to assess engagement of inhibitors of insulin-degrading enzyme (IDE), an enzyme involved in diabetes and Alzheimer's disease. CETSA-acoustic reverse-phase protein array (CETSA-aRPPA) allows simultaneous analysis of many conditions and drug-target engagement with a small sample size, in a rapid, cost-effective, and biological material-saving manner.
Collapse
Affiliation(s)
- Adrien Herledan
- University of Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, Lille, France
| | - Marine Andres
- University of Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, Lille, France.,European Genomic Institute for Diabetes, EGID, University of Lille, Lille, France
| | | | - Florence Leroux
- University of Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, Lille, France.,European Genomic Institute for Diabetes, EGID, University of Lille, Lille, France
| | - Alexandre Biela
- University of Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, Lille, France
| | - Catherine Piveteau
- University of Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, Lille, France
| | - Sandrine Warenghem
- University of Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, Lille, France
| | - Cyril Couturier
- University of Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, Lille, France
| | - Benoit Deprez
- University of Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, Lille, France.,European Genomic Institute for Diabetes, EGID, University of Lille, Lille, France
| | - Rebecca Deprez-Poulain
- University of Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, Lille, France.,European Genomic Institute for Diabetes, EGID, University of Lille, Lille, France.,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
9
|
Zhao PF, Liu A, Wei MG, Liu ZQ. Construction of 3D Antioxidants with Nucleosides as the Core: Inhibition of DNA Oxidation. J Org Chem 2019; 84:15854-15864. [PMID: 31804824 DOI: 10.1021/acs.joc.9b02104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Peng-Fei Zhao
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130021, People’s Republic of China
| | - An Liu
- The Second Affiliated Hospital of the Air Force Medical University, Xi’an 710032, People’s Republic of China
| | - Ming-Guang Wei
- The Second Affiliated Hospital of the Air Force Medical University, Xi’an 710032, People’s Republic of China
| | - Zai-Qun Liu
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130021, People’s Republic of China
| |
Collapse
|