1
|
Skwarecki AS, Stefaniak-Skorupa J, Nowak MG. Trimethyl Lock Based Tools for Drug Delivery and Cell Imaging - Synthesis and Properties. Chemistry 2025; 31:e202403486. [PMID: 39494549 DOI: 10.1002/chem.202403486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/05/2024]
Abstract
Trimethyl lock (TML) systems have become increasingly important in medicinal and bioorganic chemistry, particularly for their roles in the targeted delivery of therapeutic agents and as integral components in fluorogenic probes for cellular imaging. The simplicity and efficiency of their synthesis have established TML systems as versatile platforms for the controlled release of active molecules under particular physiological conditions. This review consolidates recent advancements in the application of TML systems, with a focus on their use in drug delivery, cellular imaging, and other areas where precise molecular release is crucial. Additionally, we discuss the synthetic strategies employed to construct TML-based conjugates, underscoring their potential to enhance the specificity and efficacy of bioactive compounds in various biomedical applications.
Collapse
Affiliation(s)
- Andrzej S Skwarecki
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Center, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdańsk, Poland
| | - Joanna Stefaniak-Skorupa
- Department of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdańsk, Poland
| | - Michał G Nowak
- Laboratory of Polymer Chemistry, Faculty of Science, Universite Libre de Bruxelles, CP 206/1, Boulevard du Triophe, 1050, Brussels, Belgium
| |
Collapse
|
2
|
Nie W, Wang Y, Tian X, Liu J, Jin Z, Xu J, He M, Shen Q, Guo H, Luan T. Cucurbitacin B and Its Derivatives: A Review of Progress in Biological Activities. Molecules 2024; 29:4193. [PMID: 39275042 PMCID: PMC11397067 DOI: 10.3390/molecules29174193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
The emergence of natural products has provided extremely valuable references for the treatment of various diseases. Cucurbitacin B, a tetracyclic triterpenoid compound isolated from cucurbitaceae and other plants, is the most abundant member of the cucurbitin family and exhibits a wide range of biological activities, including anti-inflammatory, anti-cancer, and even agricultural applications. Due to its high toxicity and narrow therapeutic window, structural modification and dosage form development are necessary to address these issues with cucurbitacin B. This paper reviews recent research progress in the pharmacological action, structural modification, and application of cucurbitacin B. This review aims to enhance understanding of advancements in this field and provide constructive suggestions for further research on cucurbitacin B.
Collapse
Affiliation(s)
- Wenzhe Nie
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Yalan Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Xinlu Tian
- Department of Pharmacy, Shenyang Medical College, Shenyang 110034, China
| | - Jinying Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Zhanhui Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Junjie Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Miaohai He
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Qingkun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Hongyan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Tian Luan
- Department of Pharmacy, Shenyang Medical College, Shenyang 110034, China
| |
Collapse
|
3
|
Grădinaru TC, Vlad A, Gilca M. Bitter Phytochemicals as Novel Candidates for Skin Disease Treatment. Curr Issues Mol Biol 2023; 46:299-326. [PMID: 38248322 PMCID: PMC10814078 DOI: 10.3390/cimb46010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Skin diseases represent a global healthcare challenge due to their rising incidence and substantial socio-economic burden. While biological, immunological, and targeted therapies have brought a revolution in improving quality of life and survival rates for certain dermatological conditions, there remains a stringent demand for new remedies. Nature has long served as an inspiration for drug development. Recent studies have identified bitter taste receptors (TAS2Rs) in both skin cell lines and human skin. Additionally, bitter natural compounds have shown promising benefits in addressing skin aging, wound healing, inflammatory skin conditions, and even skin cancer. Thus, TAS2Rs may represent a promising target in all these processes. In this review, we summarize evidence supporting the presence of TAS2Rs in the skin and emphasize their potential as drug targets for addressing skin aging, wound healing, inflammatory skin conditions, and skin carcinogenesis. To our knowledge, this is a pioneering work in connecting information on TAS2Rs expression in skin and skin cells with the impact of bitter phytochemicals on various beneficial effects related to skin disorders.
Collapse
Affiliation(s)
- Teodora-Cristiana Grădinaru
- Department of Functional Sciences I/Biochemistry, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (T.-C.G.); (M.G.)
| | - Adelina Vlad
- Department of Functional Sciences I/Physiology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Marilena Gilca
- Department of Functional Sciences I/Biochemistry, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (T.-C.G.); (M.G.)
| |
Collapse
|
4
|
Chen M, Zhang M, Lu X, Li Y, Lu C. Diselenium-linked dimeric prodrug nanomedicine breaking the intracellular redox balance for triple-negative breast cancer targeted therapy. Eur J Pharm Biopharm 2023; 193:16-27. [PMID: 37865134 DOI: 10.1016/j.ejpb.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Triple-negative breast cancer (TNBC) has been regarded as the strongest malignancy in cases of breast cancer with a poor prognosis. The development of effective treatment strategies for TNBC has always been an urgent and unmet need. The intracellular redox balance is essential for maintaining TNBC cell malignancy. Disrupting intracellular redox balance by enlarging reactive oxygen species (ROS) generation and facilitating glutathione (GSH) depletion to amplify intracellular oxidative stress may be an alternative strategy to eliminate TNBC cells. However, inducing ROS generation and GSH depletion concurrently may be challenging. Herein, a diselenium linked-dimeric prodrug nanomedicine FA-SeSe-NPs was developed to break the intracellular redox homeostasis for TNBC targeted therapy. The dimeric prodrug was synthesized by conjugating two cucurbitacin B (CuB) molecules via one diselenium bond, which was subsequently assembled with FA-PEG-DSPE to form the final nanomedicine FA-SeSe-NPs. Using the active targeting potential of folic acid (FA), FA-SeSe-NPs could accumulate in tumor tissue with elevated levels and then be specifically internalized by cancer cells. In the high ROS and GSH conditions of TNBC cells, the diselenium bond can specifically respond to ROS to produce selenium free radicals to increase ROS and react with GSH to generate S-Se bond to deplete GSH. The released CuB further induced ROS production in TNBC cells. The diselenium bond and CuB functioned synergistically to amplify oxidative stress to kill the TNBC cells. Here, we provide a promising strategy to disrupt the intracellular redox balance of cancer cells for effective TNBC therapy.
Collapse
Affiliation(s)
- Mie Chen
- Department of Mastopathy, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Min Zhang
- Department of Mastopathy, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Xun Lu
- School of Public Health Yale University, New Haven, CT 06510-3201, USA; Graduate School of Arts and Science, Columbia University, New York, NY 10027, USA
| | - Yongfei Li
- Department of Mastopathy, The Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of TCM), Nanjing 210029, China
| | - Cheng Lu
- Department of Mastopathy, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China.
| |
Collapse
|
5
|
Shang FF, Lu Q, Lin T, Pu M, Xiao R, Liu W, Deng H, Guo H, Quan ZS, Ding C, Shen QK. Discovery of Triazolyl Derivatives of Cucurbitacin B Targeting IGF2BP1 against Non-Small Cell Lung Cancer. J Med Chem 2023; 66:12931-12949. [PMID: 37681508 DOI: 10.1021/acs.jmedchem.3c00872] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Cucurbitacin B (CuB) is a potent but toxic anticancer natural product. Herein, we designed and synthesized 2-OH- and 16-OH-modified CuB derivatives to improve their antitumor efficacy and reduce toxicity. Among them, derivative A11 had the most potent antiproliferative activity against A549 lung cancer cells (IC50 = 0.009 μM) and was approximately 10-fold more potent than CuB, while the cytotoxicity of A11 toward normal L02 cells was about 10-fold less potent, indicating a much wider therapeutic window than CuB. Derivative A11 directly binds to the insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) protein with a KD value of 2.88 nM, which is about 23-fold more potent than CuB, leading to the decreased expression of downstream apoptosis- and cell cycle-related proteins. More importantly, A11 exhibited much more potent anticancer efficacy in an A549 xenograft mouse model with a TGI rate of 80% and a superior in vivo safety profile than that of CuB.
Collapse
Affiliation(s)
- Fan-Fan Shang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qing Lu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tailiang Lin
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Miaoxia Pu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Integration Science, Yanbian University, Yanji 133002, China
| | - Ruoxuan Xiao
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanmei Liu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Deng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Hongyan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Chunyong Ding
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| |
Collapse
|
6
|
Kong L, Tian W, Liu Z, Xu T, Wen H, Chen Z, Gao J, Bai LP. TfOH-Catalyzed Cascade C-H/N-H Chemo-/Regioselective Annulation of Indole-2-carboxamides with Benzoquinones for the Construction of Anticancer Tetracyclic Indolo[2,3- c]quinolinones. J Org Chem 2022; 87:7955-7967. [PMID: 35653697 DOI: 10.1021/acs.joc.2c00598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient TfOH-catalyzed cascade C-H/N-H annulation of indole-2-carboxamides with benzoquinones has been developed for the synthesis of tetracyclic indolo[2,3-c]quinolinones. This reaction exhibits excellent chemo-/regioselectivity, achieving functionalization of the C-3 of indole and N-H of the amide moiety to form the new C-C and C-N bonds. Various expected products were synthesized from readily available starting materials in good to high yields with a wide substrate scope and good functional group tolerance. Among all synthetic products, 3d showed the most potent cytotoxicity toward the 4T1 cancer cell line with an IC50 value of 0.62 ± 0.05 μM. In vivo study demonstrated that 3d remarkably suppressed 4T1 xenograft tumor growth without body weight loss.
Collapse
Affiliation(s)
- Lingkai Kong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau 999078, People's Republic of China.,School of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276000, People's Republic of China
| | - Wenyue Tian
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau 999078, People's Republic of China
| | - Zhiyan Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau 999078, People's Republic of China
| | - Ting Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau 999078, People's Republic of China
| | - Haoyue Wen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau 999078, People's Republic of China
| | - Zihan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau 999078, People's Republic of China
| | - Jin Gao
- IncreasePharm (Hengqin) Institute Co., Ltd, Zhuhai, Guangdong 519031, People's Republic of China
| | - Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau 999078, People's Republic of China
| |
Collapse
|
7
|
Zhuo N, Ma J, Cao L, Chen L, Nan F. Protecting‐Group‐Free One‐Step Palladium‐Catalyzed
Coupling on
C25
of Cucurbitacin B Expands Chemical Diversity with Improved Cytotoxicity against
A549
Cells. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ning Zhuo
- University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 P. R. China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
| | - Jie Ma
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
| | - Lei Cao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine Nanjing 210046 China
| | - Linhai Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
| | - Fajun Nan
- University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 P. R. China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- Drug Discovery Shandong Laboratory, Bohai Rim Advanced Research Institute for Drug Discovery Yantai Shandong 264117 China
| |
Collapse
|
8
|
Research advances in NQO1-responsive prodrugs and nanocarriers for cancer treatment. Future Med Chem 2022; 14:363-383. [PMID: 35102756 DOI: 10.4155/fmc-2021-0289] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
NAD(P)H: quinine oxidoreductase (NQO1) is a class of flavoprotein enzymes commonly expressed in eukaryotic cells. It actively participates in the metabolism of various quinones and their in vivo bioactivation through electron reduction reactions. The expression level of NQO1 is highly upregulated in many solid tumor cells compared with that in normal cells. NQO1 has been considered a candidate molecular target because of its overexpression and bioactivity in different tumors. NQO1-responsive prodrugs and nanocarriers have recently been identified as effective objectives for achieving controlled drug release, reducing adverse reactions and improving clinical efficacy. This review systematically introduces the research advances in applying NQO1-responsive prodrugs and nanocarriers to cancer treatment. It also discusses the existing problems and the developmental prospects of these two antitumor drug delivery systems.
Collapse
|
9
|
Lee JH, Kim B, Ko SG, Kim W. Analgesic Effect of SH003 and Trichosanthes kirilowii Maximowicz in Paclitaxel-Induced Neuropathic Pain in Mice. Curr Issues Mol Biol 2022; 44:718-730. [PMID: 35723335 PMCID: PMC8929024 DOI: 10.3390/cimb44020050] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/17/2022] [Accepted: 01/27/2022] [Indexed: 12/12/2022] Open
Abstract
Pacliatxel is a taxol-based chemotherapeutic drug that is widely used to treat cancer. However, it can also induce peripheral neuropathy, which limits its use. Although several drugs are prescribed to attenuate neuropathies, no optimal treatment is available. Thus, in our study, we analyzed whether SH003 and its sub-components could alleviate paclitaxel-induced neuropathic pain. Multiple paclitaxel injections (cumulative dose 8 mg/kg, i.p.) induced cold and mechanical allodynia from day 10 to day 21 after the first injection in mice. Oral administration of SH003, an herbal mixture extract of Astragalus membranaceus, Angelica gigas, and Trichosantheskirilowii Maximowicz (Tk), dose-dependently attenuated both allodynia. However, when administered separately only Tk decreased both allodynia. The effect of Tk was shown to be mediated by the spinal noradrenergic system as intrathecal pretreatment with α1- and α2-adrenergic-receptor antagonists (prazosin and idazoxan), but not 5-HT1/2, and 5-HT3-receptor antagonists (methysergide and MDL-72222) blocked the effect of Tk. The spinal noradrenaline levels were also upregulated. Among the phytochemicals of Tk, cucurbitacin D was shown to play a major role, as 0.025 mg/kg (i.p.) of cucurbitacin D alleviated allodynia similar to 500 mg/kg of SH003. These results suggest that Tk should be considered when treating paclitaxel-induced neuropathic pain.
Collapse
Affiliation(s)
- Ji Hwan Lee
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (B.K.); (S.-G.K.)
| | - Bonglee Kim
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (B.K.); (S.-G.K.)
| | - Seong-Gyu Ko
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (B.K.); (S.-G.K.)
| | - Woojin Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (B.K.); (S.-G.K.)
- Correspondence:
| |
Collapse
|
10
|
Xue Y, Bai H, Peng B, Fang B, Baell J, Li L, Huang W, Voelcker NH. Stimulus-cleavable chemistry in the field of controlled drug delivery. Chem Soc Rev 2021; 50:4872-4931. [PMID: 33734247 DOI: 10.1039/d0cs01061h] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Stimulus-cleavable nanoscale drug delivery systems are receiving significant attention owing to their capability of achieving exquisite control over drug release via the exposure to specific stimuli. Central to the construction of such systems is the integration of cleavable linkers showing susceptibility to one stimulus or several stimuli with drugs, prodrugs or fluorogenic probes on the one hand, and nanocarriers on the other hand. This review summarises recent advances in stimulus-cleavable linkers from various research areas and the corresponding mechanisms of linker cleavage and biological applications. The feasibility of extending their applications to the majority of nanoscale drug carriers including nanomaterials, polymers and antibodies are further highlighted and discussed. This review also provides general design guidelines to incorporate stimulus-cleavable linkers into nanocarrier-based drug delivery systems, which will hopefully spark new ideas and applications.
Collapse
Affiliation(s)
- Yufei Xue
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
| | - Bin Fang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Jonathan Baell
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
| | - Lin Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Nicolas Hans Voelcker
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. and Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia and Department of Materials Science & Engineering, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
11
|
Huang S, Cao B, Zhang J, Feng Y, Wang L, Chen X, Su H, Liao S, Liu J, Yan J, Liang B. Induction of ferroptosis in human nasopharyngeal cancer cells by cucurbitacin B: molecular mechanism and therapeutic potential. Cell Death Dis 2021; 12:237. [PMID: 33664249 PMCID: PMC7933245 DOI: 10.1038/s41419-021-03516-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022]
Abstract
Cucurbitacin B (CuB) is a widely available triterpenoid molecule that exhibits various biological activities. Previous studies on the anti-tumour mechanism of CuB have mostly focused on cell apoptosis, and research on the ferroptosis-inducing effect has rarely been reported. Herein, we first discovered the excellent cytotoxicity of CuB towards human nasopharyngeal carcinoma cells and elucidated its potential ferroptosis-inducing mechanisms. Morphology alterations of mitochondrial ultrastructure, as observed via transmission electron microscopy, showed that CuB-treated cells undergo ferroptosis. CuB caused intracellular accumulation of iron ions and depletion of glutathione. Detailed molecular mechanism investigation confirmed that CuB both induced widespread lipid peroxidation and downregulated the expression of GPX4, ultimately initiating a multipronged mechanism of ferroptosis. Furthermore, CuB exhibited anti-tumour effects in vitro by inhibiting cellular microtubule polymerization, arresting cell cycle and suppressing migration and invasion. Finally, CuB significantly inhibited tumour progression without causing obvious side effects in vivo. Altogether, our study highlighted the therapeutic potential of CuB as a ferroptosis-inducing agent for nasopharyngeal cancer, and it provided valuable insights for developing effective anti-tumour agents with novel molecular mechanisms derived from natural products.
Collapse
Affiliation(s)
- Shuai Huang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Bihui Cao
- Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Jinling Zhang
- Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yunfei Feng
- Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Lu Wang
- Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Xiaopei Chen
- Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Hang Su
- Translational Medicine Centre, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Shengrong Liao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guang dong Key Laboratory of Marine Materia Medica, Research Center for Marine Microbes, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Jinggong Liu
- Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Jun Yan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
| | - Baoxia Liang
- Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
12
|
Synthesis and biological evaluation of NQO1-activated prodrugs of podophyllotoxin as antitumor agents. Bioorg Med Chem 2020; 28:115821. [PMID: 33091789 DOI: 10.1016/j.bmc.2020.115821] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/05/2020] [Indexed: 12/27/2022]
Abstract
Podophyllotoxin (PPT), a toxic polyphenol derived from the roots of genus Podophyllum, had been reported with strong inhibition on both normal human cells and tumor cells, which hindered the development of PPT as the candidate antitumor agent. In the present work, multiple NQO1-activatable PPT prodrugs were synthesized for reducing normal cell toxicity and keeping tumor cell toxicity. The antiproliferative activities in vitro showed prodrug 3 was greatly selectively toxic to tumor cells over-expressing NQO1, taxol-resistant A549, hypoxia A549 and HepG2, and lower damage to normal cells in comparison with podophyllotoxin, prodrug 1 and 2. As elucidated by further mechanistic research, prodrug 3 was activated via NQO1 to efficiently while gently produce cytotoxic PPT units and kill tumor cells. In additions, in vivo study revealed that 3 significantly suppressed cancer growth in HepG2 xenograft models without obvious toxicity. Therefore, this NQO1-activatable prodrug delivery system exhibits good biosafety and provides a novel strategy for the development of drug delivery systems.
Collapse
|
13
|
Zhang C, Qu Y, Ma X, Li M, Li S, Li Y, Wu L. NQO1-selective activated prodrugs of combretastatin A-4: Synthesis and biological evaluation. Bioorg Chem 2020; 103:104200. [DOI: 10.1016/j.bioorg.2020.104200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 10/23/2022]
|
14
|
Suebsakwong P, Chulrik W, Chunglok W, Li JX, Yao ZJ, Suksamrarn A. New triterpenoid saponin glycosides from the fruit fibers ofTrichosanthes cucumerinaL. RSC Adv 2020; 10:10461-10470. [PMID: 35492927 PMCID: PMC9050392 DOI: 10.1039/d0ra01176b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/03/2020] [Indexed: 11/21/2022] Open
Abstract
Five new triterpenoid saponin glycosides, trichocucumerisides A–E (1–5), together with eleven known compounds (6–16) were isolated from Trichosanthes cucumerina fruit fibers. The structures of the new compounds were elucidated by detailed analysis of NMR and mass spectroscopic data as well as chemical reactions. The anti-inflammatory study against nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW264.7 cells shows that compounds 7 and 9 exhibited stronger NO inhibitory activity, with IC50 values of 3.0 and 2.7 μM, respectively, with comparison to positive references Celecoxib and aminoguanidine (IC50 values 75.7 and 75.0 μM, respectively). Compounds 7 and 9 also possessed a greater selectivity index (SI) of approximately 3–4-fold activity than that of the positive references. The new glycosides 1–5, together with eleven known compounds were isolated. Two compounds exhibited more potent anti-inflammatory activity than Celecoxib and aminoguanidine reference compounds.![]()
Collapse
Affiliation(s)
- Parichat Suebsakwong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry
- Faculty of Science
- Ramkhamhaeng University
- Bangkok 10240
- Thailand
| | - Wanatsanan Chulrik
- School of Allied Health Sciences and Research Institute for Health Sciences
- Walailak University
- Nakhon Si Thammarat 80161
- Thailand
| | - Warangkana Chunglok
- School of Allied Health Sciences and Research Institute for Health Sciences
- Walailak University
- Nakhon Si Thammarat 80161
- Thailand
| | - Jian-Xin Li
- State Key Laboratory of Coordination Chemistry
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Zhu-Jun Yao
- State Key Laboratory of Coordination Chemistry
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry
- Faculty of Science
- Ramkhamhaeng University
- Bangkok 10240
- Thailand
| |
Collapse
|