1
|
Alharbi N, Shalash AO, Koirala P, Boer JC, Hussein WM, Khalil ZG, Capon RJ, Plebanski M, Toth I, Skwarczynski M. Cholesterol as an inbuilt immunoadjuvant for a lipopeptide vaccine against group A Streptococcus infection. J Colloid Interface Sci 2024; 663:43-52. [PMID: 38387185 DOI: 10.1016/j.jcis.2024.02.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/21/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
Peptide-based vaccines can trigger highly specific immune responses, although peptides alone are usually unable to confer strong humoral or cellular immunity. Consequently, peptide antigens are administered with immunostimulatory adjuvants, but only a few are safe and effective for human use. To overcome this obstacle, herein a peptide antigen was lipidated to effectively anchor it to liposomes and emulsion. A peptide antigen B cell epitope from Group A Streptococcus M protein was conjugated to a universal T helper epitope, the pan DR-biding epitope (PADRE), alongside a lipidic moiety cholesterol. Compared to a free peptide antigen, the lipidated version (LP1) adopted a helical conformation and self-assembled into small nanoparticles. Surprisingly, LP1 alone induced the same or higher antibody titers than liposomes or emulsion-based formulations. In addition, antibodies produced by mice immunized with LP1 were more opsonic than those induced by administering the antigen with incomplete Freund's adjuvant. No side effects were observed in the immunized mice and no excessive inflammatory immune responses were detected. Overall, this study demonstrated how simple conjugation of cholesterol to a peptide antigen can produce a safe and efficacious vaccine against Group A Streptococcus - the leading cause of superficial infections and the bacteria responsible for deadly post-infection autoimmune disorders.
Collapse
Affiliation(s)
- Nedaa Alharbi
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; University of Jeddah, College of Science, Department of Chemistry, Jeddah, Saudi Arabia
| | - Ahmed O Shalash
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Prashamsa Koirala
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jennifer C Boer
- School of Health and Biomedical Sciences, RMIT University, VIC 3083, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zeinab G Khalil
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Robert J Capon
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, VIC 3083, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; School of Pharmacy, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
2
|
Aroffu M, Manca ML, Pedraz JL, Manconi M. Liposome-based vaccines for minimally or noninvasive administration: an update on current advancements. Expert Opin Drug Deliv 2023; 20:1573-1593. [PMID: 38015659 DOI: 10.1080/17425247.2023.2288856] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/24/2023] [Indexed: 11/30/2023]
Abstract
INTRODUCTION Vaccination requires innovation to provide effective protection. Traditional vaccines have several drawbacks, which can be overcome with advanced technologies and different administration routes. Over the past 10 years, a significant amount of research has focussed on the delivery of antigens into liposomes due to their dual role as antigen-carrying systems and vaccine adjuvants able to increase the immunogenicity of the carried antigen. AREAS COVERED This review encompasses the progress made over the last 10 years with liposome-based vaccines designed for minimally or noninvasive administration, filling the gaps in previous reviews and providing insights on composition, administration routes, results achieved, and Technology Readiness Level of the most recent formulations. EXPERT OPINION Liposome-based vaccines administered through minimally or noninvasive routes are expected to improve efficacy and complacency of vaccination programs. However, the translation from lab-scale production to large-scale production and collaborations with hospitals, research centers, and companies are needed to allow new products to enter the market and improve the vaccination programs in the future.
Collapse
Affiliation(s)
- Matteo Aroffu
- Department of Scienze della Vita e dell'Ambiente, University of Cagliari, Cagliari, Italy
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Maria Letizia Manca
- Department of Scienze della Vita e dell'Ambiente, University of Cagliari, Cagliari, Italy
| | - José Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
- BioAraba, NanoBioCel research Group, Vitoria-Gasteiz, Spain
| | - Maria Manconi
- Department of Scienze della Vita e dell'Ambiente, University of Cagliari, Cagliari, Italy
| |
Collapse
|
3
|
Multiepitope Subunit Peptide-Based Nanovaccine against Porcine Circovirus Type 2 (PCV2) Elicited High Antibody Titers in Vaccinated Mice. Molecules 2023; 28:molecules28052248. [PMID: 36903494 PMCID: PMC10005372 DOI: 10.3390/molecules28052248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Porcine circovirus 2 (PCV2) infection is one of the most serious threats to the swine industry. While the disease can be prevented, to some extent, by commercial PCV2a vaccines, the evolving nature of PCV2 necessitates the development of a novel vaccine that can compete with the mutations of the virus. Thus, we have developed novel multiepitope vaccines based on the PCV2b variant. Three PCV2b capsid protein epitopes, together with a universal T helper epitope, were synthesized and formulated with five delivery systems/adjuvants: complete Freund's adjuvant, poly(methyl acrylate) (PMA), poly(hydrophobic amino acid), liposomes and rod-shaped polymeric nanoparticles built from polystyrene-poly(N-isopropylacrylamide)-poly(N-dimethylacrylamide). Mice were subcutaneously immunized with the vaccine candidates three times at three-week intervals. All vaccinated mice produced high antibody titters after three immunizations as analyzed by the enzyme-linked immunosorbent assay (ELISA), while mice vaccinated with PMA-adjuvanted vaccine elicited high antibody titers even after a single immunization. Thus, the multiepitope PCV2 vaccine candidates designed and examined here show strong potential for further development.
Collapse
|
4
|
Azuar A, Madge HYR, Boer JC, Gonzalez Cruz JL, Wang J, Khalil ZG, Deceneux C, Goodchild G, Yang J, Koirala P, Hussein WM, Capon RJ, Plebanski M, Toth I, Skwarczynski M. Poly(hydrophobic Amino Acids) and Liposomes for Delivery of Vaccine against Group A Streptococcus. Vaccines (Basel) 2022; 10:vaccines10081212. [PMID: 36016100 PMCID: PMC9413763 DOI: 10.3390/vaccines10081212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 12/04/2022] Open
Abstract
Adjuvants and delivery systems are essential components of vaccines to increase immunogenicity against target antigens, particularly for peptide epitopes (poor immunogens). Emulsions, nanoparticles, and liposomes are commonly used as a delivery system for peptide-based vaccines. A Poly(hydrophobic amino acids) delivery system was previously conjugated to Group A Streptococcus (GAS)-derived peptide epitopes, allowing the conjugates to self-assemble into nanoparticles with self adjuvanting ability. Their hydrophobic amino acid tail also serves as an anchoring moiety for the peptide epitope, enabling it to be integrated into the liposome bilayer, to further boost the immunological responses. Polyleucine-based conjugates were anchored to cationic liposomes using the film hydration method and administered to mice subcutaneously. The polyleucine-peptide conjugate, its liposomal formulation, and simple liposomal encapsulation of GAS peptide epitope induced mucosal (saliva IgG) and systemic (serum IgG, IgG1 and IgG2c) immunity in mice. Polyleucine acted as a potent liposome anchoring portion, which stimulated the production of highly opsonic antibodies. The absence of polyleucine in the liposomal formulation (encapsulated GAS peptide) induced high levels of antibody titers, but with poor opsonic ability against GAS bacteria. However, the liposomal formulation of the conjugated vaccine was no more effective than conjugates alone self-assembled into nanoparticles.
Collapse
Affiliation(s)
- Armira Azuar
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (A.A.); (H.Y.R.M.); (J.W.); (J.Y.); (P.K.); (W.M.H.); (I.T.)
| | - Harrison Y. R. Madge
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (A.A.); (H.Y.R.M.); (J.W.); (J.Y.); (P.K.); (W.M.H.); (I.T.)
| | - Jennifer C. Boer
- School of Health and Biomedical Sciences, RMIT University, Bundoora West, VIC 3083, Australia; (J.C.B.); (C.D.); (G.G.); (M.P.)
| | - Jazmina L. Gonzalez Cruz
- Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia;
| | - Jingwen Wang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (A.A.); (H.Y.R.M.); (J.W.); (J.Y.); (P.K.); (W.M.H.); (I.T.)
| | - Zeinab G. Khalil
- Institute of Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
| | - Cyril Deceneux
- School of Health and Biomedical Sciences, RMIT University, Bundoora West, VIC 3083, Australia; (J.C.B.); (C.D.); (G.G.); (M.P.)
| | - Georgia Goodchild
- School of Health and Biomedical Sciences, RMIT University, Bundoora West, VIC 3083, Australia; (J.C.B.); (C.D.); (G.G.); (M.P.)
| | - Jieru Yang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (A.A.); (H.Y.R.M.); (J.W.); (J.Y.); (P.K.); (W.M.H.); (I.T.)
| | - Prashamsa Koirala
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (A.A.); (H.Y.R.M.); (J.W.); (J.Y.); (P.K.); (W.M.H.); (I.T.)
| | - Waleed M. Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (A.A.); (H.Y.R.M.); (J.W.); (J.Y.); (P.K.); (W.M.H.); (I.T.)
| | - Robert J. Capon
- Institute of Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Bundoora West, VIC 3083, Australia; (J.C.B.); (C.D.); (G.G.); (M.P.)
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (A.A.); (H.Y.R.M.); (J.W.); (J.Y.); (P.K.); (W.M.H.); (I.T.)
- Institute of Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (A.A.); (H.Y.R.M.); (J.W.); (J.Y.); (P.K.); (W.M.H.); (I.T.)
- Correspondence: ; Tel.: +617-3346-9894
| |
Collapse
|
5
|
Firdaus FZ, Skwarczynski M, Toth I. Developments in Vaccine Adjuvants. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2412:145-178. [PMID: 34918245 DOI: 10.1007/978-1-0716-1892-9_8] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vaccines, including subunit, recombinant, and conjugate vaccines, require the use of an immunostimulator/adjuvant for maximum efficacy. Adjuvants not only enhance the strength and longevity of immune responses but may also influence the type of response. In this chapter, we review the adjuvants that are available for use in human vaccines, such as alum, MF59, AS03, and AS01. We extensively discuss their composition, characteristics, mechanism of action, and effects on the immune system. Additionally, we summarize recent trends in adjuvant discovery, providing a brief overview of saponins, TLRs agonists, polysaccharides, nanoparticles, cytokines, and mucosal adjuvants.
Collapse
Affiliation(s)
- Farrhana Ziana Firdaus
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia. .,Institute of Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia. .,School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia.
| |
Collapse
|
6
|
Koirala P, Bashiri S, Toth I, Skwarczynski M. Current Prospects in Peptide-Based Subunit Nanovaccines. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2412:309-338. [PMID: 34918253 DOI: 10.1007/978-1-0716-1892-9_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Vaccination renders protection against pathogens via stimulation of the body's natural immune responses. Classical vaccines that utilize whole organisms or proteins have several disadvantages, such as induction of undesired immune responses, poor stability, and manufacturing difficulties. The use of minimal immunogenic pathogen components as vaccine antigens, i.e., peptides, can greatly reduce these shortcomings. However, subunit antigens require a specific delivery system and immune adjuvant to increase their efficacy. Recently, nanotechnology has been extensively utilized to address this issue. Nanotechnology-based formulation of peptide vaccines can boost immunogenicity and efficiently induce cellular and humoral immune responses. This chapter outlines the recent developments and advances of nano-sized delivery platforms for peptide antigens, including nanoparticles composed of polymers, peptides, lipids, and inorganic materials.
Collapse
Affiliation(s)
- Prashamsa Koirala
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Sahra Bashiri
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia. .,Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia. .,School of Pharmacy, The University of Queensland, St Lucia, QLD, Australia.
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
7
|
Sahoo S, Maiti I, Laha A, De R, Maiti S, De P. Cholate Conjugated Cationic Polymers for Regulation of Actin Dynamics. J Mater Chem B 2022; 10:8033-8045. [DOI: 10.1039/d2tb01364a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cytoskeletal movement is a compulsory necessity for proper cell functioning and is largely controlled by actin filament dynamics. The actin dynamics can be finetuned by various natural and artificial materials...
Collapse
|
8
|
Abstract
Liposomes, which are artificial phospholipid vesicles with a bilayer membrane structure, have been developed and evaluated as a promising delivery system for vaccines. Here, we describe a procedure for the encapsulation of lipopeptide vaccines into liposomes. A liposomal formulation of lipid-core peptide was prepared via thin-film hydration followed by extrusion. The physicochemical properties of the liposomes, including their size, polydispersity, surface charge, and morphology, were analyzed using dynamic light scattering and transmission electron microscopy.
Collapse
Affiliation(s)
- Jieru Yang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Armira Azuar
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.
- Institute of Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia.
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
9
|
Ariawan AD, van Eersel J, Martin AD, Ke YD, Ittner LM. Recent progress in synthetic self-adjuvanting vaccine development. Biomater Sci 2022; 10:4037-4057. [DOI: 10.1039/d2bm00061j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vaccination is a proven way to protect individuals against many infectious diseases, as currently highlighted in the global COVID-19 pandemic. Peptides- or small molecule antigen-based vaccination offer advantages over the...
Collapse
|
10
|
Sahoo S, Ghosh P, Khan MEH, De P. Recent Progress in Macromolecular Design and Synthesis of Bile Acid‐Based Polymeric Architectures. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Subhasish Sahoo
- Polymer Research Centre and Centre for Advanced Functional Materials Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Nadia West Bengal Mohanpur, 741246 India
| | - Pooja Ghosh
- Polymer Research Centre and Centre for Advanced Functional Materials Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Nadia West Bengal Mohanpur, 741246 India
| | - Md Ezaz Hasan Khan
- School of General Education College of the North Atlantic ‐ Qatar Arab League Street Doha 24449 Qatar
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Nadia West Bengal Mohanpur, 741246 India
| |
Collapse
|
11
|
Rashid SA, Norman N, Teo SH, Tong WY, Leong CR, Tan WN, Noor MAM. Cholic acid: a novel steroidal uncompetitive inhibitor against β-lactamase produced by multidrug-resistant isolates. World J Microbiol Biotechnol 2021; 37:152. [PMID: 34398332 DOI: 10.1007/s11274-021-03118-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 08/02/2021] [Indexed: 11/30/2022]
Abstract
β-lactam antibiotics are the most frequently prescribed class of drugs worldwide, due to its efficacy and good safety profile. However, the emergence of β-lactamase producing bacterial strains eliminated the use of β-lactam antibiotics as a chemotherapeutic choice. To restore their usability, a non-antibiotic adjuvant in conjunction with β-lactam antibiotics is now being utilised. Cholic acid potentially acts as an adjuvant since it can blunt the pro-inflammatory activity in human. Our main objective is to scrutinise the inhibition of β-lactamase-producing bacteria by adjuvant cholic acid, synergism of the test drugs and the primary mechanism of enzymatic reaction. Antibacterial effect of the cholic acid-ampicillin (CA-AMP) on 7 β-lactamase positive isolates were evaluated accordingly to disc diffusion assay, antibiotic susceptibility test, as well as checkerboard analysis. Then, all activities were compared with ampicillin alone, penicillin alone, cholic acid alone and cholic acid-penicillin combination. The CA-AMP displayed notable antibiotic activity on all test bacteria and depicted synergistic influence by representing low fractional inhibitory concentration index (FIC ≤ 0.5). According to kinetic analyses, CA-AMP behaved as an uncompetitive inhibitor against beta lactamase, with reducing values of Michaelis constant (Km) and maximal velocity (Vmax) recorded. The inhibitor constant (Ki) of CA-AMP was equal to 4.98 ± 0.3 µM, which slightly lower than ampicillin (5.00 ± 0.1 µM).
Collapse
Affiliation(s)
- Syarifah Ab Rashid
- Universiti Kuala Lumpur, Branch Campus Malaysian Institute of Chemical and Bioengineering Technology, Lot 1988 Kawasan Perindustrian Bandar Vendor, Taboh Naning, 78000, Alor Gajah, Melaka, Malaysia
| | - Norhaswanie Norman
- Universiti Kuala Lumpur, Branch Campus Malaysian Institute of Chemical and Bioengineering Technology, Lot 1988 Kawasan Perindustrian Bandar Vendor, Taboh Naning, 78000, Alor Gajah, Melaka, Malaysia
| | - Siew Hway Teo
- Universiti Kuala Lumpur, Branch Campus Malaysian Institute of Chemical and Bioengineering Technology, Lot 1988 Kawasan Perindustrian Bandar Vendor, Taboh Naning, 78000, Alor Gajah, Melaka, Malaysia
| | - Woei Yenn Tong
- Universiti Kuala Lumpur, Branch Campus Malaysian Institute of Chemical and Bioengineering Technology, Lot 1988 Kawasan Perindustrian Bandar Vendor, Taboh Naning, 78000, Alor Gajah, Melaka, Malaysia.
| | - Chean Ring Leong
- Universiti Kuala Lumpur, Branch Campus Malaysian Institute of Chemical and Bioengineering Technology, Lot 1988 Kawasan Perindustrian Bandar Vendor, Taboh Naning, 78000, Alor Gajah, Melaka, Malaysia
| | - Wen-Nee Tan
- Chemistry Section, School of Distance Education, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia
| | - Mohd Azizan Mohd Noor
- Universiti Kuala Lumpur, Branch Campus Malaysian Institute of Chemical and Bioengineering Technology, Lot 1988 Kawasan Perindustrian Bandar Vendor, Taboh Naning, 78000, Alor Gajah, Melaka, Malaysia
| |
Collapse
|
12
|
Lombardo R, Musumeci T, Carbone C, Pignatello R. Nanotechnologies for intranasal drug delivery: an update of literature. Pharm Dev Technol 2021; 26:824-845. [PMID: 34218736 DOI: 10.1080/10837450.2021.1950186] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Scientific research has focused its attention on finding an alternative route to systemic oral and parenteral administration, to overcome their usual drawbacks, such as hepatic first-pass which decreases drug bioavailability after oral administration, off-target effects, low patient compliance and low speed of onset of the pharmacological action in first-aid cases. Innovative drug delivery systems (DDS), mainly based on polymer and lipid biocompatible materials, have given a great prompt in this direction in the last years. The intranasal (IN) route of administration is a valid non-invasive alternative. It is highly suitable for self-administration, the drug quickly reaches the bloodstream, largely avoiding the first pass effect, and can also reach directly the brain bypassing BBB. Association of IN route with DDS can thus become a winning strategy for the controlled delivery of drugs, especially when a very quick effect is desired or needed. This review aims at analyzing the scientific literature regarding IN-DDS and their different ways of administration (systemic, topical, pulmonary, nose-to-brain). In particular, attention was devoted to polymer- and lipid-based micro- and nanocarriers, being the topic of most published articles in the last decade, but the whole plethora of colloidal DDS investigated in recent years for IN administration was presented.
Collapse
Affiliation(s)
- Rosamaria Lombardo
- Department of Drug Sciences, University of Catania, Catania, Italy.,Neurosciences, University of Catania, Catania, Italy
| | - Teresa Musumeci
- Department of Drug Sciences, University of Catania, Catania, Italy.,NANO-i - Research Center for Ocular Nanotechnology, University of Catania, Catania, Italy
| | - Claudia Carbone
- Department of Drug Sciences, University of Catania, Catania, Italy.,NANO-i - Research Center for Ocular Nanotechnology, University of Catania, Catania, Italy
| | - Rosario Pignatello
- Department of Drug Sciences, University of Catania, Catania, Italy.,NANO-i - Research Center for Ocular Nanotechnology, University of Catania, Catania, Italy
| |
Collapse
|
13
|
Dai CC, Huang W, Yang J, Hussein WM, Wang J, Khalil ZG, Capon RJ, Toth I, Stephenson RJ. Polyethylenimine quantity and molecular weight influence its adjuvanting properties in liposomal peptide vaccines. Bioorg Med Chem Lett 2021; 40:127920. [PMID: 33705898 DOI: 10.1016/j.bmcl.2021.127920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/08/2021] [Accepted: 02/26/2021] [Indexed: 01/23/2023]
Abstract
We recently reported that polyethylenimine (PEI; molecular weight of 600 Da) acted as a vaccine adjuvant for liposomal group A Streptococcus (GAS) vaccines, eliciting immune responses in vivo with IgG antibodies giving opsonic activity against five Australian GAS clinical isolates. However, to date, no investigation comparing the structure-activity relationship between the molecular weight of PEI and its adjuvanting activity in vaccine development has been performed. We hypothesized that the molecular weight and quantity of PEI in a liposomal vaccine will impact its adjuvanting properties. In this study, we successfully formulated liposomes containing different molecular weights of PEI (600, 1800, 10k and 25k Da) and equivalents of PEI (0.5, 1 and 2) of branched PEI. Outbred mice were administrated the vaccine formulations intranasally, and the mice that received a high ratio of PEI 600 reported a stronger immune response than the mice that received a lower ratio of PEI 600. Interestingly, mice that received the same quantity of PEI 600, PEI 10k and PEI 25k showed similar immune responses in vivo and in vitro. This comparative study highlights the ratio of PEI present in the liposome vaccines impacts adjuvanting activity, however, PEI molecular weight did not significantly enhance its adjuvanting properties. We also report that the stability of PEI liposomes is critical for vaccines to elicit the desired immune response.
Collapse
Affiliation(s)
- Charles C Dai
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Wenbin Huang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Jieru Yang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Jingwen Wang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Zeinab G Khalil
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Robert J Capon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Rachel J Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
14
|
Yang J, Firdaus F, Azuar A, Khalil ZG, Marasini N, Capon RJ, Hussein WM, Toth I, Skwarczynski M. Cell-Penetrating Peptides-Based Liposomal Delivery System Enhanced Immunogenicity of Peptide-Based Vaccine against Group A Streptococcus. Vaccines (Basel) 2021; 9:499. [PMID: 34066099 PMCID: PMC8151947 DOI: 10.3390/vaccines9050499] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
Peptide-based vaccine development represents a highly promising strategy for preventing Group A Streptococcus (GAS) infection. However, these vaccines need to be administered with the help of a delivery system and/or immune adjuvant. Cell-penetrating peptides (CPPs) have been used as a powerful tool for delivering various therapeutic agents, including peptides, as they can overcome the permeability barrier of cell membranes. Here, we used CPPs to deliver our lead lipopeptide-based vaccine (LCP-1). CPPs were anchored through a spacer to LCP-1-bearing multilamellar and unilamellar liposomes and administered to Swiss outbred mice. Tat47-57 conjugated to two palmitic acids via a (Gly)6 spacer (to form a liposome-anchoring moiety) was the most efficient system for triggering immune responses when combined with multilamellar liposomes bearing LCP-1. The immunostimulatory potential of a variety of other CPPs was examined following intranasal administration in mice. Among them, LCP-1/liposomes/Tat47-57 and LCP-1/liposomes/KALA induced the highest antibody titers. The antibodies produced showed high opsonic activity against clinically isolated GAS strains D3840 and GC2 203. The use of the CPP-liposome delivery system is a promising strategy for liposome-based GAS vaccine development.
Collapse
Affiliation(s)
- Jieru Yang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.Y.); (F.F.); (A.A.); (W.M.H.); (I.T.)
| | - Farrhana Firdaus
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.Y.); (F.F.); (A.A.); (W.M.H.); (I.T.)
| | - Armira Azuar
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.Y.); (F.F.); (A.A.); (W.M.H.); (I.T.)
| | - Zeinab G. Khalil
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
| | - Nirmal Marasini
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Robert J. Capon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
| | - Waleed M. Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.Y.); (F.F.); (A.A.); (W.M.H.); (I.T.)
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.Y.); (F.F.); (A.A.); (W.M.H.); (I.T.)
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.Y.); (F.F.); (A.A.); (W.M.H.); (I.T.)
| |
Collapse
|
15
|
A dual-adjuvanting strategy for peptide-based subunit vaccines against group A Streptococcus: Lipidation and polyelectrolyte complexes. Bioorg Med Chem 2020; 28:115823. [DOI: 10.1016/j.bmc.2020.115823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 12/16/2022]
|
16
|
Dai CC, Yang J, Hussein WM, Zhao L, Wang X, Khalil ZG, Capon RJ, Toth I, Stephenson RJ. Polyethylenimine: An Intranasal Adjuvant for Liposomal Peptide-Based Subunit Vaccine against Group A Streptococcus. ACS Infect Dis 2020; 6:2502-2512. [PMID: 32786276 DOI: 10.1021/acsinfecdis.0c00452] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Group A Streptococcus (GAS) and GAS-related infections are a worldwide challenge, with no commercial GAS vaccine available. Polyethylenimine (PEI) attaches to the cells' surface and delivers cargo into endosomal and cytosolic compartments. We hypothesized that this will confer mucosal adjuvant properties for peptide antigens against group A Streptococcus (GAS). In this study, we successfully demonstrated the development of PEI incorporated liposomes for the delivery of a lipopeptide-based vaccine (LCP-1) against GAS. Outbred mice were administrated with the vaccine formulations intranasally, and immunological investigation showed that the PEI liposomes elicited significant mucosal and systemic immunity with the production of IgA and IgG antibodies. Antibodies were shown to effectively opsonize multiple isolates of clinically isolated GAS. This proof-of-concept study showed the capability for PEI liposomes to act as a safe vehicle for the delivery of GAS peptide antigens to elicit immune responses against GAS infection, making PEI a promising addition to liposomal mucosal vaccines.
Collapse
Affiliation(s)
- Charles C. Dai
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jieru Yang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Waleed M. Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Helwan 11795, Egypt
| | - Lili Zhao
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Xiumin Wang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Zeinab G. Khalil
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Robert J. Capon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Rachel J. Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
17
|
Dai C, Khalil ZG, Hussein WM, Yang J, Wang X, Zhao L, Capon RJ, Toth I, Stephenson RJ. Opsonic Activity of Conservative Versus Variable Regions of the Group A Streptococcus M Protein. Vaccines (Basel) 2020; 8:vaccines8020210. [PMID: 32392777 PMCID: PMC7349123 DOI: 10.3390/vaccines8020210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/23/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022] Open
Abstract
Group A Streptococcus (GAS) and GAS-associated infections are a global challenge, with no licensed GAS vaccine on the market. The GAS M protein is a critical virulence factor in the fight against GAS infection, and it has been a primary target for GAS vaccine development. Measuring functional opsonic antibodies against GAS is an important component in the clinical development path for effective vaccines. In this study, we compared the opsonic activity of two synthetic, self-adjuvanting subunit vaccines containing either the J8- or 88/30-epitope in Swiss outbred mice using intranasal administration. Following primary immunization and three boosts, sera were assessed for IgG activity using ELISA, and opsonization activity against seven randomly selected clinical isolates of GAS was measured. Vaccine constructs containing the conservative J8-epitope showed significant opsonic activity against six out of the seven GAS clinical isolates, while the vaccine containing the variable 88/30-epitope did not show any significant opsonic activity.
Collapse
Affiliation(s)
- Chuankai Dai
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.D.); (W.M.H.); (J.Y.); (X.W.); (L.Z.); (I.T.)
| | - Zeinab G. Khalil
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
| | - Waleed M. Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.D.); (W.M.H.); (J.Y.); (X.W.); (L.Z.); (I.T.)
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Helwan 11795, Egypt
| | - Jieru Yang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.D.); (W.M.H.); (J.Y.); (X.W.); (L.Z.); (I.T.)
| | - Xiumin Wang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.D.); (W.M.H.); (J.Y.); (X.W.); (L.Z.); (I.T.)
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Lili Zhao
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.D.); (W.M.H.); (J.Y.); (X.W.); (L.Z.); (I.T.)
| | - Robert J. Capon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.D.); (W.M.H.); (J.Y.); (X.W.); (L.Z.); (I.T.)
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Rachel J. Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.D.); (W.M.H.); (J.Y.); (X.W.); (L.Z.); (I.T.)
- Correspondence:
| |
Collapse
|
18
|
Zhao L, Jin W, Cruz JG, Marasini N, Khalil ZG, Capon RJ, Hussein WM, Skwarczynski M, Toth I. Development of Polyelectrolyte Complexes for the Delivery of Peptide-Based Subunit Vaccines against Group A Streptococcus. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E823. [PMID: 32357402 PMCID: PMC7712447 DOI: 10.3390/nano10050823] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022]
Abstract
Peptide subunit vaccines hold great potential compared to traditional vaccines. However, peptides alone are poorly immunogenic. Therefore, it is of great importance that a vaccine delivery platform and/or adjuvant that enhances the immunogenicity of peptide antigens is developed. Here, we report the development of two different systems for the delivery of lipopeptide subunit vaccine (LCP-1) against group A streptococcus: polymer-coated liposomes and polyelectrolyte complexes (PECs). First, LCP-1-loaded and alginate/trimethyl chitosan (TMC)-coated liposomes (Lip-1) and LCP-1/alginate/TMC PECs (PEC-1) were examined for their ability to trigger required immune responses in outbred Swiss mice; PEC-1 induced stronger humoral immune responses than Lip-1. To further assess the adjuvanting effect of anionic polymers in PECs, a series of PECs (PEC-1 to PEC-5) were prepared by mixing LCP-1 with different anionic polymers, namely alginate, chondroitin sulfate, dextran, hyaluronic acid, and heparin, then coated with TMC. All produced PECs had similar particle sizes (around 200 nm) and surface charges (around + 30 mV). Notably, PEC-5, which contained heparin, induced higher antigen-specific systemic IgG and mucosal IgA titers than all other PECs. PEC systems, especially when containing heparin and TMC, could function as a promising platform for peptide-based subunit vaccine delivery for intranasal administration.
Collapse
Affiliation(s)
- Lili Zhao
- School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (L.Z.); (W.J.); (N.M.); (W.M.H.)
| | - Wanli Jin
- School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (L.Z.); (W.J.); (N.M.); (W.M.H.)
| | - Jazmina Gonzalez Cruz
- Diamantina Institute, Translational Research Institute, The University of Queensland, Wooloongabba, QLD 4102, Australia;
| | - Nirmal Marasini
- School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (L.Z.); (W.J.); (N.M.); (W.M.H.)
| | - Zeinab G. Khalil
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
| | - Robert J. Capon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
| | - Waleed M. Hussein
- School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (L.Z.); (W.J.); (N.M.); (W.M.H.)
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Helwan 11795, Egypt
| | - Mariusz Skwarczynski
- School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (L.Z.); (W.J.); (N.M.); (W.M.H.)
| | - Istvan Toth
- School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (L.Z.); (W.J.); (N.M.); (W.M.H.)
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| |
Collapse
|