1
|
Nawa F, Sai M, Vietor J, Schwarzenbach R, Bitić A, Wolff S, Ildefeld N, Pabel J, Wein T, Marschner JA, Heering J, Merk D. Tuning RXR Modulators for PGC1α Recruitment. J Med Chem 2024; 67:16338-16354. [PMID: 39258574 DOI: 10.1021/acs.jmedchem.4c01231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The molecular activation mechanism of the nuclear retinoid X receptors (RXRs) crucially involves ligand-induced corepressor release and coactivator recruitment which mediate transcriptional repression or activation. The ability of RXR to bind diverse coactivators suggests that a coregulator-selective modulation by ligands may open an avenue to tissue- or gene-selective RXR activation. Here, we identified strong induction of peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) binding to RXR by a synthetic agonist but not by the endogenous ligand 9-cis retinoic acid. Structure-guided diversification of this lead resulted in a set of three structurally related RXR agonists with different ability to promote PGC1α recruitment in cell-free and cellular context. These results demonstrate that selective modulation of coregulator recruitment to RXR can be achieved with molecular glues and potentially open new therapeutic opportunities by targeting the ligand-induced RXR-PGC1α interaction.
Collapse
Affiliation(s)
- Felix Nawa
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Minh Sai
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Jan Vietor
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Roman Schwarzenbach
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Anesa Bitić
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Sina Wolff
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Niklas Ildefeld
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Jörg Pabel
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Thomas Wein
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Julian A Marschner
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Jan Heering
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
| | - Daniel Merk
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| |
Collapse
|
2
|
Isigkeit L, Kärcher A, Adouvi G, Arifi S, Merk D. Rational design and virtual screening identify mimetics of the RXR agonist valerenic acid. ChemMedChem 2024; 19:e202300379. [PMID: 38235922 DOI: 10.1002/cmdc.202300379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 12/23/2023] [Accepted: 01/17/2024] [Indexed: 01/19/2024]
Abstract
The ligand-sensing transcription factor retinoid X receptor (RXR) is the universal heterodimer partner of nuclear receptors and involved in multiple physiological processes. Its pharmacological modulation holds therapeutic potential in cancer and neurodegeneration but many available RXR ligands lack specificity. The sesquiterpenoid valerenic acid has been identified as RXR agonist with unprecedented subtype and homodimer preference. Here, we identified simplified mimetics of the complex natural product by rational design and virtual screening that exhibited similar activity profiles on RXR and informed about structural elements contributing to the favorable activity.
Collapse
Affiliation(s)
- Laura Isigkeit
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, 60438, Frankfurt, Germany
| | - Annette Kärcher
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, 60438, Frankfurt, Germany
| | - Gustave Adouvi
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, 60438, Frankfurt, Germany
| | - Silvia Arifi
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, 60438, Frankfurt, Germany
| | - Daniel Merk
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, 60438, Frankfurt, Germany
- Ludwig-Maximilians-Universität München, Department of Pharmacy, 81377, Munich, Germany
| |
Collapse
|
3
|
Adouvi G, Isigkeit L, López-García Ú, Chaikuad A, Marschner JA, Schubert-Zsilavecz M, Merk D. Rational Design of a New RXR Agonist Scaffold Enabling Single-Subtype Preference for RXRα, RXRβ, and RXRγ. J Med Chem 2023; 66:333-344. [PMID: 36533416 DOI: 10.1021/acs.jmedchem.2c01266] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The three retinoid X receptor subtypes (RXRα, RXRβ, RXRγ) exhibit critical regulatory roles in cell proliferation and differentiation, metabolism, and inflammation. Due to their importance in nuclear receptor signaling, RXRs are widely distributed and pan-RXR agonists cause adverse effects, but the three highly conserved RXR ligand binding sites render the development of subtype-selective ligands a major challenge. We have fused elements of known RXR ligands to obtain a new RXR agonist chemotype on which minor structural modifications enabled the development of tools with single-subtype preference for RXRα, RXRβ, and RXRγ. Molecular modeling indicated different binding conformations and interaction patterns with the RXR LBDs as factors of preferential binding. In a phenotypic adipocyte differentiation experiment, only the RXRα preferential tool enhanced the adipogenic effects of pioglitazone, suggesting this subtype as particularly relevant in adipogenesis and highlighting the set of subtype-preferential RXR agonist tools as suitable for functional cellular studies.
Collapse
Affiliation(s)
- Gustave Adouvi
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Laura Isigkeit
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Úrsula López-García
- Department of Pharmacy, Ludwig-Maximilians-Universität München,81377 Munich, Germany
| | - Apirat Chaikuad
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Julian A Marschner
- Department of Pharmacy, Ludwig-Maximilians-Universität München,81377 Munich, Germany
| | | | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany.,Department of Pharmacy, Ludwig-Maximilians-Universität München,81377 Munich, Germany
| |
Collapse
|
4
|
Kodama S, Matsumoto S, Takamura Y, Fujihara M, Watanabe M, Ono A, Kakuta H. Structural characterization of 1,3-bis-tert-butyl monocyclic benzene derivatives with agonistic activity towards retinoid X receptor alpha. Toxicol Lett 2022; 373:76-83. [PMID: 36368620 DOI: 10.1016/j.toxlet.2022.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/11/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Retinoid X receptor alpha (RXRα) plays pivotal roles in multiple biological processes, but limited information is available on the structural features of chemicals that show low affinity for RXRα, but nevertheless cause significant activation, though these may represent a human health hazard. We recently discovered that several industrial chemicals having 1,3-bis-tert-butylbenzene as a common chemical structure exhibit agonistic activity towards rat RXRα. In this study, we explored the structure-activity relationship of 1,3-bis-tert-butyl monocyclic benzene derivatives for RXRα activation by means of in vitro and in silico analyses. The results indicate that a bulky substituent at the 5-position is favorable for agonistic activity towards human RXRα. Since 1,3-bis-tert-butyl monocyclic benzene derivatives with bulky hydrophobic moieties differ structurally from known RXRα ligands such as 9-cis-retinoic acid and bexarotene, our findings may be helpful for the development of structural alerts in the safety evaluation of industrial chemicals for RXRα-based toxicity to living organisms.
Collapse
Affiliation(s)
- Susumu Kodama
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.
| | - Shuzo Matsumoto
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Yuta Takamura
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Michiko Fujihara
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Masaki Watanabe
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Atsushi Ono
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Hiroki Kakuta
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
5
|
H M Ehrler J, Brunst S, Tjaden A, Kilu W, Heering J, Hernandez-Olmos V, Krommes A, Kramer JS, Steinhilber D, Schubert-Zsilavecz M, Müller-Knapp S, Merk D, Proschak E. Compilation and Evaluation of Fatty Acid Mimetics Screening Library. Biochem Pharmacol 2022; 204:115191. [PMID: 35907497 DOI: 10.1016/j.bcp.2022.115191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/02/2022]
Abstract
Focused compound libraries are well-established tools for hit identification in drug discovery and chemical probe development. We present the compilation and application of a focused screening library of fatty acid mimetics (FAMs), which are compounds designed to bind the orthosteric site proteins that endogenously accommodate natural fatty acids and lipid metabolites. This set complies with chemical properties of FAM and was found suitable for use also in cellular setting. Several hits were retrieved in screening the focused library against diverse fatty acid binding targets including the enzymes soluble epoxide hydrolase (sEH) and leukotriene A4 hydrolase (LTA4H), the nuclear receptors peroxisome proliferator-activated receptor γ (PPARγ) and retinoid X receptor α (RXRα), the carrier proteins fatty acid binding protein 4 and 5 (FABP4 and FABP5), as well as the G-protein coupled receptors leukotriene B4 receptor 1 (BLT1) and free-fatty acid receptor 1 (FFAR1). Thus, the focused FAM library is suitable to obtain chemical starting matter for fatty acid binding proteins and valuable extends available screening collections.
Collapse
Affiliation(s)
- Johanna H M Ehrler
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Steffen Brunst
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany
| | - Amelie Tjaden
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Whitney Kilu
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany
| | - Jan Heering
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany
| | - Victor Hernandez-Olmos
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany
| | - Andrè Krommes
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Jan S Kramer
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany
| | - Manfred Schubert-Zsilavecz
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Susanne Müller-Knapp
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany; Ludwig-Maximilians-Universität München, Department of Pharmacy, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany.
| |
Collapse
|
6
|
Willems S, Zaienne D, Merk D. Targeting Nuclear Receptors in Neurodegeneration and Neuroinflammation. J Med Chem 2021; 64:9592-9638. [PMID: 34251209 DOI: 10.1021/acs.jmedchem.1c00186] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nuclear receptors, also known as ligand-activated transcription factors, regulate gene expression upon ligand signals and present as attractive therapeutic targets especially in chronic diseases. Despite the therapeutic relevance of some nuclear receptors in various pathologies, their potential in neurodegeneration and neuroinflammation is insufficiently established. This perspective gathers preclinical and clinical data for a potential role of individual nuclear receptors as future targets in Alzheimer's disease, Parkinson's disease, and multiple sclerosis, and concomitantly evaluates the level of medicinal chemistry targeting these proteins. Considerable evidence suggests the high promise of ligand-activated transcription factors to counteract neurodegenerative diseases with a particularly high potential of several orphan nuclear receptors. However, potent tools are lacking for orphan receptors, and limited central nervous system exposure or insufficient selectivity also compromises the suitability of well-studied nuclear receptor ligands for functional studies. Medicinal chemistry efforts are needed to develop dedicated high-quality tool compounds for the therapeutic validation of nuclear receptors in neurodegenerative pathologies.
Collapse
Affiliation(s)
- Sabine Willems
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Daniel Zaienne
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| |
Collapse
|
7
|
Schierle S, Chaikuad A, Lillich FF, Ni X, Woltersdorf S, Schallmayer E, Renelt B, Ronchetti R, Knapp S, Proschak E, Merk D. Oxaprozin Analogues as Selective RXR Agonists with Superior Properties and Pharmacokinetics. J Med Chem 2021; 64:5123-5136. [PMID: 33793232 DOI: 10.1021/acs.jmedchem.1c00235] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The retinoid X receptors (RXR) are ligand-activated transcription factors involved in multiple regulatory networks as universal heterodimer partners for nuclear receptors. Despite their high therapeutic potential in many pathologies, targeting of RXR has only been exploited in cancer treatment as the currently available RXR agonists suffer from exceptional lipophilicity, poor pharmacokinetics (PK), and adverse effects. Aiming to overcome the limitations and to provide improved RXR ligands, we developed a new potent RXR ligand chemotype based on the nonsteroidal anti-inflammatory drug oxaprozin. Systematic structure-activity relationship analysis enabled structural optimization toward low nanomolar potency similar to the well-established rexinoids. Cocrystal structures of the most active derivatives demonstrated orthosteric binding, and in vivo profiling revealed superior PK properties compared to current RXR agonists. The optimized compounds were highly selective for RXR activation and induced RXR-regulated gene expression in native cellular and in vivo settings suggesting them as excellent chemical tools to further explore the therapeutic potential of RXR.
Collapse
Affiliation(s)
- Simone Schierle
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Apirat Chaikuad
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany.,Structural Genomics Consortium, BMLS, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt, Germany
| | - Felix F Lillich
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Xiaomin Ni
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany.,Structural Genomics Consortium, BMLS, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt, Germany
| | - Stefano Woltersdorf
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Espen Schallmayer
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Beatrice Renelt
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Riccardo Ronchetti
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany.,Structural Genomics Consortium, BMLS, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| |
Collapse
|
8
|
Yukawa-Takamatsu K, Wang Y, Watanabe M, Takamura Y, Fujihara M, Nakamura-Nakayama M, Yamada S, Kikuzawa S, Makishima M, Kawasaki M, Ito S, Nakano S, Kakuta H. Convenient Retinoid X Receptor Binding Assay Based on Fluorescence Change of the Antagonist NEt-C343. J Med Chem 2020; 64:861-870. [PMID: 33378197 DOI: 10.1021/acs.jmedchem.0c01883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Retinoid X receptor (RXR) modulators (rexinoids) are considered to have therapeutic potential for multiple diseases, such as Alzheimer's disease and Parkinson's disease. To overcome various disadvantages of prior screening methods, we previously developed an RXR binding assay using a fluorescent RXR ligand, CU-6PMN (4). However, this ligand binds not only at the ligand-binding domain (LBD) but also at the dimer-dimer interface of hRXRα. Here, we present a new fluorescent RXR antagonist 6-[N-ethyl-N-(5-isobutoxy-4-isopropyl-2-(11-oxo-2,3,6,7-tetrahydro-1H,5H,11H-pyrano[2,3-f]pyrido[3,2,1-ij]quinoline-10-carboxamido)phenyl)amino]nicotinic acid (NEt-C343, 7), which emits strong fluorescence only when bound to the RXR-LBD. It allows us to perform a rapid, simple, and nonhazardous binding assay that does not require bound/free separation and uses a standard plate reader. The obtained Ki values of known compounds were correlated with the Ki values obtained using the standard [3H]9cis-retinoic acid assay. This assay should be useful for drug discovery as well as for research on endocrine disruptors, functional foods, and natural products.
Collapse
Affiliation(s)
- Kayo Yukawa-Takamatsu
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Yifei Wang
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Masaki Watanabe
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Yuta Takamura
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Michiko Fujihara
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.,AIBIOS Co. Ltd., Tri-Seven Roppongi 8F 7-7-7 Roppongi, Minato-ku, Tokyo 106-0032 Japan
| | - Mariko Nakamura-Nakayama
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Shoya Yamada
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.,Research Fellowship Division, Japan Society for the Promotion of Science, Sumitomo-Ichibancho FS Bldg., 8 Ichibancho, Chiyoda-ku, Tokyo 102-8472, Japan
| | - Shota Kikuzawa
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Mayu Kawasaki
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Sohei Ito
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Shogo Nakano
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hiroki Kakuta
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
9
|
Watanabe M, Fujihara M, Motoyama T, Kawasaki M, Yamada S, Takamura Y, Ito S, Makishima M, Nakano S, Kakuta H. Discovery of a "Gatekeeper" Antagonist that Blocks Entry Pathway to Retinoid X Receptors (RXRs) without Allosteric Ligand Inhibition in Permissive RXR Heterodimers. J Med Chem 2020; 64:430-439. [PMID: 33356247 DOI: 10.1021/acs.jmedchem.0c01354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Retinoid X receptor (RXR) heterodimers such as PPAR/RXR, LXR/RXR, and FXR/RXR can be activated by RXR agonists alone and are therefore designated as permissive. Similarly, existing RXR antagonists show allosteric antagonism toward partner receptor agonists in these permissive RXR heterodimers. Here, we show 1-(3-(2-ethoxyethoxy)-5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)-2-(trifluoromethyl)-1H-benzo[d]imidazole-5-carboxylic acid (14, CBTF-EE) as the first RXR antagonist that does not show allosteric inhibition in permissive RXR heterodimers. This compound was designed based on the hypothesis that RXR antagonists that do not induce conformational changes of RXR would not exhibit such allosteric inhibition. CD spectra and X-ray co-crystallography of the complex of 14 and the RXR ligand binding domain (LBD) confirmed that 14 does not change the conformation of hRXR-LBD. The X-ray structure analysis revealed that 14 binds at the entrance of the ligand binding pocket (LBP), blocking access to the LBP and thus serving as a "gatekeeper".
Collapse
Affiliation(s)
- Masaki Watanabe
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Michiko Fujihara
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.,AIBIOS Company. Ltd., Tri-Seven Roppongi 8F 7-7-7 Roppongi, Minato-ku, Tokyo 106-0032, Japan
| | - Tomoharu Motoyama
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Mayu Kawasaki
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Shoya Yamada
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.,Research Fellowship Division, Japan Society for the Promotion of Science, Sumitomo-Ichibancho FS Bldg., 8 Ichibancho, Chiyoda-ku, Tokyo 102-8472, Japan
| | - Yuta Takamura
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Sohei Ito
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Shogo Nakano
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hiroki Kakuta
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
10
|
A triple farnesoid X receptor and peroxisome proliferator-activated receptor α/δ activator reverses hepatic fibrosis in diet-induced NASH in mice. Commun Chem 2020; 3:174. [PMID: 36703463 PMCID: PMC9814779 DOI: 10.1038/s42004-020-00411-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/16/2020] [Indexed: 01/29/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) - a hepatic manifestation of the metabolic syndrome - is a multifactorial disease with alarming global prevalence. It involves steatosis, inflammation and fibrosis in the liver, thus demanding multiple modes of action for robust therapeutic efficacy. Aiming to fuse complementary validated anti-NASH strategies in a single molecule, we have designed and systematically optimized a scaffold for triple activation of farnesoid X receptor (FXR), peroxisome proliferator-activated receptor (PPAR) α and PPARδ. Pilot profiling of the resulting triple modulator demonstrated target engagement in native cellular settings and in mice, rendering it a suitable tool to probe the triple modulator concept in vivo. In DIO NASH in mice, the triple agonist counteracted hepatic inflammation and reversed hepatic fibrosis highlighting the potential of designed polypharmacology in NASH.
Collapse
|
11
|
Chaikuad A, Pollinger J, Rühl M, Ni X, Kilu W, Heering J, Merk D. Comprehensive Set of Tertiary Complex Structures and Palmitic Acid Binding Provide Molecular Insights into Ligand Design for RXR Isoforms. Int J Mol Sci 2020; 21:E8457. [PMID: 33187070 PMCID: PMC7697888 DOI: 10.3390/ijms21228457] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 01/10/2023] Open
Abstract
The retinoid X receptor (RXR) is a ligand-sensing transcription factor acting mainly as a universal heterodimer partner for other nuclear receptors. Despite presenting as a potential therapeutic target for cancer and neurodegeneration, adverse effects typically observed for RXR agonists, likely due to the lack of isoform selectivity, limit chemotherapeutic application of currently available RXR ligands. The three human RXR isoforms exhibit different expression patterns; however, they share high sequence similarity, presenting a major obstacle toward the development of subtype-selective ligands. Here, we report the discovery of the saturated fatty acid, palmitic acid, as an RXR ligand and disclose a uniform set of crystal structures of all three RXR isoforms in an active conformation induced by palmitic acid. A structural comparison revealed subtle differences among the RXR subtypes. We also observed an ability of palmitic acid as well as myristic acid and stearic acid to induce recruitment of steroid receptor co-activator 1 to the RXR ligand-binding domain with low micromolar potencies. With the high, millimolar endogenous concentrations of these highly abundant lipids, our results suggest their potential involvement in RXR signaling.
Collapse
Affiliation(s)
- Apirat Chaikuad
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany; (J.P.); (M.R.); (X.N.); (W.K.)
- Structural Genomics Consortium, BMLS, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt, Germany
| | - Julius Pollinger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany; (J.P.); (M.R.); (X.N.); (W.K.)
| | - Michael Rühl
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany; (J.P.); (M.R.); (X.N.); (W.K.)
| | - Xiaomin Ni
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany; (J.P.); (M.R.); (X.N.); (W.K.)
- Structural Genomics Consortium, BMLS, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt, Germany
| | - Whitney Kilu
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany; (J.P.); (M.R.); (X.N.); (W.K.)
| | - Jan Heering
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany;
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany; (J.P.); (M.R.); (X.N.); (W.K.)
| |
Collapse
|